Oligonucleotide

Last updated

Oligonucleotides are short DNA or RNA molecules, oligomers, that have a wide range of applications in genetic testing, research, and forensics. Commonly made in the laboratory by solid-phase chemical synthesis, [1] these small fragments of nucleic acids can be manufactured as single-stranded molecules with any user-specified sequence, and so are vital for artificial gene synthesis, polymerase chain reaction (PCR), DNA sequencing, molecular cloning and as molecular probes. In nature, oligonucleotides are usually found as small RNA molecules that function in the regulation of gene expression (e.g. microRNA), [2] or are degradation intermediates derived from the breakdown of larger nucleic acid molecules.

Contents

Oligonucleotides are characterized by the sequence of nucleotide residues that make up the entire molecule. The length of the oligonucleotide is usually denoted by "-mer" (from Greek meros, "part"). For example, an oligonucleotide of six nucleotides (nt) is a hexamer, while one of 25 nt would usually be called a "25-mer". Oligonucleotides readily bind, in a sequence-specific manner, to their respective complementary oligonucleotides, DNA, or RNA to form duplexes or, less often, hybrids of a higher order. This basic property serves as a foundation for the use of oligonucleotides as probes for detecting specific sequences of DNA or RNA. Examples of procedures that use oligonucleotides include DNA microarrays, Southern blots, ASO analysis, [3] fluorescent in situ hybridization (FISH), PCR, and the synthesis of artificial genes.

Oligonucleotides are composed of 2'-deoxyribonucleotides (oligodeoxyribonucleotides), which can be modified at the backbone or on the 2' sugar position to achieve different pharmacological effects. These modifications give new properties to the oligonucleotides and make them a key element in antisense therapy. [4] [5]

Synthesis

Oligonucleotides are chemically synthesized using building blocks, protected phosphoramidites of natural or chemically modified nucleosides or, to a lesser extent, of non-nucleosidic compounds. The oligonucleotide chain assembly proceeds in the 3' to 5' direction by following a routine procedure referred to as a "synthetic cycle". Completion of a single synthetic cycle results in the addition of one nucleotide residue to the growing chain. A less than 100% yield of each synthetic step and the occurrence of side reactions set practical limits of the efficiency of the process. In general, oligonucleotide sequences are usually short (13–25 nucleotides long). [6] The maximum length of synthetic oligonucleotides hardly exceeds 200 nucleotide residues. HPLC and other methods can be used to isolate products with the desired sequence.[ citation needed ]

Chemical modifications

Creating chemically stable short oligonucleotides was the earliest challenge in developing ASO therapies. Naturally occurring oligonucleotides are easily degraded by nucleases, an enzyme that cleaves nucleotides and is ample in every cell type. [7] Short oligonucleotide sequences also have weak intrinsic binding affinities, which contributes to their degradation in vivo. [8]

Backbone modifications

Nucleoside organothiophosphate (PS) analogs of nucleotides give oligonucleotides some beneficial properties. Key beneficial properties that PS backbones give nucleotides are diastereomer identification of each nucleotide and the ability to easily follow reactions involving the phosphorothioate nucleotides, which is useful in oligonucleotide synthesis. [9] PS backbone modifications to oligonucleotides protects them against unwanted degradation by enzymes. [10] Modifying the nucleotide backbone is widely used because it can be achieved with relative ease and accuracy on most nucleotides. [9] Fluorescent modifications on 5' and 3' end of oligonucleotides was reported to evaluate the oligonucleotides structures, dynamics and interactions with respect to environment. [11]

Sugar ring modifications

Another modification that is useful for medical applications of oligonucleotides is 2' sugar modifications. Modifying the 2' position sugar increases the effectiveness of oligonucleotides by enhancing the target binding capabilities of oligonucleotides, specifically in antisense oligonucleotides therapies. [8] They also decrease non specific protein binding, increasing the accuracy of targeting specific proteins. [8] Two of the most commonly used modifications are 2'-O-methyl and the 2'-O-methoxyethyl. [8] Fluorescent modifications on the nucleobase was also reported. [11]

Antisense oligonucleotides

Antisense oligonucleotides (ASO) are single strands of DNA or RNA that are complementary to a chosen sequence. [6] In the case of antisense RNA they prevent protein translation of certain messenger RNA strands by binding to them, in a process called hybridization. [12] Antisense oligonucleotides can be used to target a specific, complementary (coding or non-coding) RNA. If binding takes place this hybrid can be degraded by the enzyme RNase H. [12] RNase H is an enzyme that hydrolyzes RNA, and when used in an antisense oligonucleotide application results in 80-95% down-regulation of mRNA expression. [6]

The use of Morpholino antisense oligonucleotides for gene knockdowns in vertebrates, which is now a standard technique in developmental biology and is used to study altered gene expression and gene function, was first developed by Janet Heasman using Xenopus . [13] FDA-approved Morpholino drugs include eteplirsen and golodirsen. The antisense oligonucleotides have also been used to inhibit influenza virus replication in cell lines. [14] [15]

Neurodegenerative diseases that are a result of a single mutant protein are good targets for antisense oligonucleotide therapies because of their ability to target and modify very specific sequences of RNA with high selectivity. [3] Many genetic diseases including Huntington's disease, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS) have been linked to DNA alterations that result in incorrect RNA sequences and result in mistranslated proteins that have a toxic physiological effect. [16]

Cell internalisation

Cell uptake/internalisation still represents the biggest hurdle towards successful oligonucleotide (ON) therapeutics. A straightforward uptake, like for most small-molecule drugs, is hindered by the polyanionic backbone and the molecular size of ONs. The exact mechanisms of uptake and intracellular trafficking towards the place of action are still largely unclear. Moreover, small differences in ON structure/modification (vide supra) and difference in cell type leads to huge differences in uptake. It is believed that cell uptake occurs on different pathways after adsorption of ONs on the cell surface. Notably, studies show that most tissue culture cells readily take up ASOs (phosphorothiote linkage) in a non-productive way, meaning that no antisense effect is observed. In contrast to that conjugation of ASO with ligands recognised by G-coupled receptors leads to an increased productive uptake. [17] Next to that classification (non-productive vs. productive), cell internalisation mostly proceeds in an energy-dependant way (receptor mediated endocytosis) but energy-independent passive diffusion (gymnosis) may not be ruled out. After passing the cell membrane, ON therapeutics are encapsulated in early endosomes which are transported towards late endosomes which are ultimately fused with lysosomes containing degrading enzymes at low pH. [18] To exert its therapeutic function, the ON needs to escape the endosome prior to its degradation. Currently there is no universal method to overcome the problems of delivery, cell uptake and endosomal escape, but there exist several approaches which are tailored to specific cells and their receptors. [19]

A conjugation of ON therapeutics to an entity responsible for cell recognition/uptake not only increases the uptake (vide supra) but is also believed to decrease the complexity of the cell uptake as mainly one (ideally known) mechanism is then involved. [18] This has been achieved with small molecule-ON conjugates for example bearing an N-acetyl galactosamine which targets receptors of hepatocytes. [20] These conjugates are an excellent example for obtaining an increased cell uptake paired with targeted delivery as the corresponding receptors are overexpressed on the target cells leading to a targeted therapeutic (compare antibody-drug conjugates which exploit overexpressed receptors on cancer cells). [19] Another broadly used and heavily investigated entity for targeted delivery and increased cell uptake of oligonucleotides are antibodies.

Analytical techniques

Chromatography

Alkylamides can be used as chromatographic stationary phases. [21] Those phases have been investigated for the separation of oligonucleotides. [22] Ion-pair reverse-phase high-performance liquid chromatography is used to separate and analyse the oligonucleotides after automated synthesis. [23]

Mass spectrometry

A mixture of 5-methoxysalicylic acid and spermine can be used as a matrix for oligonucleotides analysis in MALDI mass spectrometry. [24] ElectroSpray Ionization Mass Spectrometry (ESI-MS) is also a powerful tool to characterize the mass of oligonucleotides. [25]

DNA microarray

DNA microarrays are a useful analytical application of oligonucleotides. Compared to standard cDNA microarrays, oligonucleotide based microarrays have more controlled specificity over hybridization, and the ability to measure the presence and prevalence of alternatively spliced or polyadenylated sequences. [26] One subtype of DNA microarrays can be described as substrates (nylon, glass, etc.) to which oligonucleotides have been bound at high density. [27] There are a number of applications of DNA microarrays within the life sciences.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Nucleotide</span> Biological molecules constituting nucleic acids

Nucleotides are organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both of which are essential biomolecules within all life-forms on Earth. Nucleotides are obtained in the diet and are also synthesized from common nutrients by the liver.

<span class="mw-page-title-main">Peptide nucleic acid</span> Biological molecule

Peptide nucleic acid (PNA) is an artificially synthesized polymer similar to DNA or RNA.

<span class="mw-page-title-main">DNA microarray</span> Collection of microscopic DNA spots attached to a solid surface

A DNA microarray is a collection of microscopic DNA spots attached to a solid surface. Scientists use DNA microarrays to measure the expression levels of large numbers of genes simultaneously or to genotype multiple regions of a genome. Each DNA spot contains picomoles of a specific DNA sequence, known as probes. These can be a short section of a gene or other DNA element that are used to hybridize a cDNA or cRNA sample under high-stringency conditions. Probe-target hybridization is usually detected and quantified by detection of fluorophore-, silver-, or chemiluminescence-labeled targets to determine relative abundance of nucleic acid sequences in the target. The original nucleic acid arrays were macro arrays approximately 9 cm × 12 cm and the first computerized image based analysis was published in 1981. It was invented by Patrick O. Brown. An example of its application is in SNPs arrays for polymorphisms in cardiovascular diseases, cancer, pathogens and GWAS analysis. It is also used for the identification of structural variations and the measurement of gene expression.

<span class="mw-page-title-main">Locked nucleic acid</span> Biological molecule

A locked nucleic acid (LNA), also known as bridged nucleic acid (BNA), and often referred to as inaccessible RNA, is a modified RNA nucleotide in which the ribose moiety is modified with an extra bridge connecting the 2' oxygen and 4' carbon. The bridge "locks" the ribose in the 3'-endo (North) conformation, which is often found in the A-form duplexes. This structure provides for increased stability against enzymatic degradation. LNA also offers improved specificity and affinity in base-pairing as a monomer or a constituent of an oligonucleotide. LNA nucleotides can be mixed with DNA or RNA residues in a oligonucleotide.

<span class="mw-page-title-main">Morpholino</span> Chemical compound

A Morpholino, also known as a Morpholino oligomer and as a phosphorodiamidate Morpholino oligomer (PMO), is a type of oligomer molecule used in molecular biology to modify gene expression. Its molecular structure contains DNA bases attached to a backbone of methylenemorpholine rings linked through phosphorodiamidate groups. Morpholinos block access of other molecules to small specific sequences of the base-pairing surfaces of ribonucleic acid (RNA). Morpholinos are used as research tools for reverse genetics by knocking down gene function.

Antisense therapy is a form of treatment that uses antisense oligonucleotides (ASOs) to target messenger RNA (mRNA). ASOs are capable of altering mRNA expression through a variety of mechanisms, including ribonuclease H mediated decay of the pre-mRNA, direct steric blockage, and exon content modulation through splicing site binding on pre-mRNA. Several ASOs have been approved in the United States, the European Union, and elsewhere.

<span class="mw-page-title-main">Antisense RNA</span>

Antisense RNA (asRNA), also referred to as antisense transcript, natural antisense transcript (NAT) or antisense oligonucleotide, is a single stranded RNA that is complementary to a protein coding messenger RNA (mRNA) with which it hybridizes, and thereby blocks its translation into protein. The asRNAs have been found in both prokaryotes and eukaryotes, and can be classified into short and long non-coding RNAs (ncRNAs). The primary function of asRNA is regulating gene expression. asRNAs may also be produced synthetically and have found wide spread use as research tools for gene knockdown. They may also have therapeutic applications.

In molecular biology, a hybridization probe (HP) is a fragment of DNA or RNA, usually 15–10000 nucleotides long, which can be radioactively or fluorescently labeled. HPs can be used to detect the presence of nucleotide sequences in analyzed RNA or DNA that are complementary to the sequence in the probe. The labeled probe is first denatured into single stranded DNA (ssDNA) and then hybridized to the target ssDNA or RNA immobilized on a membrane or in situ.

In molecular biology and genetics, the sense of a nucleic acid molecule, particularly of a strand of DNA or RNA, refers to the nature of the roles of the strand and its complement in specifying a sequence of amino acids. Depending on the context, sense may have slightly different meanings. For example, the negative-sense strand of DNA is equivalent to the template strand, whereas the positive-sense strand is the non-template strand whose nucleotide sequence is equivalent to the sequence of the mRNA transcript.

Oligonucleotide synthesis is the chemical synthesis of relatively short fragments of nucleic acids with defined chemical structure (sequence). The technique is extremely useful in current laboratory practice because it provides a rapid and inexpensive access to custom-made oligonucleotides of the desired sequence. Whereas enzymes synthesize DNA and RNA only in a 5' to 3' direction, chemical oligonucleotide synthesis does not have this limitation, although it is most often carried out in the opposite, 3' to 5' direction. Currently, the process is implemented as solid-phase synthesis using phosphoramidite method and phosphoramidite building blocks derived from protected 2'-deoxynucleosides, ribonucleosides, or chemically modified nucleosides, e.g. LNA or BNA.

<span class="mw-page-title-main">Computational gene</span>

A computational gene is a molecular automaton consisting of a structural part and a functional part; and its design is such that it might work in a cellular environment.

<span class="mw-page-title-main">CpG oligodeoxynucleotide</span>

CpG oligodeoxynucleotides are short single-stranded synthetic DNA molecules that contain a cytosine triphosphate deoxynucleotide ("C") followed by a guanine triphosphate deoxynucleotide ("G"). The "p" refers to the phosphodiester link between consecutive nucleotides, although some ODN have a modified phosphorothioate (PS) backbone instead. When these CpG motifs are unmethylated, they act as immunostimulants. CpG motifs are considered pathogen-associated molecular patterns (PAMPs) due to their abundance in microbial genomes but their rarity in vertebrate genomes. The CpG PAMP is recognized by the pattern recognition receptor (PRR) Toll-Like Receptor 9 (TLR9), which is constitutively expressed only in B cells and plasmacytoid dendritic cells (pDCs) in humans and other higher primates.

A bridged nucleic acid (BNA) is a modified RNA nucleotide. They are sometimes also referred to as constrained or inaccessible RNA molecules. BNA monomers can contain a five-membered, six-membered or even a seven-membered bridged structure with a "fixed" C3'-endo sugar puckering. The bridge is synthetically incorporated at the 2', 4'-position of the ribose to afford a 2', 4'-BNA monomer. The monomers can be incorporated into oligonucleotide polymeric structures using standard phosphoramidite chemistry. BNAs are structurally rigid oligo-nucleotides with increased binding affinities and stability.

Anti-miRNA oligonucleotides have many uses in cellular mechanics. These synthetically designed molecules are used to neutralize microRNA (miRNA) function in cells for desired responses. miRNA are complementary sequences to mRNA that are involved in the cleavage of RNA or the suppression of the translation. By controlling the miRNA that regulate mRNAs in cells, AMOs can be used as further regulation as well as for therapeutic treatment for certain cellular disorders. This regulation can occur through a steric blocking mechanism as well as hybridization to miRNA. These interactions, within the body between miRNA and AMOs, can be for therapeutics in disorders in which over/under expression occurs or aberrations in miRNA lead to coding issues. Some of the miRNA linked disorders that are encountered in the humans include cancers, muscular diseases, autoimmune disorders, and viruses. In order to determine the functionality of certain AMOs, the AMO/miRNA binding expression must be measured against the expressions of the isolated miRNA. The direct detection of differing levels of genetic expression allow the relationship between AMOs and miRNAs to be shown. This can be detected through luciferase activity. Understanding the miRNA sequences involved in these diseases can allow us to use anti miRNA Oligonucleotides to disrupt pathways that lead to the under/over expression of proteins of cells that can cause symptoms for these diseases.

A hybridization assay comprises any form of quantifiable hybridization i.e. the quantitative annealing of two complementary strands of nucleic acids, known as nucleic acid hybridization.

<span class="mw-page-title-main">Antibody-oligonucleotide conjugate</span>

Antibody-oligonucleotide conjugates or AOCs belong to a class of chimeric molecules combining in their structure two important families of biomolecules: monoclonal antibodies and oligonucleotides.

RNA therapeutics are a new class of medications based on ribonucleic acid (RNA). Research has been working on clinical use since the 1990s, with significant success in cancer therapy in the early 2010s. In 2020 and 2021, mRNA vaccines have been developed globally for use in combating the coronavirus disease. The Pfizer–BioNTech COVID-19 vaccine was the first mRNA vaccine approved by a medicines regulator, followed by the Moderna COVID-19 vaccine, and others.

Gapmers are short DNA antisense oligonucleotide structures with RNA-like segments on both sides of the sequence. These linear pieces of genetic information are designed to hybridize to a target piece of RNA and silence the gene through the induction of RNase H cleavage. Binding of the gapmer to the target has a higher affinity due to the modified RNA flanking regions, as well as resistance to degradation by nucleases. Gapmers are currently being developed as therapeutics for a variety of cancers, viruses, and other chronic genetic disorders.

ncRNA therapy

A majority of the human genome is made up of non-protein coding DNA. It infers that such sequences are not commonly employed to encode for a protein. However, even though these regions do not code for protein, they have other functions and carry necessary regulatory information.They can be classified based on the size of the ncRNA. Small noncoding RNA is usually categorized as being under 200 bp in length, whereas long noncoding RNA is greater than 200bp. In addition, they can be categorized by their function within the cell; Infrastructural and Regulatory ncRNAs. Infrastructural ncRNAs seem to have a housekeeping role in translation and splicing and include species such as rRNA, tRNA, snRNA.Regulatory ncRNAs are involved in the modification of other RNAs.

This glossary of cellular and molecular biology is a list of definitions of terms and concepts commonly used in the study of cell biology, molecular biology, and related disciplines, including molecular genetics, biochemistry, and microbiology. It is split across two articles:

References

  1. Yang J, Stolee JA, Jiang H, Xiao L, Kiesman WF, Antia FD, et al. (October 2018). "Solid-Phase Synthesis of Phosphorothioate Oligonucleotides Using Sulfurization Byproducts for in Situ Capping". The Journal of Organic Chemistry. 83 (19): 11577–11585. doi:10.1021/acs.joc.8b01553. PMID   30179468. S2CID   52157806.
  2. Qureshi A, Thakur N, Monga I, Thakur A, Kumar M (1 January 2014). "VIRmiRNA: a comprehensive resource for experimentally validated viral miRNAs and their targets". Database. 2014: bau103. doi:10.1093/database/bau103. PMC   4224276 . PMID   25380780.
  3. 1 2 Monga I, Qureshi A, Thakur N, Gupta AK, Kumar M (2017). "ASPsiRNA: A Resource of ASP-siRNAs Having Therapeutic Potential for Human Genetic Disorders and Algorithm for Prediction of Their Inhibitory Efficacy". G3: Genes, Genomes, Genetics . 7 (9): 2931–2943. doi:10.1534/g3.117.044024. PMC   5592921 . PMID   28696921.
  4. Weiss, B., ed. (1997). Antisense Oligodeoxynucleotides and Antisense RNA : Novel Pharmacological and Therapeutic Agents. Boca Raton, Florida: CRC Press
  5. Weiss B, Davidkova G, Zhou LW (1999). "Antisense RNA gene therapy for studying and modulating biological processes". Cellular and Molecular Life Sciences. 55 (3): 334–58. doi:10.1007/s000180050296. PMID   10228554. S2CID   9448271.
  6. 1 2 3 Dias N, Stein CA (March 2002). "Antisense oligonucleotides: basic concepts and mechanisms". Molecular Cancer Therapeutics. 1 (5): 347–55. PMID   12489851.
  7. Frazier KS (January 2015). "Antisense oligonucleotide therapies: the promise and the challenges from a toxicologic pathologist's perspective". Toxicologic Pathology. 43 (1): 78–89. doi:10.1177/0192623314551840. PMID   25385330. S2CID   37981276.
  8. 1 2 3 4 DeVos SL, Miller TM (July 2013). "Antisense oligonucleotides: treating neurodegeneration at the level of RNA". Neurotherapeutics. 10 (3): 486–97. doi:10.1007/s13311-013-0194-5. PMC   3701770 . PMID   23686823.
  9. 1 2 Eckstein F (April 2000). "Phosphorothioate oligodeoxynucleotides: what is their origin and what is unique about them?". Antisense & Nucleic Acid Drug Development. 10 (2): 117–21. doi:10.1089/oli.1.2000.10.117. PMID   10805163.
  10. Stein CA, Subasinghe C, Shinozuka K, Cohen JS (April 1988). "Physicochemical properties of phosphorothioate oligodeoxynucleotides". Nucleic Acids Research. 16 (8): 3209–21. doi:10.1093/nar/16.8.3209. PMC   336489 . PMID   2836790.
  11. 1 2 Michel BY, Dziuba D, Benhida R, Demchenko AP, Burger A (2020). "Probing of Nucleic Acid Structures, Dynamics, and Interactions With Environment-Sensitive Fluorescent Labels". Frontiers in Chemistry. 8: 112. Bibcode:2020FrCh....8..112M. doi: 10.3389/fchem.2020.00112 . PMC   7059644 . PMID   32181238.
  12. 1 2 Crooke ST (April 2017). "Molecular Mechanisms of Antisense Oligonucleotides". Nucleic Acid Therapeutics. 27 (2): 70–77. doi:10.1089/nat.2016.0656. PMC   5372764 . PMID   28080221.
  13. Heasman J, Kofron M, Wylie C (June 2000). "Beta-catenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach". Developmental Biology. 222 (1): 124–34. doi: 10.1006/dbio.2000.9720 . PMID   10885751.
  14. Kumar P, Kumar B, Rajput R, Saxena L, Banerjea AC, Khanna M (November 2013). "Cross-protective effect of antisense oligonucleotide developed against the common 3' NCR of influenza A virus genome". Molecular Biotechnology. 55 (3): 203–11. doi:10.1007/s12033-013-9670-8. PMID   23729285. S2CID   24496875.
  15. Kumar B, Khanna M, Kumar P, Sood V, Vyas R, Banerjea AC (May 2012). "Nucleic acid-mediated cleavage of M1 gene of influenza A virus is significantly augmented by antisense molecules targeted to hybridize close to the cleavage site". Molecular Biotechnology. 51 (1): 27–36. doi:10.1007/s12033-011-9437-z. PMID   21744034. S2CID   45686564.
  16. Smith RA, Miller TM, Yamanaka K, Monia BP, Condon TP, Hung G, et al. (August 2006). "Antisense oligonucleotide therapy for neurodegenerative disease". The Journal of Clinical Investigation. 116 (8): 2290–6. doi: 10.1172/JCI25424 . PMC   1518790 . PMID   16878173.
  17. Ming, Xin; Alam, Md Rowshon; Fisher, Michael; Yan, Yongjun; Chen, Xiaoyuan; Juliano, Rudolph L. (2010-06-15). "Intracellular delivery of an antisense oligonucleotide via endocytosis of a G protein-coupled receptor". Nucleic Acids Research. 38 (19): 6567–6576. doi:10.1093/nar/gkq534. ISSN   1362-4962. PMC   2965246 . PMID   20551131.
  18. 1 2 Hawner, Manuel; Ducho, Christian (2020-12-16). "Cellular Targeting of Oligonucleotides by Conjugation with Small Molecules". Molecules. 25 (24): 5963. doi: 10.3390/molecules25245963 . ISSN   1420-3049. PMC   7766908 . PMID   33339365.
  19. 1 2 Crooke, S. T. (2017). "Cellular uptake and trafficking of antisense oligonucleotides". Nat. Biotechnol. 35 (3): 230–237. doi:10.1038/nbt.3779. PMID   28244996. S2CID   1049452.
  20. Prakash, Thazha P.; Graham, Mark J.; Yu, Jinghua; Carty, Rick; Low, Audrey; Chappell, Alfred; Schmidt, Karsten; Zhao, Chenguang; Aghajan, Mariam; Murray, Heather F.; Riney, Stan; Booten, Sheri L.; Murray, Susan F.; Gaus, Hans; Crosby, Jeff (July 2014). "Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice". Nucleic Acids Research. 42 (13): 8796–8807. doi:10.1093/nar/gku531. ISSN   1362-4962. PMC   4117763 . PMID   24992960.
  21. Buszewski B, Kasturi P, Gilpin RK, Gangoda ME, Jaroniec M (August 1994). "Chromatographic and related studies of alkylamide phases". Chromatographia. 39 (3–4): 155–61. doi:10.1007/BF02274494. S2CID   97825477.
  22. Buszewski B, Safaei Z, Studzińska S (January 2015). "Analysis of oligonucleotides by liquid chromatography with alkylamide stationary phase". Open Chemistry. 13 (1). doi: 10.1515/chem-2015-0141 .
  23. Gilar, M.; Fountain, K. J.; Budman, Y.; Neue, U. D.; Yardley, K. R.; Rainville, P. D.; Russell Rj, 2nd; Gebler, J. C. (2002-06-07). "Ion-pair reversed-phase high-performance liquid chromatography analysis of oligonucleotides:: Retention prediction". Journal of Chromatography A. 958 (1–2): 167–182. doi:10.1016/S0021-9673(02)00306-0. ISSN   0021-9673. PMID   12134814.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  24. Distler AM, Allison J (April 2001). "5-Methoxysalicylic acid and spermine: a new matrix for the matrix-assisted laser desorption/ionization mass spectrometry analysis of oligonucleotides". Journal of the American Society for Mass Spectrometry. 12 (4): 456–62. Bibcode:2001JASMS..12..456D. doi:10.1016/S1044-0305(01)00212-4. PMID   11322192. S2CID   18280663.
  25. Shah S, Friedman SH (March 2008). "An ESI-MS method for characterization of native and modified oligonucleotides used for RNA interference and other biological applications". Nature Protocols. 3 (3): 351–6. doi:10.1038/nprot.2007.535. PMID   18323805. S2CID   2093309.
  26. Relógio A, Schwager C, Richter A, Ansorge W, Valcárcel J (June 2002). "Optimization of oligonucleotide-based DNA microarrays". Nucleic Acids Research. 30 (11): 51e–51. doi:10.1093/nar/30.11.e51. PMC   117213 . PMID   12034852.
  27. Gong P, Harbers GM, Grainger DW (April 2006). "Multi-technique comparison of immobilized and hybridized oligonucleotide surface density on commercial amine-reactive microarray slides". Analytical Chemistry. 78 (7): 2342–51. doi:10.1021/ac051812m. PMID   16579618.

Further reading