Two-dimensional gel electrophoresis

Last updated
2D-Gels (Coomassie stained) Coomassie-2D-Gels.jpg
2D-Gels (Coomassie stained)
Robots are used for the isolation of protein spots from 2D gels in modern laboratories. Spot cutting and pipetting robot multilanguage.jpg
Robots are used for the isolation of protein spots from 2D gels in modern laboratories.

Two-dimensional gel electrophoresis, abbreviated as 2-DE or 2-D electrophoresis, is a form of gel electrophoresis commonly used to analyze proteins. Mixtures of proteins are separated by two properties in two dimensions on 2D gels. 2-DE was first independently introduced by O'Farrell [1] and Klose [2] in 1975.

Contents

Basis for separation

2-D electrophoresis begins with electrophoresis in the first dimension and then separates the molecules perpendicularly from the first to create an electropherogram in the second dimension. In electrophoresis in the first dimension, molecules are separated linearly according to their isoelectric point. In the second dimension, the molecules are then separated at 90 degrees from the first electropherogram according to molecular mass. Since it is unlikely that two molecules will be similar in two distinct properties, molecules are more effectively separated in 2-D electrophoresis than in 1-D electrophoresis.[ citation needed ]

The two dimensions that proteins are separated into using this technique can be isoelectric point, protein complex mass in the native state, or protein mass.[ citation needed ]

Detecting proteins

The result of this is a gel with proteins spread out on its surface. These proteins can then be detected by a variety of means, but the most commonly used stains are silver and Coomassie brilliant blue staining. In the former case, a silver colloid is applied to the gel. The silver binds to cysteine groups within the protein. The silver is darkened by exposure to ultra-violet light. The amount of silver can be related to the darkness, and therefore the amount of protein at a given location on the gel. This measurement can only give approximate amounts, but is adequate for most purposes. Silver staining is 100x more sensitive than Coomassie brilliant blue with a 40-fold range of linearity. [3]

Molecules other than proteins can be separated by 2D electrophoresis. In supercoiling assays, coiled DNA is separated in the first dimension and denatured by a DNA intercalator (such as ethidium bromide or the less carcinogenic chloroquine) in the second. This is comparable to the combination of native PAGE/SDS-PAGE in protein separation.[ citation needed ]

Common techniques

IPG-DALT

A common technique is to use an Immobilized pH gradient (IPG) in the first dimension. This technique is referred to as IPG-DALT. The sample is first separated onto IPG gel (which is commercially available) then the gel is cut into slices for each sample which is then equilibrated in SDS-mercaptoethanol and applied to an SDS-PAGE gel for resolution in the second dimension. Typically IPG-DALT is not used for quantification of proteins due to the loss of low molecular weight components during the transfer to the SDS-PAGE gel. [4]

IEF SDS-PAGE

See Isoelectric focusing

2D gel analysis software

Warping: Images of two 2D electrophoresis gels, overlaid with Delta2D. First image is colored in orange, second one colored in blue. Due to running differences, corresponding spots do not overlap. 2D gel images dual channel original.PNG
Warping: Images of two 2D electrophoresis gels, overlaid with Delta2D. First image is colored in orange, second one colored in blue. Due to running differences, corresponding spots do not overlap.
Warping: Images of two 2D electrophoresis gels after warping. First image is colored in orange, second one colored in blue. Corresponding spots overlap after warping. Common spots are colored black, orange spots are only present (or much stronger) on the first image, blue spots are only present (or much stronger) on the second image. 2D gel images dual channel warped.PNG
Warping: Images of two 2D electrophoresis gels after warping. First image is colored in orange, second one colored in blue. Corresponding spots overlap after warping. Common spots are colored black, orange spots are only present (or much stronger) on the first image, blue spots are only present (or much stronger) on the second image.

In quantitative proteomics, these tools primarily analyze bio-markers by quantifying individual proteins, and showing the separation between one or more protein "spots" on a scanned image of a 2-DE gel. Additionally, these tools match spots between gels of similar samples to show, for example, proteomic differences between early and advanced stages of an illness. While this technology is widely utilized, the intelligence has not been perfected. For example, some software may tend to agree on the quantification and analysis of well-defined well-separated protein spots, they deliver different results and analysis tendencies with less-defined less-separated spots. [5] Comparative studies have previously been published to guide researchers on the "best" software for their analysis. [6]

Challenges for automatic software-based analysis include incompletely separated (overlapping) spots (less-defined or separated), weak spots / noise (e.g., "ghost spots"), running differences between gels (e.g., protein migrates to different positions on different gels), unmatched/undetected spots, leading to missing values, [7] mismatched spots, errors in quantification (several distinct spots may be erroneously detected as a single spot by the software and parts of a spot may be excluded from quantification), and differences in software algorithms and therefore analysis tendencies

Generated picking lists can be used for the automated in-gel digestion of protein spots, and subsequent identification of the proteins by mass spectrometry. Mass spectrometry analysis can identify precise mass measurements along with the sequencing of peptides that range from 1000–4000 atomic mass units. [8]

See also

References

  1. O'Farrell, PH (1975). "High resolution two-dimensional electrophoresis of proteins". J. Biol. Chem. 250 (10): 4007–21. doi: 10.1016/S0021-9258(19)41496-8 . PMC   2874754 . PMID   236308.
  2. Klose, J (1975). "Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals" . Humangenetik. 26 (3): 231–43. doi:10.1007/bf00281458. PMID   1093965. S2CID   30981877.
  3. Switzer RC 3rd, Merril CR, Shifrin S (1979). "A highly sensitive silver stain for detecting proteins and peptides in polyacrylamide gels". Analytical Biochemistry. 98 (1): 231–37. doi:10.1016/0003-2697(79)90732-2. PMID   94518.
  4. Mikkelsen, Susan; Cortón, Eduardo (2004). Bioanalytical Chemistry . John Wiley & Sons, Inc. p.  224. ISBN   978-0-471-62386-1.
  5. Arora PS, Yamagiwa H, Srivastava A, Bolander ME, Sarkar G (2005). "Comparative evaluation of two two-dimensional gel electrophoresis image analysis software applications using synovial fluids from patients with joint disease". J Orthop Sci. 10 (2): 160–66. doi:10.1007/s00776-004-0878-0. PMID   15815863. S2CID   45193214.
  6. Kang, Yunyi; Techanukul, Tanasit; Mantalaris, Anthanasios; Nagy, Judit M. (February 2009). "Comparison of three commercially available DIGE analysis software packages: minimal user intervention in gel-based proteomics". Journal of Proteome Research. 8 (2): 1077–1084. doi:10.1021/pr800588f. ISSN   1535-3893. PMID   19133722.
  7. Pedreschi R, Hertog ML, Carpentier SC, et al. (April 2008). "Treatment of missing values for multivariate statistical analysis of gel-based proteomics data". Proteomics. 8 (7): 1371–83. doi:10.1002/pmic.200700975. hdl: 1942/8262 . PMID   18383008. S2CID   21152053.
  8. Lepedda, Antonio J, and Marilena Formato. "Applications of Two-Dimensional Electrophoresis Technology to the Study of Atherosclerosis." EJIFCC vol. 19,3 146–159. 20 Dec. 2008