Isotope dilution

Last updated
Basic principle of isotope dilution
Adding of an isotopically altered standard to the sample changes the natural isotopic composition of the analyte. By measuring the resulting isotopic composition, it is possible to calculate the amount of the analyte present in the sample. Principle of isotope dilution.svg
Basic principle of isotope dilution
Adding of an isotopically altered standard to the sample changes the natural isotopic composition of the analyte. By measuring the resulting isotopic composition, it is possible to calculate the amount of the analyte present in the sample.

Isotope dilution analysis is a method of determining the quantity of chemical substances. In its most simple conception, the method of isotope dilution comprises the addition of known amounts of isotopically enriched substance to the analyzed sample. Mixing of the isotopic standard with the sample effectively "dilutes" the isotopic enrichment of the standard and this forms the basis for the isotope dilution method. Isotope dilution is classified as a method of internal standardisation, because the standard (isotopically enriched form of analyte) is added directly to the sample. In addition, unlike traditional analytical methods which rely on signal intensity, isotope dilution employs signal ratios. Owing to both of these advantages, the method of isotope dilution is regarded among chemistry measurement methods of the highest metrological standing. [1]

Contents

Isotopes are variants of a particular chemical element which differ in neutron number. All isotopes of a given element have the same number of protons in each atom. The term isotope is formed from the Greek roots isos (ἴσος "equal") and topos (τόπος "place"), meaning "the same place"; thus, the meaning behind the name is that different isotopes of a single element occupy the same position on the periodic table.

Early history

The Hungarian chemist George de Hevesy was awarded the Nobel Prize in Chemistry for development of radiotracer method, which is a forerunner of isotope dilution George de Hevesy.jpg
The Hungarian chemist George de Hevesy was awarded the Nobel Prize in Chemistry for development of radiotracer method, which is a forerunner of isotope dilution

Analytical application of the radiotracer method is a forerunner of isotope dilution. This method was developed in the early 20th century by George de Hevesy for which he was awarded the Nobel Prize in Chemistry for 1943.

An early application of isotope dilution in the form of radiotracer method was determination of the solubility of lead sulphide and lead chromate in 1913 by George de Hevesy and Friedrich Adolf Paneth. [2] In the 1930s, US biochemist David Rittenberg pioneered the use of isotope dilution in biochemistry enabling detailed studies of cell metabolism. [3]

Tutorial example

Tutorial illustration of isotope dilution analysis with fish counting in lakes Illustration of isotope dilution analysis with fish counting in lakes.jpg
Tutorial illustration of isotope dilution analysis with fish counting in lakes

Isotope dilution is analogous to the mark and recapture method, commonly used in ecology to estimate population size.

For instance, consider the determination of the number of fish (nA) in a lake. For the purpose of this example, assume all fish native to the lake are blue. On their first visit to the lake, an ecologist adds five yellow fish (nB = 5). On their second visit, the ecologist captures a number of fish according to a sampling plan and observes that the ratio of blue-to-yellow (i.e. native-to-marked) fish is 10:1. The number of fish native to the lake can be calculated using the following equation:

This is a simplified view of isotope dilution but it illustrates the method's salient features. A more complex situation arises when the distinction between marked and unmarked fish becomes fuzzy. This can occur, for example, when the lake already contains a small number of marked fish from previous field experiments; and vice versa, where the amount of marked fish added contains a small number of unmarked fish. In a laboratory setting, an unknown (the "lake") may contain a quantity of a compound that is naturally present in major ("blue") and minor ("yellow") isotopic forms. A standard that is enriched in the minor isotopic form may then be added to the unknown, which can be subsequently analyzed. Keeping to the fish analogy, the following expression can be employed:

where, as indicated above, nA and nB represent the number of fish in the lake and the number of fish added to the lake, respectively; RA is the ratio of the native-to-marked fish in the lake prior to the addition of marked fish; RB is the ratio of the native-to-marked fish in the amount of marked fish added to the lake; finally, RAB is the ratio of the native-to-marked fish captured during the second visit.

Applications

Isotope dilution is almost exclusively employed with mass spectrometry in applications where high-accuracy is demanded. For example, all National Metrology Institutes rely significantly on isotope dilution when producing certified reference materials. In addition to high-precision analysis, isotope dilution is applied when low recovery of the analyte is encountered. In addition to the use of stable isotopes, radioactive isotopes can be employed in isotope dilution which is often encountered in biomedical applications, for example, in estimating the volume of blood.

Single dilution method

Isotope dilution notation
NameSymbol
AnalyteA
Isotopic standard (Spike)B
Analyte + SpikeAB

Consider a natural analyte rich in isotope iA (denoted as A), and the same analyte, enriched in isotope jA (denoted as B). Then, the obtained mixture is analyzed for the isotopic composition of the analyte, RAB = n(iA)AB/n(jA)AB. If the amount of the isotopically enriched substance (nB) is known, the amount of substance in the sample (nA) can be obtained: [4]

Here, RA is the isotope amount ratio of the natural analyte, RA = n(iA)A/n(jA)A, RB is the isotope amount ratio of the isotopically enriched analyte, RB = n(iA)B/n(jA)B, RAB is the isotope amount ratio of the resulting mixture, x(jA)A is the isotopic abundance of the minor isotope in the natural analyte, and x(jA)B is the isotopic abundance of the major isotope in the isotopically enriched analyte.

For elements with only two stable isotopes, such as boron, chlorine, or silver, the above single dilution equation simplifies to the following:

In a typical gas chromatography analysis, isotopic dilution can decrease the uncertainty of the measurement results from 5% to 1%. It can also be used in mass spectrometry (commonly referred to as isotopic dilution mass spectrometry or IDMS), in which the isotopic ratio can be determined with precision typically better than 0.25%. [5]

Optimum composition of the blend

In a simplified manner, the uncertainty of the measurement results is largely determined from the measurement of RAB:

From here, we obtain the relative uncertainty of nA, ur(nA) = u(nA)/nA:

The lowest relative uncertainty of nA corresponds to the condition when the first derivative with respect to RAB equals zero. In addition, it is common in mass spectrometry that u(RAB)/RAB is constant and therefore we can replace u(RAB) with RAB. These ideas combine to give

Solving this equation leads to the optimum composition of the blend AB, i.e., the geometric mean between the isotopic compositions of standard (A) and spike (B):

This simplified equation was first proposed by De Bievre and Debus numerically [4] and later by Komori et al. [6] and by Riepe and Kaiser analytically. [7] It has been noted that this simple expression is only a general approximation and it does not hold, for example, in the presence of Poisson statistics [8] or in the presence of strong isotope signal ratio correlation. [9]

Double dilution method

The single dilution method requires the knowledge of the isotopic composition of the isotopically enriched analyte (RB) and the amount of the enriched analyte added (nB). Both of these variables are hard to establish since isotopically enriched substances are generally available in small quantities of questionable purity. As a result, before isotope dilution is performed on the sample, the amount of the enriched analyte is ascertained beforehand using isotope dilution. This preparatory step is called the reverse isotope dilution and it involves a standard of natural isotopic-composition analyte (denoted as A*). First proposed in the 1940s [10] and further developed in the 1950s, [11] reverse isotope dilution remains an effective means of characterizing a labeled material.

Isotope dilution notation
NameSymbol
AnalyteA
Natural standardA*
Isotopic standard (Spike)B
Analyte + SpikeAB
Standard + SpikeA*B

Reverse isotope dilution analysis of the enriched analyte:

Isotope dilution analysis of the analyte:

Since isotopic composition of A and A* are identical, combining these two expressions eliminates the need to measure the amount of the added enriched standard (nB):

Double dilution method can be designed such that the isotopic composition of the two blends, A+B and A*+B, is identical, i.e., RAB = RA*B. This condition of exact-matching double isotope dilution simplifies the above equation significantly: [12]

Triple dilution method

To avoid contamination of the mass spectrometer with the isotopically enriched spike, an additional blend of the primary standard (A*) and the spike (B) can be measured instead of measuring the enriched spike (B) directly. This approach was first put forward in the 1970s and developed in 2002. [13]

Calculations using calibration curve

Many analysts do not employ analytical equations for isotope dilution analysis. Instead, they rely on building a calibration curve from mixtures of the natural primary standard (A*) and the isotopically enriched standard (the spike, B). Calibration curves are obtained by plotting measured isotope ratios in the prepared blends against the known ratio of the sample mass to the mass of the spike solution in each blend. Isotope dilution calibration plots sometimes show nonlinear relationships and in practice polynomial fitting is often performed to empirically describe such curves. [14]

When calibration plots are markedly nonlinear, one can bypass the empirical polynomial fitting and employ the ratio of two linear functions (known as Padé approximant) which is shown to describe the curvature of isotope dilution curves exactly. [15]

See also

Related Research Articles

<span class="mw-page-title-main">Analytical chemistry</span> Study of the separation, identification, and quantification of matter

Analytical chemistry studies and uses instruments and methods to separate, identify, and quantify matter. In practice, separation, identification or quantification may constitute the entire analysis or be combined with another method. Separation isolates analytes. Qualitative analysis identifies analytes, while quantitative analysis determines the numerical amount or concentration.

<span class="mw-page-title-main">Concentration</span> Ratio of part of a mixture to the whole

In chemistry, concentration is the abundance of a constituent divided by the total volume of a mixture. Several types of mathematical description can be distinguished: mass concentration, molar concentration, number concentration, and volume concentration. The concentration can refer to any kind of chemical mixture, but most frequently refers to solutes and solvents in solutions. The molar (amount) concentration has variants, such as normal concentration and osmotic concentration. Dilution is reduction of concentration, e.g. by adding solvent to a solution. The verb to concentrate means to increase concentration, the opposite of dilute.

<span class="mw-page-title-main">Specific heat capacity</span> Heat required to increase temperature of a given unit of mass of a substance

In thermodynamics, the specific heat capacity of a substance is the amount of heat that must be added to one unit of mass of the substance in order to cause an increase of one unit in temperature. It is also referred to as massic heat capacity or as the specific heat. More formally it is the heat capacity of a sample of the substance divided by the mass of the sample. The SI unit of specific heat capacity is joule per kelvin per kilogram, J⋅kg−1⋅K−1. For example, the heat required to raise the temperature of 1 kg of water by 1 K is 4184 joules, so the specific heat capacity of water is 4184 J⋅kg−1⋅K−1.

<span class="mw-page-title-main">Relative density</span> Ratio of two densities

Relative density, also called specific gravity, is a dimensionless quantity defined as the ratio of the density of a substance to the density of a given reference material. Relative density for liquids is nearly always measured with respect to fresh water at its densest while specific gravity is usually measured with respect to pure water at 60F; for gases, the reference is air at room temperature. The term "relative density" is preferred in SI, whereas the term "specific gravity" is gradually being abandoned.

<span class="mw-page-title-main">Molar mass</span> Mass per amount of substance

In chemistry, the molar mass of a chemical compound is defined as the ratio between the mass and the amount of substance of any sample of the compound. The molar mass is a bulk, not molecular, property of a substance. The molar mass is an average of many instances of the compound, which often vary in mass due to the presence of isotopes. Most commonly, the molar mass is computed from the standard atomic weights and is thus a terrestrial average and a function of the relative abundance of the isotopes of the constituent atoms on Earth. The molar mass is appropriate for converting between the mass of a substance and the amount of a substance for bulk quantities.

The Knudsen number (Kn) is a dimensionless number defined as the ratio of the molecular mean free path length to a representative physical length scale. This length scale could be, for example, the radius of a body in a fluid. The number is named after Danish physicist Martin Knudsen (1871–1949).

<span class="mw-page-title-main">Calibration curve</span> Method for determining the concentration of a substance in an unknown sample

In analytical chemistry, a calibration curve, also known as a standard curve, is a general method for determining the concentration of a substance in an unknown sample by comparing the unknown to a set of standard samples of known concentration. A calibration curve is one approach to the problem of instrument calibration; other standard approaches may mix the standard into the unknown, giving an internal standard. The calibration curve is a plot of how the instrumental response, the so-called analytical signal, changes with the concentration of the analyte.

Cavity ring-down spectroscopy (CRDS) is a highly sensitive optical spectroscopic technique that enables measurement of absolute optical extinction by samples that scatter and absorb light. It has been widely used to study gaseous samples which absorb light at specific wavelengths, and in turn to determine mole fractions down to the parts per trillion level. The technique is also known as cavity ring-down laser absorption spectroscopy (CRLAS).

In physical organic chemistry, a kinetic isotope effect (KIE) is the change in the reaction rate of a chemical reaction when one of the atoms in the reactants is replaced by one of its isotopes. Formally, it is the ratio of rate constants for the reactions involving the light (kL) and the heavy (kH) isotopically substituted reactants (isotopologues):

The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency towards further change. For a given set of reaction conditions, the equilibrium constant is independent of the initial analytical concentrations of the reactant and product species in the mixture. Thus, given the initial composition of a system, known equilibrium constant values can be used to determine the composition of the system at equilibrium. However, reaction parameters like temperature, solvent, and ionic strength may all influence the value of the equilibrium constant.

<span class="mw-page-title-main">Isochron dating</span> Technique of radiometric dating

Isochron dating is a common technique of radiometric dating and is applied to date certain events, such as crystallization, metamorphism, shock events, and differentiation of precursor melts, in the history of rocks. Isochron dating can be further separated into mineral isochron dating and whole rock isochron dating; both techniques are applied frequently to date terrestrial and also extraterrestrial rocks (meteorites). The advantage of isochron dating as compared to simple radiometric dating techniques is that no assumptions are needed about the initial amount of the daughter nuclide in the radioactive decay sequence. Indeed, the initial amount of the daughter product can be determined using isochron dating. This technique can be applied if the daughter element has at least one stable isotope other than the daughter isotope into which the parent nuclide decays.

Air–fuel ratio (AFR) is the mass ratio of air to a solid, liquid, or gaseous fuel present in a combustion process. The combustion may take place in a controlled manner such as in an internal combustion engine or industrial furnace, or may result in an explosion.

The Standard addition method, often used in analytical chemistry, quantifies the analyte present in an unknown. This method is useful for analyzing complex samples where a matrix effect interferes with the analyte signal. In comparison to the calibration curve method, the standard addition method has the advantage of the matrices of the unknown and standards being nearly identical. This minimizes the potential bias arising from the matrix effect when determining the concentration.

<span class="mw-page-title-main">Intrinsic viscosity</span>

Intrinsic viscosity is a measure of a solute's contribution to the viscosity of a solution. It should not be confused with inherent viscosity, which is the ratio of the natural logarithm of the relative viscosity to the mass concentration of the polymer.

In a chemical analysis, the internal standard method involves adding the same amount of a chemical substance to each sample and calibration solution. The internal standard responds proportionally to changes in the analyte and provides a similar, but not identical, measurement signal. It must also be absent from the sample matrix to ensure there is no other source of the internal standard present. Taking the ratio of analyte signal to internal standard signal and plotting it against the analyte concentrations in the calibration solutions will result in a calibration curve. The calibration curve can then be used to calculate the analyte concentration in an unknown sample.

The atomic ratio is a measure of the ratio of atoms of one kind (i) to another kind (j). A closely related concept is the atomic percent, which gives the percentage of one kind of atom relative to the total number of atoms. The molecular equivalents of these concepts are the molar fraction, or molar percent.

<span class="mw-page-title-main">Thermal ionization mass spectrometry</span>

Thermal ionization mass spectrometry (TIMS) is also known as surface ionization and is a highly sensitive isotope mass spectrometry characterization technique. The isotopic ratios of radionuclides are used to get an accurate measurement for the elemental analysis of a sample. Singly charged ions of the sample are formed by the thermal ionization effect. A chemically purified liquid sample is placed on a metal filament which is then heated to evaporate the solvent. The removal of an electron from the purified sample is consequently achieved by heating the filament enough to release an electron, which then ionizes the atoms of the sample. TIMS utilizes a magnetic sector mass analyzer to separate the ions based on their mass to charge ratio. The ions gain velocity by an electrical potential gradient and are focused into a beam by electrostatic lenses. The ion beam then passes through the magnetic field of the electromagnet where it is partitioned into separate ion beams based on the ion's mass/charge ratio. These mass-resolved beams are directed into a detector where it is converted into voltage. The voltage detected is then used to calculate the isotopic ratio.

Isotopic reference materials are compounds with well-defined isotopic compositions and are the ultimate sources of accuracy in mass spectrometric measurements of isotope ratios. Isotopic references are used because mass spectrometers are highly fractionating. As a result, the isotopic ratio that the instrument measures can be very different from that in the sample's measurement. Moreover, the degree of instrument fractionation changes during measurement, often on a timescale shorter than the measurement's duration, and can depend on the characteristics of the sample itself. By measuring a material of known isotopic composition, fractionation within the mass spectrometer can be removed during post-measurement data processing. Without isotope references, measurements by mass spectrometry would be much less accurate and could not be used in comparisons across different analytical facilities. Due to their critical role in measuring isotope ratios, and in part, due to historical legacy, isotopic reference materials define the scales on which isotope ratios are reported in the peer-reviewed scientific literature.

Stable isotope standards and capture by anti-peptide antibodies (SISCAPA) is a mass spectrometry method for measuring the amount of a protein in a biological sample.

<span class="mw-page-title-main">Lutetium–hafnium dating</span> Gochronological dating method utilizing the radioactive decay system of lutetium–176

Lutetium–hafnium dating is a geochronological dating method utilizing the radioactive decay system of lutetium–176 to hafnium–176. With a commonly accepted half-life of 37.1 billion years, the long-living Lu–Hf decay pair survives through geological time scales, thus is useful in geological studies. Due to chemical properties of the two elements, namely their valences and ionic radii, Lu is usually found in trace amount in rare-earth element loving minerals, such as garnet and phosphates, while Hf is usually found in trace amount in zirconium-rich minerals, such as zircon, baddeleyite and zirkelite.

References

  1. M.J.T. Milton; R. I. Wielgosz (2000). "Uncertainty in SI-traceable measurements of amount of substance by isotope dilution mass spectrometry". Metrologia . 37 (3): 199–206. Bibcode:2000Metro..37..199M. doi:10.1088/0026-1394/37/3/3. S2CID   250890206.
  2. G. V. Hevesy; F. Paneth (1913). "Die Löslichkeit des Bleisulfids und Bleichromats". Z. Anorg. Allg. Chem. 82 (1): 323–328. doi:10.1002/zaac.19130820125.
  3. Isotope dilution Biographical Memoirs of the National Academy of Sciences
  4. 1 2 P. J. De Bievre; G. H. Debus (1965). "Precision mass spectrometric isotope dilution analysis". Nucl. Instrum. Methods . 32 (2): 224–228. Bibcode:1965NucIM..32..224D. doi:10.1016/0029-554X(65)90516-1.
  5. EPA publication SW-846, "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", available at http://www.epa.gov/epaoswer/hazwaste/test/sw846.htm. See Method 6800, "Elemental and Speciated Isotope Dilution Mass Spectrometry", available at http://www.epa.gov/epaoswer/hazwaste/test/pdfs/6800.pdf.
  6. T. Komori; et al. (1966). "Determination of cerium, gadolinium, dysprosium, erbium, and ytterbium". Bunseki Kagaku. 15 (6): 589–594. doi: 10.2116/bunsekikagaku.15.589 .
  7. W. Riepe; W. Kaiser (1966). "Massenspektrometrische Spurenanalyse von Calcium, Strontium und Barium in Natriumazid durch Isotopenverdünnungstechnik". Anal. Bioanal. Chem. 223 (5): 321–335. doi:10.1007/BF00513462. S2CID   197597174.
  8. R. Hoelzl; C. Hoelzl; L. Kotz; L. Fabry (1998). "The optimal amount of isotopic spike solution for ultratrace analysis by isotope dilution mass spectrometry". Accred. Qual. Assur. 3 (5): 185–188. doi:10.1007/s007690050219. S2CID   98759002.
  9. Meija, Juris; Mester, Zoltan (2007). "Signal correlation in isotope ratio measurements with mass spectrometry: Effects on uncertainty propagation". Spectrochimica Acta B . 62 (11): 1278–1284. doi:10.1007/BF00513462. S2CID   197597174.
  10. K. Bloch; H.S. Anker (1948). "An Extension of the Isotope Dilution Method". Science. 107 (2774): 228. Bibcode:1948Sci...107R.228B. doi:10.1126/science.107.2774.228. PMID   17749210.
  11. C. Rosenblum (1957). "Principles of Isotope Dilution Assays". Anal. Chem. 29 (12): 1740–1744. doi:10.1021/ac60132a021.
  12. A. Henrion (1994). "Reduction of systematic errors in quantitative analysis by isotope dilution mass spectrometry (IDMS): an iterative method". Fresenius' J. Anal. Chem. 350 (12): 657–658. doi:10.1007/BF00323658. S2CID   95434977.
  13. M.J.T. Milton; J.A. Wang (2002). "High Accuracy Method for Isotope Dilution Mass Spectrometry with Application to the Measurement of Carbon Dioxide". Int. J. Mass Spectrom. 218 (1): 63–73. Bibcode:2002IJMSp.218...63M. doi:10.1016/S1387-3806(02)00663-2.
  14. J.A. Jonckheere; A.P. De Leenheer; H.L. Steyaert (1983). "Statistical evaluation of calibration curve nonlinearity in isotope dilution gas chromatography/mass spectrometry". Anal. Chem. 55: 153–155. doi:10.1021/ac00252a042.
  15. Pagliano, E.; Mester, Zoltan; Meija, Juris (2015). "Calibration graphs in isotope dilution mass spectrometry". Analytica Chimica Acta . 896: 63–67. Bibcode:2015AcAC..896...63P. doi:10.1016/j.aca.2015.09.020. PMID   26481988. S2CID   7543394.

Further reading