Quantitative analysis (chemistry)

Last updated

In analytical chemistry, quantitative analysis is the determination of the absolute or relative abundance (often expressed as a concentration) of one, several or all particular substance(s) present in a sample. [1]

Contents

Methods

Once the presence of certain substances in a sample is known, the study of their absolute or relative abundance could help in determining specific properties. Knowing the composition of a sample is very important, and several ways have been developed to make it possible, like gravimetric [2] and volumetric analysis. Gravimetric analysis yields more accurate data about the composition of a sample than volumetric analysis but also takes more time to perform in the laboratory. Volumetric analysis, on the other hand, doesn't take that much time and can produce satisfactory results. Volumetric analysis can be simply a titration based in a neutralization reaction but it can also be a precipitation or a complex forming reaction as well as a titration based in a redox reaction. However, each method in quantitative analysis has a general specification, in neutralization reactions, for example, the reaction that occurs is between an acid and a base, which yields a salt and water, hence the name neutralization. In the precipitation reactions the standard solution is in the most cases silver nitrate which is used as a reagent to react with the ions present in the sample and to form a highly insoluble precipitate. Precipitation methods are often called simply as argentometry. In the two other methods the situation is the same. Complex forming titration is a reaction that occurs between metal ions and a standard solution that is in the most cases EDTA (Ethylene Diamine Tetra Acetic acid). In the redox titration that reaction is carried out between an oxidizing agent and a reduction agent. There are some more methods like Liebig method / Duma's method / Kjeldahl's method and Carius method for estimation of organic compounds.

For example, quantitative analysis performed by [mass spectrometry] on biological samples can determine, by the relative abundance ratio of specific proteins, indications of certain diseases, like cancer.

Quantitative vs. qualitative

The general expression Qualitative Analysis [...] refers to analyses in which substances are identified or classified on the basis of their chemical or physical properties, such as chemical reactivity, solubility, molecular weight, melting point, radioactivity properties (emission, absorption), mass spectra, nuclear half-life, etc. Quantitative Analysis refers to analyses in which the amount or concentration of an analyte may be determined (estimated) and expressed as a numerical value in appropriate units. Qualitative Analysis may take place with Quantitative Analysis, but Quantitative Analysis requires the identification (qualification) of the analyte for which numerical estimates are given.

International Union of Pure and Applied Chemistry (IUPAC), Nomenclature in evaluation of analytical methods including detection and quantification capabilities, Pure Appl. Chem. 67(10), p. 1701 (1995)

The term "quantitative analysis" is often used in comparison (or contrast) with "qualitative analysis", which seeks information about the identity or form of substance present. For instance, a chemist might be given an unknown solid sample. They will use "qualitative" techniques (perhaps NMR or IR spectroscopy) to identify the compounds present, and then quantitative techniques to determine the amount of each compound in the sample. Careful procedures for recognizing the presence of different metal ions have been developed, although they have largely been replaced by modern instruments; these are collectively known as qualitative inorganic analysis. Similar tests for identifying organic compounds (by testing for different functional groups) are also known.

Many techniques can be used for either qualitative or quantitative measurements. For instance, suppose an indicator solution changes color in the presence of a metal ion. It could be used as a qualitative test: does the indicator solution change color when a drop of sample is added? It could also be used as a quantitative test, by studying the color of the indicator solution with different concentrations of the metal ion. (This would probably be done using ultraviolet-visible spectroscopy.)

See also

Related Research Articles

<span class="mw-page-title-main">Analytical chemistry</span> Study of the separation, identification, and quantification of the chemical components of materials

Analytical chemistry studies and uses instruments and methods to separate, identify, and quantify matter. In practice, separation, identification or quantification may constitute the entire analysis or be combined with another method. Separation isolates analytes. Qualitative analysis identifies analytes, while quantitative analysis determines the numerical amount or concentration.

<span class="mw-page-title-main">Titration</span> Laboratory method for determining the concentration of an analyte

Titration is a common laboratory method of quantitative chemical analysis to determine the concentration of an identified analyte. A reagent, termed the titrant or titrator, is prepared as a standard solution of known concentration and volume. The titrant reacts with a solution of analyte to determine the analyte's concentration. The volume of titrant that reacted with the analyte is termed the titration volume.

A pH indicator is a halochromic chemical compound added in small amounts to a solution so the pH (acidity or basicity) of the solution can be determined visually. Hence, a pH indicator is a chemical detector for hydronium ions (H3O+) or hydrogen ions (H+) in the Arrhenius model. Normally, the indicator causes the color of the solution to change depending on the pH. Indicators can also show change in other physical properties; for example, olfactory indicators show change in their odor. The pH value of a neutral solution is 7.0 at 25°C (standard laboratory conditions). Solutions with a pH value below 7.0 are considered acidic and solutions with pH value above 7.0 are basic. Since most naturally occurring organic compounds are weak electrolytes, such as carboxylic acids and amines, pH indicators find many applications in biology and analytical chemistry. Moreover, pH indicators form one of the three main types of indicator compounds used in chemical analysis. For the quantitative analysis of metal cations, the use of complexometric indicators is preferred, whereas the third compound class, the redox indicators, are used in redox titrations (titrations involving one or more redox reactions as the basis of chemical analysis).

An assay is an investigative (analytic) procedure in laboratory medicine, mining, pharmacology, environmental biology and molecular biology for qualitatively assessing or quantitatively measuring the presence, amount, or functional activity of a target entity. The measured entity is often called the analyte, the measurand, or the target of the assay. The analyte can be a drug, biochemical substance, chemical element or compound, or cell in an organism or organic sample. An assay usually aims to measure an analyte's intensive property and express it in the relevant measurement unit.

<span class="mw-page-title-main">Karl Fischer titration</span> Classic titration method in analytical chemistry

Karl Fischer titration is a classic titration method in chemical analysis that uses coulometric or volumetric titration to determine trace amounts of water in a sample. It was invented in 1935 by the German chemist Karl Fischer. Today, the titration is done with an automated Karl Fischer titrator.

<span class="mw-page-title-main">Neutralization (chemistry)</span> Chemical reaction in which an acid and a base react quantitatively

In chemistry, neutralization or neutralisation is a chemical reaction in which acid and a base react quantitatively with each other. In a reaction in water, neutralization results in there being no excess of hydrogen or hydroxide ions present in the solution. The pH of the neutralized solution depends on the acid strength of the reactants.

<span class="mw-page-title-main">Gravimetric analysis</span> Quantitative determination of a chemical species based on its mass

Gravimetric analysis describes a set of methods used in analytical chemistry for the quantitative determination of an analyte based on its mass. The principle of this type of analysis is that once an ion's mass has been determined as a unique compound, that known measurement can then be used to determine the same analyte's mass in a mixture, as long as the relative quantities of the other constituents are known.

<span class="mw-page-title-main">Acid–base titration</span> Method of chemical quantitative analysis

An acid–base titration is a method of quantitative analysis for determining the concentration of an acid or base by exactly neutralizing it with a standard solution of base or acid having known concentration. A pH indicator is used to monitor the progress of the acid–base reaction. If the acid dissociation constant (pKa) of the acid or base dissociation constant (pKb) of base in the analyte solution is known, its solution concentration (molarity) can be determined. Alternately, the pKa can be determined if the analyte solution has a known solution concentration by constructing a titration curve.

<span class="mw-page-title-main">Elemental analysis</span> Process of analytical chemistry

Elemental analysis is a process where a sample of some material is analyzed for its elemental and sometimes isotopic composition. Elemental analysis can be qualitative, and it can be quantitative. Elemental analysis falls within the ambit of analytical chemistry, the instruments involved in deciphering the chemical nature of our world.

The equivalence point, or stoichiometric point, of a chemical reaction is the point at which chemically equivalent quantities of reactants have been mixed. For an acid-base reaction the equivalence point is where the moles of acid and the moles of base would neutralize each other according to the chemical reaction. This does not necessarily imply a 1:1 molar ratio of acid:base, merely that the ratio is the same as in the chemical reaction. It can be found by means of an indicator, for example phenolphthalein or methyl orange.

Iodometry, known as iodometric titration, is a method of volumetric chemical analysis, a redox titration where the appearance or disappearance of elementary iodine indicates the end point.

In analytical chemistry, a standard solution is a solution containing a precisely known concentration of an element or a substance. A known mass of solute is dissolved to make a specific volume. It is prepared using a standard substance, such as a primary standard. Standard solutions are used to determine the concentrations of other substances, such as solutions in titration. The concentrations of standard solutions are normally expressed in units of moles per litre, moles per cubic decimetre (mol/dm3), kilomoles per cubic metre (kmol/m3) or in terms related to those used in particular titrations. A simple standard is obtained by the dilution of a single element or a substance in a soluble solvent with which it reacts. A primary standard is a reagent that is extremely pure, stable, has no waters of hydration, and has high molecular weight. Some primary standards of titration of acids include sodium carbonate.

The Kjeldahl method or Kjeldahl digestion (Danish pronunciation: [ˈkʰelˌtɛˀl]) in analytical chemistry is a method for the quantitative determination of nitrogen contained in organic substances plus the nitrogen contained in the inorganic compounds ammonia and ammonium (NH3/NH4+). Without modification, other forms of inorganic nitrogen, for instance nitrate, are not included in this measurement. Using an empirical relation between Kjeldahl nitrogen content and protein content it is an important method for analyzing proteins. This method was developed by Johan Kjeldahl in 1883.

<span class="mw-page-title-main">Wet chemistry</span> Form of analytical chemistry

Wet chemistry is a form of analytical chemistry that uses classical methods such as observation to analyze materials. It is called wet chemistry since most analyzing is done in the liquid phase. Wet chemistry is also called bench chemistry since many tests are performed at lab benches.

<span class="mw-page-title-main">Thermometric titration</span>

A thermometric titration is one of a number of instrumental titration techniques where endpoints can be located accurately and precisely without a subjective interpretation on the part of the analyst as to their location. Enthalpy change is arguably the most fundamental and universal property of chemical reactions, so the observation of temperature change is a natural choice in monitoring their progress. It is not a new technique, with possibly the first recognizable thermometric titration method reported early in the 20th century. In spite of its attractive features, and in spite of the considerable research that has been conducted in the field and a large body of applications that have been developed; it has been until now an under-utilized technique in the critical area of industrial process and quality control. Automated potentiometric titration systems have pre-dominated in this area since the 1970s. With the advent of cheap computers able to handle the powerful thermometric titration software, development has now reached the stage where easy to use automated thermometric titration systems can in many cases offer a superior alternative to potentiometric titrimetry.

Potentiometric titration is a technique similar to direct titration of a redox reaction. It is a useful means of characterizing an acid. No indicator is used; instead the potential is measured across the analyte, typically an electrolyte solution. To do this, two electrodes are used, an indicator electrode and a reference electrode. Reference electrodes generally used are hydrogen electrodes, calomel electrodes, and silver chloride electrodes. The indicator electrode forms an electrochemical half cell with the interested ions in the test solution. The reference electrode forms the other half cell.

This glossary of chemistry terms is a list of terms and definitions relevant to chemistry, including chemical laws, diagrams and formulae, laboratory tools, glassware, and equipment. Chemistry is a physical science concerned with the composition, structure, and properties of matter, as well as the changes it undergoes during chemical reactions; it features an extensive vocabulary and a significant amount of jargon.

In analytical chemistry, argentometry is a type of titration involving the silver(I) ion. Typically, it is used to determine the amount of chloride present in a sample. The sample solution is titrated against a solution of silver nitrate of known concentration. Chloride ions react with silver(I) ions to give the insoluble silver chloride:

Conductometry is a measurement of electrolytic conductivity to monitor a progress of chemical reaction. Conductometry has notable application in analytical chemistry, where conductometric titration is a standard technique. In usual analytical chemistry practice, the term conductometry is used as a synonym of conductometric titration while the term conductimetry is used to describe non-titrative applications. Conductometry is often applied to determine the total conductance of a solution or to analyze the end point of titrations that include ions.

Total Base Number (TBN) is a measurement of basicity that is expressed in terms of the number of milligrams of potassium hydroxide per gram of oil sample. TBN is an important measurement in petroleum products, and the value varies depending on its application. TBN generally ranges from 6–8 mg KOH/g in modern lubricants, 7–10 mg KOH/g for general internal combustion engine use and 10–15 mg KOH/g for diesel engine operations. TBN is typically higher for marine grade lubricants, approximately 15-80 mg KOH/g, as the higher TBN values are designed to increase the operating period under harsh operating conditions, before the lubricant requires replacement.

References

  1. Anne Marie Helmenstine. "Quantitative Analysis Definition". About.com. Retrieved 2013-08-02.
  2. Oliver Seely. "Gravimetry". California State University, Dominguez Hills. Retrieved 2013-08-02.