Top-down proteomics

Last updated
Top-down vs bottom-up proteomics Top-down vs bottom-up proteomics image.tif
Top-down vs bottom-up proteomics

Top Down proteomics is a method of protein identification capable of identifying and quantitating unique proteoforms through the analysis of intact proteins. The name is derived from the similar approach to DNA sequencing. During mass spectrometry, intact proteoforms are typically ionized by electrospray ionization and analysed using a variety of mass analysers, including Orbitraps, Ion Cyclotrons and Time-Of-Flight. Effective fractionation is critical for sample handling before mass-spectrometry-based proteomics. Typical proteome analysis routinely involves digesting intact proteins followed by inferred protein identification using mass spectrometry (MS; Bottom Up proteomics). Top Down proteomics using mass spectrometry interrogates protein structure through measurement of a proteoform's intact mass followed by direct ion dissociation in the gas phase. Top Down proteoform analysis can also be achieved through resolution (separation) of the proteoform from all other proteoforms and then applying peptide-centric LC-MS/MS to characterise the isolated proteoform.

Contents

A single gene can code for many protein products (e.g. via alternative splicing; post-transcriptional and -translational processing) and the resulting canonical amino acid sequences (i.e. 'proteins' or more correctly Open Reading Frame (ORF) products) can be further modified by any number of post-translational modifications (PTM) or non-physiological adducts. These varied protein species or proteoforms define proteomes and are the functional entities underlying biological processes. Thus, truly comprehensive or 'deep' proteome analyses must assess proteoforms. [1] [2] [3]

There are two general approaches to proteome analysis - bottom up (BUP or shotgun) and top down (TDP). [1] [3] The former, a peptide-centric or  proteogenomic approach, infers (often with quite limited data) the identities of canonical protein sequences by correlation with existing databases, mostly derived from genome sequencing projects. In contrast, TDP can, in theory, yield comprehensive proteome analyses at the level of proteoforms provided the methods used effectively address the full breadth of species in a proteome.

Adopted from analytical chemistry, the term top down in proteomics means the separation of intact proteoforms and their subsequent identification, and is agnostic as to how that is achieved. [4] [5] Currently, there are two analytical approaches that enable proteome assessments to different extents: Integrative or Integrated TDP (iTDP; routine high resolution/sensitivity two-dimensional gel electrophoresis tightly coupled with liquid chromatography and tandem mass spectrometry (2DE/LC/MS/MS)) or mass spectrometry-intensive TDP (MSi-TDP). [1] [3] [5] Although somewhat misleading interpretations appear in the literature implying the latter defines TDP, this is clearly a misconception when considering what is genuinely required for fully effective, comprehensive proteome analyses.

Integrated Top-Down Proteomics (iTDP)

Proteoform determination using Integrative Top Down Proteomics. Carbonara Fig5.jpg
Proteoform determination using Integrative Top Down Proteomics.

Further developed, refined, and optimized since the original report [6] of a routine 2DE  separation of protein species (most often using isoelectric focusing and then SDS-PAGE), and subsequently coupled with western blotting and MS, this approach was the first to identify the range of protein species/proteoforms in a variety of samples. [7] [8] [9] [10] [11] [12] Currently, the iTDP analytical approach offers the highest proteoform resolution and a routine approach to full proteome analysis (e.g., across the full breadth of species in native proteomes). [1] [3] [13] [14] [15] [16] [17] [18] [19] Spots and/or regions of interest can be excised from the gel, proteolytically digested using well-established methods, and the resulting peptides then assessed using LC/MS/MS to identify canonical amino acid sequences and their inherent PTM (i.e. an 'integration' with BUP). Integration of this sequence information with the isoelectric point (pI) and molecular weight (MW) information from 2DE thus enables definitive identification of proteoforms based on several key defining physico-chemical characteristics. In addition to highly sensitive and quantitative total proteoform detection using fluorescent stains[20]. and notably Coomassie Brilliant Blue as a near-IR dye, [14] [20] [21] gel staining protocols also enable the identification of broad proteoform groups containing the same PTM (e.g. phospho- and glyco-proteoforms). [14] Thus, iTDP utilizes integration of the best available approaches to enable truly comprehensive, deep proteome analyses at the critically necessary level of proteoforms. Accordingly, following critical evaluation to ensure comprehensive, quantitative analysis, new approaches can also be integrated once fully vetted (see below).

Advantages

Disadvantages

Mass spectrometry-intensive TDP (MSi-TDP)

MSi-TDP (sometimes referred to as TD-MS) is a method of proteoform identification that uses a mass spectrometer to determine the mass of a species from the charge series of the resulting ions and obtain sequence information by selecting a single charge state ion for MS/MS analysis . The stated goal of MSi-TDP is to carry out proteoform analysis fully in the mass spectrometer using a variety of fragmentation methods (e.g. collision-induced dissociation, electron-capture dissociation or electron-transfer dissociation).  Due to proteoform molecules taking up different numbers of H+ ions and forming multiple charge states, having multiple different proteoforms appearing in the mass spectrometer at the same time can create extremely complicated spectra that are difficult to deconvolute and analyse, while also having the potential for ion suppression that reduces signal and sensitivity. [26] [27] This is most effectively overcome by separating the different proteoforms, typically by tube gel electrophoresis and subsequent reversed phase chromatography, immediately prior to ionisation, to reduce the number of proteoforms entering the instrument at a particular moment. Therefore, effective sample/proteome fractionation is critical before MSi-TDP to ensure success of analyses within the limitations of the method. Thus, in contrast to BUP, MSi-TDP interrogates proteoform structure through measurement of an intact mass followed by direct ion dissociation in the gas phase .

Advantages

Disadvantages

Potential Future Directions

Affinity-based proteome analysis tools

The definition of TDP includes a requirement to identify the "protein", either as a distinct proteoform or ORF product. While this is most typically achieved using a mass spectrometer to fragment ions, from either intact proteoforms or peptides of resolved proteoforms, it is also possible to identify and quantify canonical "proteins" using affinity-based reagents, such as O-link and SomaScan which use antibodies or aptamers, respectively. The generic term "protein" is used here because it is unclear whether these reagents identify certain proteoforms or a variety of proteoforms from the same ORF product. These methods thus produce similar, yet different, information relative to each other and to proteogenomic BUP approaches using LC/MS/MS. [36] [37] [38] [39] [40] Because of the claimed (i) "depth" of these assays in terms of identifying canonical protein sequences; and (ii) apparent ability to quantify changes in the abundance of those proteins in samples that can be problematic for other proteomics technologies (e.g.  plasma and serum), these technologies have become popular in studies having enormous sample numbers that are impossible to directly address by other proteomics technologies. However, the substantial lack of correlation between these technologies, as well as with other established proteomics technologies, needs to be addressed, along with fully characterizing the exact proteoforms that these reagents are identifying. This will thus also require transparent verification of the quality and selectivity of any antibodies and aptamers used. Expense must also be duly considered with such assays as they become more frequently applied in very large studies (e.g. potentially involving thousands of samples).

While other approaches are also being made commercially available (e.g. iterative mapping of peptides, fluorescent variation of Edman degradation, and nanopores) these (i) remain broadly untested outside the firms involved; (ii) yield largely, if not completely, only proteogenomic data; (iii) are thus, currently at least, quite limited in terms of any capacity for a broad assessment of proteoforms; (iv) are dependent on the quality of the affinity or other (multiple) reagents required which; (v) tends to also increase costs per assay to the consumer. Notably, while promising, nanopore sequencing is (i) still quite early in development; and (ii) remains unproven in terms of throughput and capacity to address the full range of known PTM and adducts. [41] Thus, the capacity for nanopores to quantitatively address the full breadth of a proteome remains untested. Other technical issues such as potential clogging of pores will also need to be addressed with hopefully routine solutions.

See also

References

  1. 1 2 3 4 5 6 7 8 Carbonara, Katrina; Andonovski, Martin; Coorssen, Jens R. (2021-08-31). "Proteomes Are of Proteoforms: Embracing the Complexity". Proteomes. 9 (3): 38. doi: 10.3390/proteomes9030038 . ISSN   2227-7382. PMC   8482110 . PMID   34564541.
  2. 1 2 Free, Tristan (2023-02-10). "Why a 'protein' isn't: acknowledging proteome complexity". BioTechniques. Retrieved 2025-12-09.
  3. 1 2 3 4 5 6 7 8 Coorssen, Jens R.; Padula, Matthew P. (2024-04-19). "Proteomics—The State of the Field: The Definition and Analysis of Proteomes Should Be Based in Reality, Not Convenience". Proteomes. 12 (2): 14. doi: 10.3390/proteomes12020014 . ISSN   2227-7382. PMC   11036260 . PMID   38651373.
  4. Oliveira, Bruno M.; Coorssen, Jens R.; Martins-de-Souza, Daniel (June 2014). "2DE: The Phoenix of Proteomics". Journal of Proteomics. 104: 140–150. doi:10.1016/j.jprot.2014.03.035.
  5. 1 2 Coorssen, Jens; Yergey, Alfred (2015-12-03). "Proteomics Is Analytical Chemistry: Fitness-for-Purpose in the Application of Top-Down and Bottom-Up Analyses". Proteomes. 3 (4): 440–453. doi: 10.3390/proteomes3040440 . ISSN   2227-7382. PMC   5217385 . PMID   28248279.
  6. O'Farrell, Ph (May 1975). "High resolution two-dimensional electrophoresis of proteins". Journal of Biological Chemistry. 250 (10): 4007–4021. doi: 10.1016/S0021-9258(19)41496-8 .
  7. Mogi, Makio; Kojima, Kohichi; Harada, Minoru; Nagatsu, Toshiharu (January 1986). "Purification and immunochemical properties of tyrosine hydroxylase in human brain". Neurochemistry International. 8 (3): 423–428. doi:10.1016/0197-0186(86)90017-3. PMID   20493073.
  8. Ehrhart, J. C.; Duthu, A.; Ullrich, S.; Appella, E.; May, P. (November 1988). "Specific interaction between a subset of the p53 protein family and heat shock proteins hsp72/hsc73 in a human osteosarcoma cell line". Oncogene. 3 (5): 595–603. ISSN   0950-9232. PMID   2978869.
  9. Jungblut, Peter; Thiede, Bernd; Zimny-Arndt, Ursula; Müller, Eva-Christina; Scheler, Christian; Wittmann-Liebold, Brigitte; Otto, Albrecht (January 1996). "Resolution power of two-dimensional electrophoresis and identification of proteins from gels". Electrophoresis. 17 (5): 839–847. doi:10.1002/elps.1150170505. ISSN   0173-0835. PMID   8783010.
  10. Scheler, Christian; Müller, Eva-Christina; Stahl, Joachim; Müller-Werdan, Ursula; Salnikow, Johann; Jungblut, Peter (January 1997). "Identification and characterization of heat shock protein 27 protein species in human myocardial two-dimensional electrophoresis patterns". Electrophoresis. 18 (15): 2823–2831. doi:10.1002/elps.1150181518. ISSN   0173-0835. PMID   9504816.
  11. Marcus, K.; Immler, D.; Sternberger, J.; Meyer, H. E. (July 2000). "Identification of platelet proteins separated by two-dimensional gel electrophoresis and analyzed by matrix assisted laser desorption/ionization-time of flight-mass spectrometry and detection of tyrosine-phosphorylated proteins". Electrophoresis. 21 (13): 2622–2636. doi:10.1002/1522-2683(20000701)21:13<2622::AID-ELPS2622>3.0.CO;2-3. ISSN   0173-0835. PMID   10949139.
  12. Li, Biao; Wang, Xiaowei; Yang, Chenguang; Wen, Siqi; Li, Jiajia; Li, Na; Long, Ying; Mu, Yun; Liu, Jianping; Liu, Qin; Li, Xuejun; Desiderio, Dominic M.; Zhan, Xianquan (March 2021). "Human growth hormone proteoform pattern changes in pituitary adenomas: Potential biomarkers for 3P medical approaches". EPMA Journal. 12 (1): 67–89. doi:10.1007/s13167-021-00232-7. ISSN   1878-5077. PMC   7954920 . PMID   33786091.
  13. Naryzhny, Stanislav (2016-11-15). "Towards the Full Realization of 2DE Power". Proteomes. 4 (4): 33. doi: 10.3390/proteomes4040033 . ISSN   2227-7382. PMC   5260966 . PMID   28248243.
  14. 1 2 3 4 5 Wright, Elise P.; Partridge, Melissa A.; Padula, Matthew P.; Gauci, Victoria J.; Malladi, Chandra S.; Coorssen, Jens R. (April 2014). "Top-down proteomics: Enhancing 2D gel electrophoresis from tissue processing to high-sensitivity protein detection". Proteomics. 14 (7–8): 872–889. doi:10.1002/pmic.201300424. ISSN   1615-9853. PMID   24452924.
  15. Zhan, Xianquan; Yang, Haiyan; Peng, Fang; Li, Jianglin; Mu, Yun; Long, Ying; Cheng, Tingting; Huang, Yuda; Li, Zhao; Lu, Miaolong; Li, Na; Li, Maoyu; Liu, Jianping; Jungblut, Peter R. (April 2018). "How many proteins can be identified in a 2DE gel spot within an analysis of a complex human cancer tissue proteome?". Electrophoresis. 39 (7): 965–980. doi:10.1002/elps.201700330. ISSN   0173-0835. PMID   29205401.
  16. Kendrick, Nancy; Darie, Costel C.; Hoelter, Matt; Powers, Ginny; Johansen, Jon (2019), Woods, Alisa G.; Darie, Costel C. (eds.), "Correction to: 2D SDS PAGE in Combination with Western Blotting and Mass Spectrometry Is a Robust Method for Protein Analysis with Many Applications", Advancements of Mass Spectrometry in Biomedical Research, vol. 1140, Cham: Springer International Publishing, pp. C1, doi:10.1007/978-3-030-15950-4_47, ISBN   978-3-030-15949-8, PMID   31728917 , retrieved 2025-12-09
  17. Zhan, Xianquan; Li, Biao; Zhan, Xiaohan; Schlüter, Hartmut; Jungblut, Peter R.; Coorssen, Jens R. (2019-10-30). "Innovating the Concept and Practice of Two-Dimensional Gel Electrophoresis in the Analysis of Proteomes at the Proteoform Level". Proteomes. 7 (4): 36. doi: 10.3390/proteomes7040036 . ISSN   2227-7382. PMC   6958347 . PMID   31671630.
  18. 1 2 3 Free, Tristan (2023-07-03). "Analytical approaches to address proteome complexity". BioTechniques. Retrieved 2025-12-09.
  19. 1 2 Carbonara, Katrina; Padula, Matthew P.; Coorssen, Jens R. (February 2023). "Quantitative assessment confirms deep proteome analysis by integrative top-down proteomics". Electrophoresis. 44 (3–4): 472–480. doi:10.1002/elps.202200257. ISSN   1522-2683. PMID   36416355.
  20. Gauci, Victoria J.; Padula, Matthew P.; Coorssen, Jens R. (2013-09-02). "Coomassie blue staining for high sensitivity gel-based proteomics". Journal of Proteomics. 90: 96–106. doi:10.1016/j.jprot.2013.01.027. ISSN   1876-7737. PMID   23428344.
  21. Noaman, Nour; Abbineni, Prabhodh S.; Withers, Michael; Coorssen, Jens R. (December 2017). "Coomassie staining provides routine (sub)femtomole in-gel detection of intact proteoforms: Expanding opportunities for genuine Top-down Proteomics". Electrophoresis. 38 (24): 3086–3099. doi:10.1002/elps.201700190. hdl:2027.42/141479. ISSN   1522-2683. PMID   28872692.
  22. Coorssen, Jens R.; Blank, Paul S.; Albertorio, Fernando; Bezrukov, Ludmila; Kolosova, Irina; Backlund, Peter S.; Zimmerberg, Joshua (2002-08-01). "Quantitative femto- to attomole immunodetection of regulated secretory vesicle proteins critical to exocytosis". Analytical Biochemistry. 307 (1): 54–62. doi:10.1016/s0003-2697(02)00015-5. ISSN   0003-2697. PMID   12137779.
  23. Yang, Lamei; Shao, Qianwen; Su, Juwen; Liu, Yingchao; Chen, Liang; Ndzie Noah, Marie Louise; Li, Na; Coorssen, Jens R.; Zhan, Xianquan (2025-12-01). "What does one-dimensional gel electrophoresis-based western blotting data really mean in the reality of proteoforms?". Talanta. 295 128266. doi:10.1016/j.talanta.2025.128266. ISSN   1873-3573. PMID   40347635.
  24. Carbonara, Katrina; Coorssen, Jens R. (January 2023). "Sometimes faster can be better: Microneedling IPG strips enables higher throughput for integrative top-down proteomics". Proteomics. 23 (2) 2200307. doi:10.1002/pmic.202200307. ISSN   1615-9853.
  25. Woodland, Breyer; Necakov, Aleksandar; Coorssen, Jens R. (2023-03-06). "Optimized Proteome Reduction for Integrative Top-Down Proteomics". Proteomes. 11 (1): 10. doi: 10.3390/proteomes11010010 . ISSN   2227-7382. PMC   10059017 . PMID   36976889.
  26. 1 2 Chen, Bifan; Brown, Kyle A.; Lin, Ziqing; Ge, Ying (2018-01-02). "Top-Down Proteomics: Ready for Prime Time?". Analytical Chemistry. 90 (1): 110–127. Bibcode:2018AnaCh..90..110C. doi:10.1021/acs.analchem.7b04747. ISSN   0003-2700. PMC   6138622 . PMID   29161012.
  27. 1 2 3 Po, Allen; Eyers, Claire E. (2023-12-01). "Top-Down Proteomics and the Challenges of True Proteoform Characterization". Journal of Proteome Research. 22 (12): 3663–3675. doi:10.1021/acs.jproteome.3c00416. ISSN   1535-3907. PMC   10696603 . PMID   37937372.
  28. Lorenzatto, Karina R.; Kim, Kyunggon; Ntai, Ioanna; Paludo, Gabriela P.; Camargo de Lima, Jeferson; Thomas, Paul M.; Kelleher, Neil L.; Ferreira, Henrique B. (2015-11-06). "Top Down Proteomics Reveals Mature Proteoforms Expressed in Subcellular Fractions of the Echinococcus granulosus Preadult Stage". Journal of Proteome Research. 14 (11): 4805–4814. doi:10.1021/acs.jproteome.5b00642. ISSN   1535-3893. PMC   4638118 . PMID   26465659.
  29. 1 2 Durbin, Kenneth R.; Fornelli, Luca; Fellers, Ryan T.; Doubleday, Peter F.; Narita, Masashi; Kelleher, Neil L. (2016-03-04). "Quantitation and Identification of Thousands of Human Proteoforms below 30 kDa". Journal of Proteome Research. 15 (3): 976–982. doi:10.1021/acs.jproteome.5b00997. ISSN   1535-3907. PMC   4794255 . PMID   26795204.
  30. Loo, J. A.; Edmonds, C. G.; Smith, R. D. (1990-04-13). "Primary sequence information from intact proteins by electrospray ionization tandem mass spectrometry". Science (New York, N.Y.). 248 (4952): 201–204. Bibcode:1990Sci...248..201L. doi:10.1126/science.2326633. ISSN   0036-8075. PMID   2326633.
  31. Skinner, Owen S.; Haverland, Nicole A.; Fornelli, Luca; Melani, Rafael D.; Do Vale, Luis H. F.; Seckler, Henrique S.; Doubleday, Peter F.; Schachner, Luis F.; Srzentić, Kristina; Kelleher, Neil L.; Compton, Philip D. (January 2018). "Top-down characterization of endogenous protein complexes with native proteomics". Nature Chemical Biology. 14 (1): 36–41. doi:10.1038/nchembio.2515. ISSN   1552-4469. PMC   5726920 . PMID   29131144.
  32. Le, Jessie; Jung, Wonhyeuk; Arbing, Mark A.; Egea, Pascal F.; Ogorzalek Loo, Rachel R.; Loo, Joseph A. (2025-10-08). "Retention and Rearrangement of Membrane Protein Complexes' Higher Order Structure by Collisionally Activated Dissociation- and Electron Capture Dissociation-Mass Spectrometry". Journal of the American Chemical Society. 147 (40): 36105–36116. Bibcode:2025JAChS.14736105L. doi:10.1021/jacs.5c05797. ISSN   1520-5126. PMID   40985968.
  33. Lloyd-Jones, Cameron; Dos Santos Seckler, Henrique; DiStefano, Nicholas; Sniderman, Allan; Compton, Phillip D.; Kelleher, Neil L.; Wilkins, John T. (2023-05-05). "Preparative Electrophoresis for HDL Particle Size Separation and Intact-Mass Apolipoprotein Proteoform Analysis". Journal of Proteome Research. 22 (5): 1455–1465. doi:10.1021/acs.jproteome.2c00804. ISSN   1535-3907. PMC   10436667 . PMID   37053489.
  34. Tran, John C.; Doucette, Alan A. (2008-03-01). "Gel-eluted liquid fraction entrapment electrophoresis: an electrophoretic method for broad molecular weight range proteome separation". Analytical Chemistry. 80 (5): 1568–1573. Bibcode:2008AnaCh..80.1568T. doi:10.1021/ac702197w. ISSN   0003-2700. PMID   18229945.
  35. Lee, Ji Eun; Kellie, John F.; Tran, John C.; Tipton, Jeremiah D.; Catherman, Adam D.; Thomas, Haylee M.; Ahlf, Dorothy R.; Durbin, Kenneth R.; Vellaichamy, Adaikkalam; Ntai, Ioanna; Marshall, Alan G.; Kelleher, Neil L. (December 2009). "A robust two-dimensional separation for top-down tandem mass spectrometry of the low-mass proteome". Journal of the American Society for Mass Spectrometry. 20 (12): 2183–2191. Bibcode:2009JASMS..20.2183L. doi:10.1016/j.jasms.2009.08.001. ISSN   1879-1123. PMC   2830800 . PMID   19747844.
  36. Rooney, Mary R.; Chen, Jingsha; Ballantyne, Christie M.; Hoogeveen, Ron C.; Boerwinkle, Eric; Yu, Bing; Walker, Keenan A.; Schlosser, Pascal; Selvin, Elizabeth; Chatterjee, Nilanjan; Couper, David; Grams, Morgan E.; Coresh, Josef (2025-06-03). "Correlations Within and Between Highly Multiplexed Proteomic Assays of Human Plasma". Clinical Chemistry. 71 (6): 677–687. doi:10.1093/clinchem/hvaf030. ISSN   1530-8561. PMC  12129588. PMID   40172053.
  37. Rooney, Mary R.; Chen, Jingsha; Ballantyne, Christie M.; Hoogeveen, Ron C.; Tang, Olive; Grams, Morgan E.; Tin, Adrienne; Ndumele, Chiadi E.; Zannad, Faiez; Couper, David J.; Tang, Weihong; Selvin, Elizabeth; Coresh, Josef (2023-01-04). "Comparison of Proteomic Measurements Across Platforms in the Atherosclerosis Risk in Communities (ARIC) Study". Clinical Chemistry. 69 (1): 68–79. doi:10.1093/clinchem/hvac186. ISSN   1530-8561. PMC   9812856 . PMID   36508319.
  38. Haslam, Danielle E.; Li, Jun; Dillon, Simon T.; Gu, Xuesong; Cao, Yin; Zeleznik, Oana A.; Sasamoto, Naoko; Zhang, Xuehong; Eliassen, A. Heather; Liang, Liming; Stampfer, Meir J.; Mora, Samia; Chen, Zsu-Zsu; Terry, Kathryn L.; Gerszten, Robert E. (July 2022). "Stability and reproducibility of proteomic profiles in epidemiological studies: comparing the Olink and SOMAscan platforms". Proteomics. 22 (13–14) e2100170. doi:10.1002/pmic.202100170. ISSN   1615-9861. PMC   9923770 . PMID   35598103.
  39. Beimers, William F.; Overmyer, Katherine A.; Sinitcyn, Pavel; Lancaster, Noah M.; Quarmby, Scott T.; Coon, Joshua J. (2025-06-06). "Technical Evaluation of Plasma Proteomics Technologies". Journal of Proteome Research. 24 (6): 3074–3087. doi:10.1021/acs.jproteome.5c00221. ISSN   1535-3907. PMC   12150332 . PMID   40366296.
  40. Sissala, Noora; Babačić, Haris; Leo, Isabelle R.; Cao, Xiaofang; Forshed, Jenny; Eriksson, Lars E.; Lehtiö, Janne; Fredolini, Claudia; Åberg, Mikael; Pernemalm, Maria (2025-11-04). "Comparative evaluation of Olink Explore 3072 and mass spectrometry with peptide fractionation for plasma proteomics". Communications Chemistry. 8 (1): 327. Bibcode:2025CmChe...8..327S. doi:10.1038/s42004-025-01753-2. ISSN   2399-3669. PMC   12586489 . PMID   41188494.
  41. Rukes, Verena; Cao, Chan (August 2025). "Advancing nanopore technology toward protein identification and sequencing". Trends in Biochemical Sciences. 50 (8): 721–732. doi:10.1016/j.tibs.2025.05.005. ISSN   0968-0004. PMID   40533364.