Standard solution

Last updated

In analytical chemistry, a standard solution (titrant or titrator) is a solution containing an accurately known concentration. Standard solutions are generally prepared by dissolving a solute of known mass into a solvent to a precise volume, or by diluting a solution of known concentration with more solvent. [1]

Contents

Standard solutions are used to determine the concentration of solutions with unknown concentration, such as solutions in titrations. The concentrations of standard solutions are normally expressed in units of moles per litre (mol/L, often abbreviated to M for molarity), moles per cubic decimetre (mol/dm3), kilomoles per cubic metre (kmol/m3), grams per milliliters (g/mL), or in terms related to those used in particular titrations (such as titres).

Types of standard solutions

Preparing standard solutions require standards with known amount of analyte. Analytical standards can be categorized into Primary or Secondary standards.

Primary standards

Primary standards are compounds with known stoichiometry, high purity, and high stability. Standard solutions can be prepared using primary standards by accurately weighing a known quantity of the compound, followed by dilution to a precise volume. [2] For example, a weighed sample of 0.15 g sodium chloride contains 2.6 x 10-3 moles of sodium chloride. The following dilution of this sample in a 50-mL volumetric flask will result in a concentration of 0.51 M.

Secondary standards

Secondary standards are compounds with a concentration determined by a primary standard. Secondary standards do not satisfy the requirements for a primary standard. [2]

Applications

Titration

In titrations, the concentration of analyte in solution can be determined by titrating the standard solution against the analyte solution to determine the threshold of neutralization. [3] For example, to calculate the concentration of hydrogen chloride, a standard solution of known concentration, such as 0.5 M sodium hydroxide, is titrated against the hydrogen chloride solution.

Determination of concentration using a calibration curve

Standard solutions are commonly used to determine the concentration of an analyte species via calibration curve. A calibration curve is obtained by measuring a series of standard solutions with known concentrations, which can be used to determine the concentration of an unknown sample using linear regression analysis. [4] For example, by comparing the absorbance values of a solution with an unknown concentration to a series of standard solutions with varying concentrations, the concentration of the unknown can be determined using Beer's Law.

Any form of spectroscopy can be used in this way so long as the analyte species has substantial absorbance in the spectra. The standard solution is a reference guide to discover the molarity of unknown species.

The matrix effect can negatively affect the efficiency of a calibration curve due to interactions between matrix and the analyte response. The matrix effect can be reduced by the addition of internal standards to the standard solutions, or by using the standard addition method. [5]

Example of preparing a series of standard solutions

Suppose the concentration of glutamine in an unknown sample needs to be measured. To do so, a series of standard solutions containing glutamine is prepared to create a calibration curve. A table summarizing a method for creating these solutions is shown below:

Table 1: Preparing a set of glutamine standards example
Concentration of glutamine stock solution (g/mL):7.50 x 10-3
SolutionGlutamine added (mL)Dilute to mark with:Resulting Concentration (g/mL)
1 (blank)0Deionized water in

25 mL Volumetric Flask

0
213.00 x 10-4
326.00 x 10-4
439.00 x 10-4
541.20 x 10-3

Here, a stock solution of glutamine is added in increasing increments with a high-accuracy instrument, such as a volumetric pipette, and diluted to the same volume in volumetric flasks. The resulting concentration is calculated using the formula for molar concentration. The result is 4 standard solutions with varying known concentrations plus a blank for instrument calibration.

Related Research Articles

<span class="mw-page-title-main">Analytical chemistry</span> Study of the separation, identification, and quantification of matter

Analytical chemistry studies and uses instruments and methods to separate, identify, and quantify matter. In practice, separation, identification or quantification may constitute the entire analysis or be combined with another method. Separation isolates analytes. Qualitative analysis identifies analytes, while quantitative analysis determines the numerical amount or concentration.

<span class="mw-page-title-main">Titration</span> Laboratory method for determining the concentration of an analyte

Titration is a common laboratory method of quantitative chemical analysis to determine the concentration of an identified analyte. A reagent, termed the titrant or titrator, is prepared as a standard solution of known concentration and volume. The titrant reacts with a solution of analyte to determine the analyte's concentration. The volume of titrant that reacted with the analyte is termed the titration volume.

A primary standard in metrology is a standard that is sufficiently accurate such that it is not calibrated by or subordinate to other standards. Primary standards are defined via other quantities like length, mass and time. Primary standards are used to calibrate other standards referred to as working standards. See Hierarchy of Standards.

Gel permeation chromatography (GPC) is a type of size-exclusion chromatography (SEC), that separates high molecular weight or colloidal analytes on the basis of size or diameter, typically in organic solvents. The technique is often used for the analysis of polymers. As a technique, SEC was first developed in 1955 by Lathe and Ruthven. The term gel permeation chromatography can be traced back to J.C. Moore of the Dow Chemical Company who investigated the technique in 1964. The proprietary column technology was licensed to Waters Corporation, who subsequently commercialized this technology in 1964. GPC systems and consumables are now also available from a number of manufacturers. It is often necessary to separate polymers, both to analyze them as well as to purify the desired product.

<span class="mw-page-title-main">Karl Fischer titration</span> Chemical method to determine trace amounts of water in a sample

In analytical chemistry, Karl Fischer titration is a classic titration method that uses coulometric or volumetric titration to determine trace amounts of water in a sample. It was invented in 1935 by the German chemist Karl Fischer. Today, the titration is done with an automated Karl Fischer titrator.

<span class="mw-page-title-main">Calibration curve</span> Method for determining the concentration of a substance in an unknown sample

In analytical chemistry, a calibration curve, also known as a standard curve, is a general method for determining the concentration of a substance in an unknown sample by comparing the unknown to a set of standard samples of known concentration. A calibration curve is one approach to the problem of instrument calibration; other standard approaches may mix the standard into the unknown, giving an internal standard. The calibration curve is a plot of how the instrumental response, the so-called analytical signal, changes with the concentration of the analyte.

<span class="mw-page-title-main">Acid–base titration</span> Method of chemical quantitative analysis

An acid–base titration is a method of quantitative analysis for determining the concentration of Brønsted-Lowry acid or base (titrate) by neutralizing it using a solution of known concentration (titrant). A pH indicator is used to monitor the progress of the acid–base reaction and a titration curve can be constructed.

In chemistry, equivalent weight is the mass of one equivalent, that is the mass of a given substance which will combine with or displace a fixed quantity of another substance. The equivalent weight of an element is the mass which combines with or displaces 1.008 gram of hydrogen or 15.99 grams of oxygen or 35.5 grams of chlorine. These values correspond to the atomic weight divided by the usual valence; for oxygen gas as example that is 31.98 g.

Iodometry, known as iodometric titration, is a method of volumetric chemical analysis, a redox titration where the appearance or disappearance of elementary iodine indicates the end point.

The ionic strength of a solution is a measure of the concentration of ions in that solution. Ionic compounds, when dissolved in water, dissociate into ions. The total electrolyte concentration in solution will affect important properties such as the dissociation constant or the solubility of different salts. One of the main characteristics of a solution with dissolved ions is the ionic strength. Ionic strength can be molar or molal and to avoid confusion the units should be stated explicitly. The concept of ionic strength was first introduced by Lewis and Randall in 1921 while describing the activity coefficients of strong electrolytes.

The Standard addition method, often used in analytical chemistry, quantifies the analyte present in an unknown. This method is useful for analyzing complex samples where a matrix effect interferes with the analyte signal. In comparison to the calibration curve method, the standard addition method has the advantage of the matrices of the unknown and standards being nearly identical. This minimizes the potential bias arising from the matrix effect when determining the concentration.

In a chemical analysis, the internal standard method involves adding the same amount of a chemical substance to each sample and calibration solution. The internal standard responds proportionally to changes in the analyte and provides a similar, but not identical, measurement signal. It must also be absent from the sample matrix to ensure there is no other source of the internal standard present. Taking the ratio of analyte signal to internal standard signal and plotting it against the analyte concentrations in the calibration solutions will result in a calibration curve. The calibration curve can then be used to calculate the analyte concentration in an unknown sample.

In analytical chemistry, quantitative analysis is the determination of the absolute or relative abundance of one, several or all particular substance(s) present in a sample.

<span class="mw-page-title-main">Thermometric titration</span>

A thermometric titration is one of a number of instrumental titration techniques where endpoints can be located accurately and precisely without a subjective interpretation on the part of the analyst as to their location. Enthalpy change is arguably the most fundamental and universal property of chemical reactions, so the observation of temperature change is a natural choice in monitoring their progress. It is not a new technique, with possibly the first recognizable thermometric titration method reported early in the 20th century. In spite of its attractive features, and in spite of the considerable research that has been conducted in the field and a large body of applications that have been developed; it has been until now an under-utilized technique in the critical area of industrial process and quality control. Automated potentiometric titration systems have pre-dominated in this area since the 1970s. With the advent of cheap computers able to handle the powerful thermometric titration software, development has now reached the stage where easy to use automated thermometric titration systems can in many cases offer a superior alternative to potentiometric titrimetry.

In analytical chemistry, potentiometric titration is a technique similar to direct titration of a redox reaction. It is a useful means of characterizing an acid. No indicator is used; instead the electric potential is measured across the analyte, typically an electrolyte solution. To do this, two electrodes are used, an indicator electrode and a reference electrode. Reference electrodes generally used are hydrogen electrodes, calomel electrodes, and silver chloride electrodes. The indicator electrode forms an electrochemical half-cell with the interested ions in the test solution. The reference electrode forms the other half-cell.

In chemical analysis, matrix refers to the components of a sample other than the analyte of interest. The matrix can have a considerable effect on the way the analysis is conducted and the quality of the results are obtained; such effects are called matrix effects. For example, the ionic strength of the solution can have an effect on the activity coefficients of the analytes. The most common approach for accounting for matrix effects is to build a calibration curve using standard samples with known analyte concentration and which try to approximate the matrix of the sample as much as possible. This is especially important for solid samples where there is a strong matrix influence. In cases with complex or unknown matrices, the standard addition method can be used. In this technique, the response of the sample is measured and recorded, for example, using an electrode selective for the analyte. Then, a small volume of standard solution is added and the response is measured again. Ideally, the standard addition should increase the analyte concentration by a factor of 1.5 to 3, and several additions should be averaged. The volume of standard solution should be small enough to disturb the matrix as little as possible.

Permanganometry is one of the techniques used in chemical quantitative analysis. It is a redox titration that involves the use of permanganates to measure the amount of analyte present in unknown chemical samples. It involves two steps, namely the titration of the analyte with potassium permanganate solution and then the standardization of potassium permanganate solution with standard sodium oxalate solution. The titration involves volumetric manipulations to prepare the analyte solutions.

In analytical chemistry, argentometry is a type of titration involving the silver(I) ion. Typically, it is used to determine the amount of chloride present in a sample. The sample solution is titrated against a solution of silver nitrate of known concentration. Chloride ions react with silver(I) ions to give the insoluble silver chloride:

Conductometry is a measurement of electrolytic conductivity to monitor a progress of chemical reaction. Conductometry has notable application in analytical chemistry, where conductometric titration is a standard technique. In usual analytical chemistry practice, the term conductometry is used as a synonym of conductometric titration while the term conductimetry is used to describe non-titrative applications. Conductometry is often applied to determine the total conductance of a solution or to analyze the end point of titrations that include ions.

A chloridometer is a measuring instrument used to determine the concentration of chloride ions (Cl) in a solution. It uses a process known as coulometric titration or amperostatic coulometry, the accepted electrochemistry reference method to determine the concentration of chloride in biological fluids, including blood serum, blood plasma, urine, sweat, and cerebrospinal fluid. The coulometry process generates silver ions, which react with the chloride to form silver chloride (AgCl).

References

  1. Freiser, Henry; Nancollas, George H.; International Union of Pure and Applied Chemistry, eds. (1987). Compendium of analytical nomenclature: definitive rules 1987 (2nd ed.). Oxford [Oxfordshire] ; Boston: Blackwell Scientific Publications. ISBN   978-0-632-01907-6.
  2. 1 2 Harvey, David (2000). Modern analytical chemistry. Boston: McGraw-Hill. p. 154. ISBN   978-0-07-237547-3.
  3. Kotz, John C.; Treichel, Paul; Townsend, John Raymond (2009). Chemistry & chemical reactivity (7th ed.). Belmont, CA: Thomson Brooks/Cole. ISBN   978-0-495-38703-9.
  4. Skoog, Douglas A.; Holler, F. James; Crouch, Stanley R. (2018). Principles of instrumental analysis (Seventh ed.). Australia: Cengage Learning. p. 10. ISBN   978-1-305-57721-3.
  5. Skoog, Douglas A.; Holler, F. James; Crouch, Stanley R. (2018). Principles of instrumental analysis (Seventh ed.). Australia: Cengage Learning. pp. 13–15. ISBN   978-1-305-57721-3.