History of electrophoresis

Last updated

The history of electrophoresis for molecular separation and chemical analysis began with the work of Arne Tiselius in 1931, while new separation processes and chemical speciation analysis techniques based on electrophoresis continue to be developed in the 21st century. [1] Tiselius, with support from the Rockefeller Foundation, developed the "Tiselius apparatus" for moving-boundary electrophoresis, which was described in 1937 in the well-known paper "A New Apparatus for Electrophoretic Analysis of Colloidal Mixtures". [2] The method spread slowly until the advent of effective zone electrophoresis methods in the 1940s and 1950s, which used filter paper or gels as supporting media. By the 1960s, increasingly sophisticated gel electrophoresis methods made it possible to separate biological molecules based on minute physical and chemical differences, helping to drive the rise of molecular biology. Gel electrophoresis and related techniques became the basis for a wide range of biochemical methods, such as protein fingerprinting, Southern blot, other blotting procedures, DNA sequencing, and many more. [3]

Contents

Before Tiselius

Early work with the basic principle of electrophoresis dates to the early 19th century, based on Faraday's laws of electrolysis proposed in the late 18th century and other early electrochemistry. The electrokinetic phenomenon was observed for the first time in 1807 by Russian professors Peter Ivanovich Strakhov and Ferdinand Frederic Reuß at Moscow University, [4] who noticed that the application of a constant electric field caused clay particles dispersed in water to migrate.

Experiments by Johann Wilhelm Hittorf, Walther Nernst, and Friedrich Kohlrausch to measure the properties and behavior of small ions moving through aqueous solutions under the influence of an electric field led to general mathematical descriptions of the electrochemistry of aqueous solutions. Kohlrausch created equations for varying concentrations of charged particles moving through solution, including sharp moving boundaries of migrating particles. By the beginning of the 20th century, electrochemists had found that such moving boundaries of charged particles could be created with U-shaped glass tubes. [5]

Methods of optical detection of moving boundaries in liquids had been developed by August Toepler in the 1860s; Toepler measured the schlieren (shadows) or slight variations in optical properties in inhomogeneous solutions. This method combined with the theoretical and experimental methods for creating and analysing charged moving boundaries would form the basis of Tiselius's moving-boundary electrophoresis method. [6]

Development and spread of the Tiselius apparatus

The apparatus designed by Arne Tiselius in 1931 enabled a range of new applications of electrophoresis in analyzing chemical mixtures. Its development, significantly funded by the Rockefeller Foundation, was an extension of Tiselius's earlier PhD studies. With more assistance from the Rockefeller Foundation, the expensive Tiselius apparatus was built at a number of major centers of chemical research.

After Tiselius

By the late 1940s, new electrophoresis methods were beginning to address some of the shortcomings of the moving-boundary electrophoresis of the Tiselius apparatus, which was not capable of completely separating electrophoretically similar compounds. Rather than charged molecules moving freely through solutions, the new methods used solid or gel matrices to separate compounds into discrete and stable bands (zones); in 1950 Tiselius dubbed these methods "zone electrophoresis".

Zone electrophoresis found widespread application in biochemistry after Oliver Smithies introduced starch gel as an electrophoretic substrate in 1955. Starch gel (and later polyacrylamide and other gels) enabled the efficient separation of proteins, making it possible with relatively simple technology to analyze complex protein mixtures and identify minute differences in related proteins.

Despite the development of high-resolution electrophoresis methods, the accurate control of parameters such as pore size and stability of polyacrylamide gels was still a major challenge in the 20th century. This technical problem was finally solved in the early 2000s with the introduction of a standardized polymerization time for polyacrylamide gels, making it possible for the first time to fractionate physiological concentrations of highly purified metal ion cofactors and associated proteins in quantitative amounts for further analysis. [7]

Widespread application

Since the 1950s, electrophoresis methods have diversified considerably, and new methods and applications are still being developed as affinity electrophoresis, capillary electrophoresis, electroblotting, electrophoretic mobility shift assay, free-flow electrophoresis, isotachophoresis, preparative native PAGE, and pulsed-field gel electrophoresis. [7]

See also

Notes

  1. Malhotra, P. (2023). Analytical Chemistry: Basic Techniques and Methods. Springer, ISBN 9783031267567. p. 346.
  2. Tiselius, Arne (1937). "A new apparatus for electrophoretic analysis of colloidal mixtures". Transactions of the Faraday Society. 33: 524–531. doi:10.1039/TF9373300524.
  3. Michov, B. (1995). Elektrophorese: Theorie und Praxis. De Gruyter, ISBN 9783110149944. p. 405.
  4. Reuss, F.F. (1809). "Sur un nouvel effet de l'électricité galvanique". Mémoires de la Société Impériale des Naturalistes de Moscou. 2: 327–37.
  5. Vesterberg, pp. 4-5
  6. Vesterberg, p. 5
  7. 1 2 Michov, B. (2022). Electrophoresis Fundamentals: Essential Theory and Practice. De Gruyter, ISBN 9783110761627. doi:10.1515/9783110761641. ISBN   9783110761641.

Related Research Articles

<span class="mw-page-title-main">Agarose gel electrophoresis</span> Method for separation and analysis of biomolecules using agarose gel

Agarose gel electrophoresis is a method of gel electrophoresis used in biochemistry, molecular biology, genetics, and clinical chemistry to separate a mixed population of macromolecules such as DNA or proteins in a matrix of agarose, one of the two main components of agar. The proteins may be separated by charge and/or size, and the DNA and RNA fragments by length. Biomolecules are separated by applying an electric field to move the charged molecules through an agarose matrix, and the biomolecules are separated by size in the agarose gel matrix.

<span class="mw-page-title-main">Gel electrophoresis</span> Method for separation and analysis of biomolecules

Gel electrophoresis is a method for separation and analysis of biomacromolecules and their fragments, based on their size and charge. It is used in clinical chemistry to separate proteins by charge or size and in biochemistry and molecular biology to separate a mixed population of DNA and RNA fragments by length, to estimate the size of DNA and RNA fragments or to separate proteins by charge.

The isoelectric point (pI, pH(I), IEP), is the pH at which a molecule carries no net electrical charge or is electrically neutral in the statistical mean. The standard nomenclature to represent the isoelectric point is pH(I). However, pI is also used. For brevity, this article uses pI. The net charge on the molecule is affected by pH of its surrounding environment and can become more positively or negatively charged due to the gain or loss, respectively, of protons (H+).

<span class="mw-page-title-main">Southern blot</span> DNA analysis technique

Southern blot is a method used for detection and quantification of a specific DNA sequence in DNA samples. This method is used in molecular biology. Briefly, purified DNA from a biological sample is digested with restriction enzymes, and the resulting DNA fragments are separated by using an electric current to move them through a sieve-like gel or matrix, which allows smaller fragments to move faster than larger fragments. The DNA fragments are transferred out of the gel or matrix onto a solid membrane, which is then exposed to a DNA probe labeled with a radioactive, fluorescent, or chemical tag. The tag allows any DNA fragments containing complementary sequences with the DNA probe sequence to be visualized within the Southern blot.

<span class="mw-page-title-main">Polyacrylamide gel electrophoresis</span> Analytical technique

Polyacrylamide gel electrophoresis (PAGE) is a technique widely used in biochemistry, forensic chemistry, genetics, molecular biology and biotechnology to separate biological macromolecules, usually proteins or nucleic acids, according to their electrophoretic mobility. Electrophoretic mobility is a function of the length, conformation, and charge of the molecule. Polyacrylamide gel electrophoresis is a powerful tool used to analyze RNA samples. When polyacrylamide gel is denatured after electrophoresis, it provides information on the sample composition of the RNA species.

<span class="mw-page-title-main">Electrophoresis</span> Motion of charged particles in electric field

In chemistry, electrophoresis is the motion of charged dispersed particles or dissolved charged molecules relative to a fluid under the influence of a spatially uniform electric field. As a rule, these are zwitterions. Electrophoresis of positively charged particles or molecules (cations) is sometimes called cataphoresis, while electrophoresis of negatively charged particles or molecules (anions) is sometimes called anaphoresis.

<span class="mw-page-title-main">Gel electrophoresis of proteins</span> Technique for separating proteins

Protein electrophoresis is a method for analysing the proteins in a fluid or an extract. The electrophoresis may be performed with a small volume of sample in a number of alternative ways with or without a supporting medium, namely agarose or polyacrylamide. Variants of gel electrophoresis include SDS-PAGE, free-flow electrophoresis, electrofocusing, isotachophoresis, affinity electrophoresis, immunoelectrophoresis, counterelectrophoresis, and capillary electrophoresis. Each variant has many subtypes with individual advantages and limitations. Gel electrophoresis is often performed in combination with electroblotting or immunoblotting to give additional information about a specific protein.

<span class="mw-page-title-main">Coomassie brilliant blue</span> Chemical compound

Coomassie brilliant blue is the name of two similar triphenylmethane dyes that were developed for use in the textile industry but are now commonly used for staining proteins in analytical biochemistry. Coomassie brilliant blue G-250 differs from Coomassie brilliant blue R-250 by the addition of two methyl groups. The name "Coomassie" is a registered trademark of Imperial Chemical Industries.

<span class="mw-page-title-main">Zeta potential</span> Electrokinetic potential in colloidal dispersions

Zeta potential is the electrical potential at the slipping plane. This plane is the interface which separates mobile fluid from fluid that remains attached to the surface.

Capillary electrophoresis (CE) is a family of electrokinetic separation methods performed in submillimeter diameter capillaries and in micro- and nanofluidic channels. Very often, CE refers to capillary zone electrophoresis (CZE), but other electrophoretic techniques including capillary gel electrophoresis (CGE), capillary isoelectric focusing (CIEF), capillary isotachophoresis and micellar electrokinetic chromatography (MEKC) belong also to this class of methods. In CE methods, analytes migrate through electrolyte solutions under the influence of an electric field. Analytes can be separated according to ionic mobility and/or partitioning into an alternate phase via non-covalent interactions. Additionally, analytes may be concentrated or "focused" by means of gradients in conductivity and pH.

<span class="mw-page-title-main">Arne Tiselius</span> Swedish biochemist and Nobel Prize laureate (1902–1971)

Arne Wilhelm Kaurin Tiselius was a Swedish biochemist who won the Nobel Prize in Chemistry in 1948 "for his research on electrophoresis and adsorption analysis, especially for his discoveries concerning the complex nature of the serum proteins."

Electrophoresis is the motion of charged dispersed particles or dissolved charged molecules relative to a fluid under the influence of a spatially uniform electric field.

QPNC-PAGE, or QuantitativePreparativeNativeContinuousPolyacrylamideGel Electrophoresis, is a bioanalytical, one-dimensional, high-resolution and high-precision technique applied in biochemistry and bioinorganic chemistry to separate proteins quantitatively by isoelectric point and by continuous elution from a gel column.

Moving-boundary electrophoresis is a technique for separation of chemical compounds by electrophoresis in a free solution.

<span class="mw-page-title-main">Electrophoretic color marker</span>

An electrophoretic color marker is a chemical used to monitor the progress of agarose gel electrophoresis and polyacrylamide gel electrophoresis (PAGE) since DNA, RNA, and most proteins are colourless. The color markers are made up of a mixture of dyes that migrate through the gel matrix alongside the sample of interest. They are typically designed to have different mobilities from the sample components and to generate colored bands that can be used to assess the migration and separation of sample components.

<span class="mw-page-title-main">Affinity electrophoresis</span>

Affinity electrophoresis is a general name for many analytical methods used in biochemistry and biotechnology. Both qualitative and quantitative information may be obtained through affinity electrophoresis. Cross electrophoresis, the first affinity electrophoresis method, was created by Nakamura et al. Enzyme-substrate complexes have been detected using cross electrophoresis. The methods include the so-called electrophoretic mobility shift assay, charge shift electrophoresis and affinity capillary electrophoresis. The methods are based on changes in the electrophoretic pattern of molecules through biospecific interaction or complex formation. The interaction or binding of a molecule, charged or uncharged, will normally change the electrophoretic properties of a molecule. Membrane proteins may be identified by a shift in mobility induced by a charged detergent. Nucleic acids or nucleic acid fragments may be characterized by their affinity to other molecules. The methods have been used for estimation of binding constants, as for instance in lectin affinity electrophoresis or characterization of molecules with specific features like glycan content or ligand binding. For enzymes and other ligand-binding proteins, one-dimensional electrophoresis similar to counter electrophoresis or to "rocket immunoelectrophoresis", affinity electrophoresis may be used as an alternative quantification of the protein. Some of the methods are similar to affinity chromatography by use of immobilized ligands.

<span class="mw-page-title-main">Discontinuous electrophoresis</span> Type of laboratory technique

Discontinuous electrophoresis is a type of polyacrylamide gel electrophoresis. It was developed by Ornstein and Davis. This method produces high resolution and good band definition. It is widely used technique for separating proteins according to size and charge.

Genetic ecology is the study of the stability and expression of varying genetic material within abiotic mediums. Typically, genetic data is not thought of outside of any organism save for criminal forensics. However, genetic material has the ability to be taken up by various organisms that exist within an abiotic medium through natural transformations that may occur. Thus, this field of study focuses on interaction, exchange, and expression of genetic material that may not be shared by species had they not been in the same environment.

<span class="mw-page-title-main">SDS-PAGE</span> Biochemical technique

SDS-PAGE is a discontinuous electrophoretic system developed by Ulrich K. Laemmli which is commonly used as a method to separate proteins with molecular masses between 5 and 250 kDa. The combined use of sodium dodecyl sulfate and polyacrylamide gel eliminates the influence of structure and charge, and proteins are separated by differences in their size. At least up to 2012, the publication describing it was the most frequently cited paper by a single author, and the second most cited overall.

<i>N</i>,<i>N</i>-Diallyl-L-tartardiamide Chemical compound, polyacrylamide crosslinker

N,N′-Diallyl-L-tartardiamide (DATD) is a crosslinking agent for polyacrylamide gels, e.g., as used for SDS-PAGE. Compared to bisacrylamide gels, DATD gels have a stronger interaction with glass, and therefore are used in applications where the polyacrylamide gel acts as a "plug" structural component at the bottom of a gel electrophoresis apparatus, thereby preventing a weak discontinuous gel from sliding out from or otherwise moving within the apparatus. Unlike bisacrylamide-polyacrylamide gels, DATD-polyacrylamide gels can be conveniently dissolved using periodic acid due to the presence of viscinal diols in DATD. DATD is the slowest polyacrylamide crosslinker tested, and has can act as an inhibitor of polymerization at high concentrations.

References