Hygroscopy

Last updated

Hygroscopy is the phenomenon of attracting and holding water molecules via either absorption or adsorption from the surrounding environment, which is usually at normal or room temperature. If water molecules become suspended among the substance's molecules, adsorbing substances can become physically changed, e.g. changing in volume, boiling point, viscosity or some other physical characteristic or property of the substance. For example, a finely dispersed hygroscopic powder, such as a salt, may become clumpy over time due to collection of moisture from the surrounding environment.

Contents

Deliquescent materials are sufficiently hygroscopic that they absorb so much water that they become liquid and form an aqueous solution.

Hygroscopy is essential for many plant and animal species' attainment of hydration, nutrition, reproduction and/or seed dispersal. Biological evolution created hygroscopic solutions for water harvesting, filament tensile strength, bonding and passive motion – natural solutions being considered in future biomimetics. [1] [2]

Etymology and pronunciation

The word hygroscopy ( /hˈɡrɒskəpi/ ) uses combining forms of hygro- and -scopy . Unlike any other -scopy word, it no longer refers to a viewing or imaging mode. It did begin that way, with the word hygroscope referring in the 1790s to measuring devices for humidity level. These hygroscopes used materials, such as certain animal hairs, that appreciably changed shape and size when they became damp. Such materials were then said to be hygroscopic because they were suitable for making a hygroscope. Eventually, the word hygroscope ceased to be used for any such instrument in modern usage, but the word hygroscopic (tending to retain moisture) lived on, and thus also hygroscopy (the ability to do so). Nowadays an instrument for measuring humidity is called a hygrometer (hygro- + -meter).

History

Early hygroscopy literature began circa 1880. [3] Studies by Victor Jodin (Annales Agronomiques, October 1897) focused on the biological properties of hygroscopicity. [4] He noted pea seeds, both living and dead (without germinative capacity), responded similarly to atmospheric humidity, their weight increasing or decreasing in relation to hygrometric variation.

Marcellin Berthelot viewed hygroscopicity from the physical side, a physico-chemical process. Berthelot's principle of reversibility, briefly- that water dried from plant tissue could be restored hygroscopically, was published in "Recherches sur la desiccation des plantes et des tissues végétaux; conditions d'équilibre et de réversibilité," (Annales de Chimie et de Physique, April 1903). [4]

Léo Errera viewed hygroscopicity from perspectives of the physicist and the chemist. [4] His memoir "Sur l'Hygroscopicité comme cause de l'action physiologique à distance" (Recueil de l'lnstitut Botanique Léo Errera, Université de Bruxelles, tome vi., 1906) provided a hygroscopy definition that remains valid to this day. Hygroscopy is "exhibited in the most comprehensive sense, as displayed

(a) in the condensation of the water-vapour of the air on the cold surface of a glass;
(b) in the capillarity of hair, wool, cotton, wood shavings, etc.;
(c) in the imbibition of water from the air by gelatine;
(d) in the deliquescence of common salt;
(e) in the absorption of water from the air by concentrated sulphuric acid;
(f) in the behaviour of quicklime". [4]

Overview

Apparatus for the determination of the hygroscopicity of fertilizer, Fixed Nitrogen Research Laboratory, c. 1930 THC 2003.902.036 Determining Hygroscopicity.tif
Apparatus for the determination of the hygroscopicity of fertilizer, Fixed Nitrogen Research Laboratory, c. 1930

Hygroscopic substances include cellulose fibers (such as cotton and paper), sugar, caramel, honey, glycerol, ethanol, wood, methanol, sulfuric acid, many fertilizer chemicals, many salts (like calcium chloride, bases like sodium hydroxide etc.), and a wide variety of other substances. [5]

If a compound dissolves in water, then it is considered to be hydrophilic. [6]

Zinc chloride and calcium chloride, as well as potassium hydroxide and sodium hydroxide (and many different salts), are so hygroscopic that they readily dissolve in the water they absorb: this property is called deliquescence. Not only is sulfuric acid hygroscopic in concentrated form but its solutions are hygroscopic down to concentrations of 10% v/v or below. A hygroscopic material will tend to become damp and cakey when exposed to moist air (such as the salt inside salt shakers during humid weather).

Because of their affinity for atmospheric moisture, desirable hygroscopic materials might require storage in sealed containers. Some hygroscopic materials, e.g., sea salt and sulfates, occur naturally in the atmosphere and serve as cloud seeds, cloud condensation nuclei (CCNs). Being hygroscopic, their microscopic particles provide an attractive surface for moisture vapour to condense and form droplets. Modern-day human cloud seeding efforts began in 1946. [7]

When added to foods or other materials for the express purpose of maintaining moisture content, hygroscopic materials are known as humectants.

Materials and compounds exhibit different hygroscopic properties, and this difference can lead to detrimental effects, such as stress concentration in composite materials. The volume of a particular material or compound is affected by ambient moisture and may be considered its coefficient of hygroscopic expansion (CHE) (also referred to as CME, or coefficient of moisture expansion) or the coefficient of hygroscopic contraction (CHC)—the difference between the two terms being a difference in sign convention.

Differences in hygroscopy can be observed in plastic-laminated paperback book covers—often, in a suddenly moist environment, the book cover will curl away from the rest of the book. The unlaminated side of the cover absorbs more moisture than the laminated side and increases in area, causing a stress that curls the cover toward the laminated side. This is similar to the function of a thermostat's bimetallic strip. Inexpensive dial-type hygrometers make use of this principle using a coiled strip. Deliquescence is the process by which a substance absorbs moisture from the atmosphere until it dissolves in the absorbed water and forms a solution. Deliquescence occurs when the vapour pressure of the solution that is formed is less than the partial pressure of water vapour in the air.

While some similar forces are at work here, it is different from capillary attraction, a process where glass or other solid substances attract water, but are not changed in the process (e.g., water molecules do not become suspended between the glass molecules).

Deliquescence

Deliquescence, like hygroscopy, is also characterized by a strong affinity for water and tendency to absorb moisture from the atmosphere if exposed to it. Unlike hygroscopy, however, deliquescence involves absorbing sufficient water to form an aqueous solution. Most deliquescent materials are salts, including calcium chloride, magnesium chloride, zinc chloride, ferric chloride, carnallite, potassium carbonate, potassium phosphate, ferric ammonium citrate, ammonium nitrate, potassium hydroxide, and sodium hydroxide. Owing to their very high affinity for water, these substances are often used as desiccants, which is also an application for concentrated sulfuric and phosphoric acids. Some deliquescent compounds are used in the chemical industry to remove water produced by chemical reactions (see drying tube). [8]

Biology

Hygroscopy appears in both plant and animal kingdoms, the latter benefiting via hydration and nutrition. Some amphibian species secrete a hygroscopic mucus that harvests moisture from the air. Orb web building spiders produce hygroscopic secretions that preserve the stickiness and adhesion force of their webs. One aquatic reptile species is able to travel beyond aquatic limitations, onto land, due to its hygroscopic integument.

Plants benefit from hygroscopy via hydration [1] and reproduction – demonstrated by convergent evolution examples. [2] Hygroscopic movement (hygrometrically activated movement) is integral in fertilization, seed/spore release, dispersal and germination. The phrase "hygroscopic movement" originated in 1904's "Vorlesungen Über Pflanzenphysiologie", translated in 1907 as "Lectures on Plant Physiology" (Ludwig Jost and R.J. Harvey Gibson, Oxford, 1907). [9] When movement becomes larger scale, affected plant tissues are colloquially termed hygromorphs. [10] Hygromorphy is a common mechanism of seed dispersal as the movement of dead tissues respond to hygrometric variation, [11] e.g. spore release from the fertile margins of Onoclea sensibilis. Movement occurs when plant tissue matures, dies and desiccates, cell walls drying, shrinking; [12] and also when humidity re-hydrates plant tissue, cell walls enlarging, expanding. [11] The direction of the resulting force depends upon the architecture of the tissue and is capable of producing bending, twisting or coiling movements.

Hygroscopic hydration examples

Seeds of Trifolium pratense (red clover) next to a U.S. dime for scale. Trifolium pratense seeds.JPG
Seeds of Trifolium pratense (red clover) next to a U.S. dime for scale.
Saguaro (Carnegiea gigantea) fruit bearing hygroscopic, humidity absorbing seed Owoce Saguaro.jpg
Saguaro (Carnegiea gigantea) fruit bearing hygroscopic, humidity absorbing seed

Hygroscopic-assisted propagation examples

Typical of hygroscopic movement are plant tissues with "closely packed long (columnar) parallel thick-walled cells (that) respond by expanding longitudinally when exposed to humidity and shrinking when dried (Reyssat et al., 2009)". [10] Cell orientation, pattern structure (annular, planar, bi-layered or tri-layered) and the effects of the opposite-surface's cell orientation control the hygroscopic reaction. Moisture responsive seed encapsulations rely on valves opening when exposed to wetting or drying; discontinuous tissue structures provide such predetermined breaking points (sutures), often implemented via reduced cell wall thickness or seams within bi- or tri-layered structures. [2] Graded distributions varying in density and/or cell orientation focus hygroscopic movement, frequently observed as biological actuators (a hinge function); e.g. pinecones (Pinus spp.), the ice plant (Aizoaceae spp.) and the wheat awn (Triticum spp.), [20] described below.

Illustration botanique, Xerochrysum (Helichrysum) bracteatum; No.1- Capitulum [bracts, florets, stamens] Favourite flowers of garden and greenhouse (10574920866).jpg
Illustration botanique, Xerochrysum (Helichrysum) bracteatum; No.1- Capitulum [bracts, florets, stamens]
Banksia Attenuata cone with open follicles 2018-01-31 171405 Banksia Attenuata, Nambung National Park, West Australia anagoria.JPG
Banksia Attenuata cone with open follicles
Taraxacum officinale capitulum and achene [seed-beak-apical plate-pappus Taraxacum officinale kz05.jpg
Taraxacum officinale capitulum and achene [seed-beak-apical plate-pappus

]

Orchid tree (Bauhinia variegata) seed pods Bauhinia variegata MHNT.BOT.2011.3.22.jpg
Orchid tree ( Bauhinia variegata ) seed pods
Ruschia sp. (Aizoaceae) flowers and multi-stage seed capsules Ruschia sp. (Aizoaceae) (36689680823).jpg
Ruschia sp. (Aizoaceae) flowers and multi-stage seed capsules
Common stork's-bill (Erodium cicutarium) achenes with coiled awns Erodium cicutarium MHNT.jpg
Common stork's-bill ( Erodium cicutarium ) achenes with coiled awns
Needle-and Thread (Hesperostipa comata) seedbuds 2015.06.27 11.30.41 IMG 2780 - Flickr - andrey zharkikh.jpg
Needle-and Thread ( Hesperostipa comata ) seedbuds
Two angiospermae families have similar methods of dispersal, though method of implementation varies within family: Geraniaceae family examples are the common stork's-bill ( Erodium cicutarium ) and geraniums (Pelargonium sp.); Poaceae family, Needle-and-Thread ( Hesperostipa comata ) and wheat ( Triticum spp. ). All rely upon a bi-layered parallel fiber hygroscopic cell physiology to control the awn's movement for dispersal and self-burial of seeds. [2] Alignment of cellulose fibrils in the awn's controlling cell wall determines direction of movement. If fiber alignments are tilted, non-parallel venation, a helix develops and awn movement becomes twisting (coiling) instead of bending; [21] e.g. coiling occurs in awns of Erodium, [2] and Hesperostipa. [29]

Engineering properties

Hygroscopic qualities of various materials illustrated in graph form; relative humidity on the X-axis and moisture content on the Y-axis. FspFkt 100dpi en.png
Hygroscopic qualities of various materials illustrated in graph form; relative humidity on the X-axis and moisture content on the Y-axis.

Hygroscopicity is a general term used to describe a material's ability to absorb moisture from the environment. [31] There is no standard quantitative definition of hygroscopicity, so generally the qualification of hygroscopic and non-hygroscopic is determined on a case-by-case basis. For example, pharmaceuticals that pick up more than 5% by mass, between 40 and 90% relative humidity at 25 °C, are described as hygroscopic, while materials that pick up less than 1%, under the same conditions are regarded as non-hygroscopic. [32]

The amount of moisture held by hygroscopic materials is usually proportional to the relative humidity. Tables containing this information can be found in many engineering handbooks and is also available from suppliers of various materials and chemicals.

Hygroscopy also plays an important role in the engineering of plastic materials. Some plastics, e. g. nylon, are hygroscopic while others are not.

Polymers

Many engineering polymers are hygroscopic, including nylon, ABS, polycarbonate, cellulose, carboxymethyl cellulose, and poly(methyl methacrylate) (PMMA, plexiglas, perspex).

Other polymers, such as polyethylene and polystyrene, do not normally absorb much moisture, but are able to carry significant moisture on their surface when exposed to liquid water. [33]

Type-6 nylon (a polyamide) can absorb up to 9.5% of its weight in moisture. [34]

Applications in baking

The use of different substances' hygroscopic properties in baking are often used to achieve differences in moisture content and, hence, crispiness. Different varieties of sugars are used in different quantities to produce a crunchy, crisp cookie (British English: biscuit) versus a soft, chewy cake. Sugars such as honey, brown sugar, and molasses are examples of sweeteners used to create moister and chewier cakes. [35]

Research

Several hygroscopic approaches to harvest atmospheric moisture have been demonstrated and require further development to assess their potentials as a viable water source.

Hygroscopic glues are candidates for commercial development. The most common cause of synthetic glue failure at high humidity is attributed to water lubricating the contact area, impacting bond quality. Hygroscopic glues may allow more durable adhesive bonds by absorbing (pulling) inter-facial environmental moisture away from the glue-substrate boundary. [14]

Integrating hygroscopic movement into smart building designs and systems is frequently mentioned, e.g. self-opening windows. [20] Such movement is appealing, an adaptive, self-shaping response that requires no external force or energy. However, capabilities of current material choices are limited. Biomimetic design of hygromorphic wood composites and hygro-actuated building systems have been modeled and evaluated. [37]

See also

Related Research Articles

<span class="mw-page-title-main">Seed</span> Embryonic plant enclosed in a protective outer covering

In botany, a seed is a plant embryo and food reserve enclosed in a protective outer covering called a seed coat (testa). More generally, the term "seed" means anything that can be sown, which may include seed and husk or tuber. Seeds are the product of the ripened ovule, after the embryo sac is fertilized by sperm from pollen, forming a zygote. The embryo within a seed develops from the zygote and grows within the mother plant to a certain size before growth is halted.

<span class="mw-page-title-main">Vascular plant</span> Clade of land plants with xylem and phloem

Vascular plants, also called tracheophytes or collectively Tracheophyta, form a large group of land plants that have lignified tissues for conducting water and minerals throughout the plant. They also have a specialized non-lignified tissue to conduct products of photosynthesis. Vascular plants include the clubmosses, horsetails, ferns, gymnosperms, and angiosperms. Scientific names for the group include Tracheophyta, Tracheobionta and Equisetopsida sensu lato. Some early land plants had less developed vascular tissue; the term eutracheophyte has been used for all other vascular plants, including all living ones.

<span class="mw-page-title-main">Basidium</span> Fungal structure

A basidium is a microscopic spore-producing structure found on the hymenophore of reproductive bodies of basidiomycete fungi. These bodies also called tertiary mycelia, which are highly coiled versions of secondary mycelia. The presence of basidia is one of the main characteristic features of the genus. A basidium usually bears four sexual spores called basidiospores. Occasionally the number may be two or even eight. Each reproductive spore is produced at the tip of a narrow prong or horn called a sterigma (pl. sterigmata), and is forcefully expelled at full growth.

<span class="mw-page-title-main">Desiccant</span> Substance used to induce or sustain dryness

A desiccant is a hygroscopic substance that is used to induce or sustain a state of dryness (desiccation) in its vicinity; it is the opposite of a humectant. Commonly encountered pre-packaged desiccants are solids that absorb water. Desiccants for specialized purposes may be in forms other than solid, and may work through other principles, such as chemical bonding of water molecules. They are commonly encountered in foods to retain crispness. Industrially, desiccants are widely used to control the level of water in gas streams.

<span class="mw-page-title-main">Desiccation</span> State of extreme dryness or process of thorough drying

Desiccation is the state of extreme dryness, or the process of extreme drying. A desiccant is a hygroscopic substance that induces or sustains such a state in its local vicinity in a moderately sealed container.

<span class="mw-page-title-main">Pappus (botany)</span> Feathery part of a seed of a plant in the family Asteraceae

In Asteraceae, the pappus is the modified calyx, the part of an individual floret, that surrounds the base of the corolla tube in flower. It functions as a wind-dispersal mechanism for the seeds. The term is sometimes used for similar structures in other plant families e.g. in certain genera of the Apocynaceae, although the pappus in Apocynaceae is not derived from the calyx of the flower.

<span class="mw-page-title-main">Lithium chloride</span> Chemical compound

Lithium chloride is a chemical compound with the formula LiCl. The salt is a typical ionic compound (with certain covalent characteristics), although the small size of the Li+ ion gives rise to properties not seen for other alkali metal chlorides, such as extraordinary solubility in polar solvents (83.05 g/100 mL of water at 20 °C) and its hygroscopic properties.

<span class="mw-page-title-main">Seed dispersal</span> Movement or transport of seeds away from the parent plant

In spermatophyte plants, seed dispersal is the movement, spread or transport of seeds away from the parent plant. Plants have limited mobility and rely upon a variety of dispersal vectors to transport their seeds, including both abiotic vectors, such as the wind, and living (biotic) vectors such as birds. Seeds can be dispersed away from the parent plant individually or collectively, as well as dispersed in both space and time. The patterns of seed dispersal are determined in large part by the dispersal mechanism and this has important implications for the demographic and genetic structure of plant populations, as well as migration patterns and species interactions. There are five main modes of seed dispersal: gravity, wind, ballistic, water, and by animals. Some plants are serotinous and only disperse their seeds in response to an environmental stimulus. These modes are typically inferred based on adaptations, such as wings or fleshy fruit. However, this simplified view may ignore complexity in dispersal. Plants can disperse via modes without possessing the typical associated adaptations and plant traits may be multifunctional.

<span class="mw-page-title-main">Harvester ant</span> Common name for several different ants

Harvester ant, also known as harvesting ant, is a common name for any of the species or genera of ants that collect seeds, or mushrooms as in the case of Euprenolepis procera, which are stored in the nest in communal chambers called granaries. They are also referred to as agricultural ants. Seed harvesting by some desert ants is an adaptation to the lack of typical ant resources such as prey or honeydew from hemipterans. Harvester ants increase seed dispersal and protection, and provide nutrients that increase seedling survival of the desert plants. In addition, ants provide soil aeration through the creation of galleries and chambers, mix deep and upper layers of soil, and incorporate organic refuse into the soil.

<span class="mw-page-title-main">Dehiscence (botany)</span> Splitting of a mature plant structure along built-in line of weakness to release contents

Dehiscence is the splitting of a mature plant structure along a built-in line of weakness to release its contents. This is common among fruits, anthers and sporangia. Sometimes this involves the complete detachment of a part. Structures that open in this way are said to be dehiscent. Structures that do not open in this way are called indehiscent, and rely on other mechanisms such as decay or predation to release the contents.

<span class="mw-page-title-main">Awn (botany)</span>

In botany, an awn is either a hair- or bristle-like appendage on a larger structure, or in the case of the Asteraceae, a stiff needle-like element of the pappus.

An elater is a cell that is hygroscopic, and therefore will change shape in response to changes in moisture in the environment. Elaters come in a variety of forms, but are always associated with plant spores. In many plants that do not have seeds, they function in dispersing the spores to a new location. Mosses do not have elaters, but peristomes which change shape with changes in humidity or moisture to allow for a gradual release of spores.

<span class="mw-page-title-main">Wood drying</span> Also known as seasoning, which is the reduction of the moisture content of wood prior to its use

Wood drying reduces the moisture content of wood before its use. When the drying is done in a kiln, the product is known as kiln-dried timber or lumber, whereas air drying is the more traditional method.

<i>Ecballium</i> Genus of plants

Ecballium is a genus of flowering plants in the family Cucurbitaceae containing a single species, Ecballium elaterium, also called the squirting cucumber or exploding cucumber. Its unusual common name derives from the ripe fruit squirting a stream of mucilaginous liquid containing its seeds as a means of seed dispersal, an example of rapid plant movement.

The critical relative humidity (CRH) of a salt is defined as the relative humidity of the surrounding atmosphere at which the material begins to absorb moisture from the atmosphere and below which it will not absorb atmospheric moisture.

<i>Erodium cicutarium</i> Species of flowering plant

Erodium cicutarium, also known as common stork's-bill, redstem filaree, redstem stork's bill or pinweed, is a herbaceous annual – or in warm climates, biennial – member of the family Geraniaceae of flowering plants. It is native to Macaronesia, temperate Eurasia and north and northeast Africa, and was introduced to North America in the eighteenth century, where it has since become naturalized, particularly of the deserts and arid grasslands of the southwestern United States.

<span class="mw-page-title-main">Mucociliary clearance</span>

Mucociliary clearance (MCC), mucociliary transport, or the mucociliary escalator, describes the self-clearing mechanism of the airways in the respiratory system. It is one of the two protective processes for the lungs in removing inhaled particles including pathogens before they can reach the delicate tissue of the lungs. The other clearance mechanism is provided by the cough reflex. Mucociliary clearance has a major role in pulmonary hygiene.

This glossary of botanical terms is a list of definitions of terms and concepts relevant to botany and plants in general. Terms of plant morphology are included here as well as at the more specific Glossary of plant morphology and Glossary of leaf morphology. For other related terms, see Glossary of phytopathology, Glossary of lichen terms, and List of Latin and Greek words commonly used in systematic names.

Dynamic vapor sorption (DVS) is a gravimetric technique that measures how quickly and how much of a solvent is absorbed by a sample such as a dry powder absorbing water. It does this by varying the vapor concentration surrounding the sample and measuring the change in mass which this produces. The technique is mostly used for water vapor, but is suitable for a wide range of organic solvents. Daryl Williams, founder of Surface Measurement Systems Ltd, developed Dynamic Vapor Sorption in 1991; the first instrument was delivered to Pfizer UK in 1992. DVS was originally developed to replace the time and labor-intensive desiccators and saturated salt solutions used to measure water vapor sorption isotherms.

Tissue hydration is the process of absorbing and retaining water in biological tissues.

References

  1. 1 2 3 Ni, Feng; Qiu, Nianxiang; Xiao, Peng; Zhang, Chang Wei; Jian, Yukun; Liang, Yun; Xie, Weiping; Yan, Luke; Chen, Tao (July 2020). "Tillandsia-Inspired Hygroscopic Photothermal Organogels for Efficient Atmospheric Water Harvesting". Angewandte Chemie International Edition. 59 (43): 19237–19246. doi:10.1002/anie.202007885. PMID   33448559. S2CID   225188835 . Retrieved 26 January 2023.
  2. 1 2 3 4 5 6 7 8 9 10 11 Huss, Jessica C.; Gierlinger, Notburga (June 2021). "Functional packaging of seeds". New Phytologist: International Journal of Plant Science. 230 (6): 2154–2163. doi:10.1111/nph.17299. PMC   8252473 . PMID   33629369.
  3. Parker, Phillip M., ed. (May 17, 2010). Hygroscopic: Webster's Timeline History, 1880 - 2007. ICON Group International, Inc.
  4. 1 2 3 4 Guppy, Henry B. (1912). Studies in Seeds and Fruits (PDF). London, England: Williams and Norgate. pp. 147–150. Retrieved 5 February 2023.
  5. "Hygroscopic compounds". hygroscopiccycle.com. IBERGY. Archived from the original on April 8, 2017. Retrieved April 7, 2017.
  6. IUPAC , Compendium of Chemical Terminology , 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006) " hydrophilic ". doi : 10.1351/goldbook.H02906
  7. Pelley, Janet (May 30, 2016). "Does cloud seeding really work?". Chemical & Engineering News. 94 (22). Retrieved 29 January 2023.
  8. Wells, Mickey; Wood, Daniel; Sanftleben, Ronald; Shaw, Kelley; Hottovy, Jeff; Weber, Thomas; Geoffroy, Jean-Marie; Alkire, Todd; Emptage; Sarabia, Rafael (June 1997). "Potassium carbonate as a desiccant in effervescent tablets". International Journal of Pharmaceutics. 152 (2): 227–235. doi:10.1016/S0378-5173(97)00093-8.
  9. Jost, Ludwig; Gibson, R. J. Harvey (1907). Lectures on Plant Physiology. Oxford: Clarendon Press. pp. 405–417. Retrieved 22 February 2023.
  10. 1 2 3 4 Reyssat, E.; Mahadevan, L. (July 1, 2009). "Hygromorphs: from pine cones to biomimetic bilayers". Journal of the Royal Society Interface. The Royal Society Publishing. 6 (39): 951–957. doi:10.1098/rsif.2009.0184. PMC   2838359 . PMID   19570796.
  11. 1 2 Watkins, Jr, James E; Testo, Weston L (11 April 2022). "Close observation of a common fern challenges long-held notions of how plants move. A commentary on 'Fern fronds that move like pine cones: humidity-driven motion of fertile leaflets governs the timing of spore dispersal in a widespread fern species'". Annals of Botany. 129 (5): i–iii. doi:10.1093/aob/mcac017. PMC   9007092 . PMID   35211726 . Retrieved 23 February 2023.
  12. Elbaum, Rivka; Abraham, Yael (June 2014). "Insights into the microstructures of hygroscopic movement in plant seed dispersal". Plant Science. 223: 124–133. doi:10.1016/j.plantsci.2014.03.014. PMID   24767122.
  13. Comanns, Philipp; Withers, Philip C.; Esser, Falk J.; Baumgartner, Werner (November 2016). "Cutaneous water collection by a moisture-harvesting lizard, the thorny devil (Moloch horridus)". Journal of Experimental Biology. 219 (21): 3473–3479. doi: 10.1242/jeb.148791 . PMID   27807218. S2CID   22725331.
  14. 1 2 Singla, Saranshu; Amarpuri, Gaurav; Dhopatkar, Nishad; Blackledge, Todd A.; Dhinojwala, Ali (May 22, 2018). "Hygroscopic compounds in spider aggregate glue remove interfacial water to maintain adhesion in humid conditions". Nature Communications. 9 (1890 (2018)): 1890. Bibcode:2018NatCo...9.1890S. doi:10.1038/s41467-018-04263-z. PMC   5964112 . PMID   29789602.
  15. 1 2 Comanns, Philipp (May 2018). "Passive water collection with the integument: mechanisms and their biomimetic potential". Journal of Experimental Biology. 221 (10): Table 1. doi: 10.1242/jeb.153130 . PMID   29789349. S2CID   46893569.
  16. 1 2 3 4 Comanns, Philipp (May 2018). "Passive water collection with the integument: mechanisms and their biomimetic potential". Journal of Experimental Biology. 221 (10). doi: 10.1242/jeb.153130 . PMID   29789349. S2CID   46893569.
  17. 1 2 3 AskNature Team (March 23, 2020). "Valve Regulates Water Permeability: Tree lupin". asknature.org. The Biomimicry Institute. Retrieved 10 February 2023.
  18. Steenbergh, Warren F.; Lowe, Charles H. (1977). Ecology of the Saguaro: II (PDF). National Park Service Scientific Monograph Series. pp. 69–73. Retrieved 4 February 2023.
  19. Hyde, E. O. C. (April 1954). "The Function of the Hilum in Some Papilionaceae in Relation to the Ripening of the Seed and the Permeability of the Testa". Annals of Botany. Oxford University Press. 18 (70): 241–256. doi:10.1093/oxfordjournals.aob.a083393. JSTOR   42907240 . Retrieved 11 February 2023.
  20. 1 2 3 4 Brulé, Véronique; Rafsanjani, Ahmad; Asgari, Meisam; Western, Tamara L.; Pasini, Damiano (October 2019). "Three-dimensional functional gradients direct stem curling in the resurrection plant Selaginella lepidophylla". Journal of the Royal Society Interface. 16 (159). doi:10.1098/rsif.2019.0454. PMC   6833318 . PMID   31662070.
  21. 1 2 3 4 5 Borowska-Wykręt, Dorota; Rypień, Aleksandra; Dulski, Mateusz; Grelowski, Michał; Wrzalik, Roman; Kwiatkowska, Dorota (June 2017). "Gradient of structural traits drives hygroscopic movements of scarious bracts surrounding Helichrysum bracteatum capitulum". Annals of Botany. 119 (8): 1365–1383. doi:10.1093/aob/mcx015. PMC   5604587 . PMID   28334385 . Retrieved 12 February 2023.
  22. 1 2 Sheldon, J. C.; Burrows, F. M. (May 1973). "The Dispersal Effectiveness of the Achene-Pappus Units of Selected Compositae in Steady Winds with Convection". New Phytologist. 72 (3): 666. doi: 10.1111/j.1469-8137.1973.tb04415.x . Retrieved 1 March 2023.
  23. 1 2 3 4 Huss, Jessica C.; Gierlinger, Notburga (June 2021). "Functional packaging of seeds". New Phytologist: International Journal of Plant Science. 230 (6): Table 1. doi:10.1111/nph.17299. PMC   8252473 . PMID   33629369.
  24. Petruzzello, Melissa (2023). "Playing with Wildfire: 5 Amazing Adaptations of Pyrophytic Plants". britannica.com. Encyclopædia Britannica, Inc. Retrieved 22 February 2023.
  25. 1 2 3 Seale, Madeleine; Kiss, Annamaria; Bovio, Simone; Viola, Ignazio Maria; Mastropaolo, Enrico; Boudaoud, Arezki; Nakayama, Naomi (May 6, 2022). "Dandelion pappus morphing is actuated by radially patterned material swelling". Nature Communications. 13 (2498 (2022)). doi:10.1038/s41467-022-30245-3. hdl: 20.500.11820/b89b6b81-c97c-4145-a0a7-253119cd0c66 . Retrieved 28 February 2023.
  26. Eastman, John (February 18, 2015). "Seeds that plant themselves". indefenseofplants.com. Retrieved 1 March 2023.
  27. 1 2 3 Pufal, Gesine; Garnock-Jones, Phil (September 2010). "Hygrochastic capsule dehiscence supports safe site strategies in New Zealand alpine Veronica (Plantaginaceae)". Annals of Botany. 106 (3): 405–412. doi:10.1093/aob/mcq136. PMC   2924830 . PMID   20587583.
  28. 1 2 Harrington, Matthew J.; Razghandi, Khashayar; Ditsch, Friedrich; Guiducci, Lorenzo; Rueggeberg, Markus; Dunlop, John W.C.; Fratzl, Peter; Neinhuis, Christoph; Burgert, Ingo (7 June 2011). "Origami-like unfolding of hydro-actuated ice plant seed capsules". Nature Communications. 2 (337 (2011)). doi: 10.1038/ncomms1336 .
  29. Fire Effects Information System, Species: Hesperostipa comata Archived 2017-05-28 at the Wayback Machine U.S. Department of Agriculture Forest Service
  30. "Seed-Plant-Reproductive-Part: Dispersal by water". www.britannica.com. Britannica. 2023. pp. Seed: Self-dispersal. Retrieved 5 March 2023.
  31. Neĭkov, Oleg Domianovich (7 December 2018). Handbook of non-ferrous metal powders : technologies and applications. Elsevier Science. ISBN   978-0-08-100543-9. OCLC   1077290174.
  32. James L. Ford, Richard Wilson, in Handbook of Thermal Analysis and Calorimetry, 1999, Section 2.13
  33. Schwartz, S., Goodman, S. (1982). Plastics Materials and Processes, Van Nostrand Reinhold Company Inc. ISBN   0-442-22777-9, p.547
  34. "NYLON". sdplastics.com. San Diego Plastics, Inc. Archived from the original on May 13, 2017. Retrieved April 7, 2017.
  35. Sloane, T. O'Conor. Facts Worth Knowing Selected Mainly from the Scientific American for Household, Workshop, and Farm Embracing Practical and Useful Information for Every Branch of Industry. Hartford: S. S. Scranton and Co. 1895.
  36. Guo, Youhong; Guan, Weixin; Lei, Chuxin; Lu, Hengyi; Shi, Wen; Yu, Guihua (19 May 2022). "Scalable super hygroscopic polymer films for sustainable moisture harvesting in arid environments". Nature Communications. 13 ((1):2761): Abstract. doi:10.1038/s41467-022-30505-2. PMC   9120194 . PMID   35589809.
  37. 1 2 3 Zhan, Tianyi; Li, Rui; Liu, Zhiting; Peng, Hui; Lyu, Jianxiong (10 March 2023). "From adaptive plant materials toward hygro-actuated wooden building systems: A review". Construction and Building Materials. 369 (130479): Abstract. doi:10.1016/j.conbuildmat.2023.130479 . Retrieved 18 March 2023.