Chemical affinity

Last updated

In chemical physics and physical chemistry, chemical affinity is the electronic property by which dissimilar chemical species are capable of forming chemical compounds. [1] Chemical affinity can also refer to the tendency of an atom or compound to combine by chemical reaction with atoms or compounds of unlike composition.

Contents

History

Early theories

The idea of affinity is extremely old. Many attempts have been made at identifying its origins. [2] The majority of such attempts, however, except in a general manner, end in futility since "affinities" lie at the basis of all magic, thereby pre-dating science. [3] Physical chemistry, however, was one of the first branches of science to study and formulate a "theory of affinity". The name affinitas was first used in the sense of chemical relation by German philosopher Albertus Magnus near the year 1250. Later, those as Robert Boyle, John Mayow, Johann Glauber, Isaac Newton, and Georg Stahl put forward ideas on elective affinity in attempts to explain how heat is evolved during combustion reactions. [4]

The term affinity has been used figuratively since c. 1600 in discussions of structural relationships in chemistry, philology, etc., and reference to "natural attraction" is from 1616. "Chemical affinity", historically, has referred to the "force" that causes chemical reactions. [5] as well as, more generally, and earlier, the ″tendency to combine″ of any pair of substances. The broad definition, used generally throughout history, is that chemical affinity is that whereby substances enter into or resist decomposition. [2]

The modern term chemical affinity is a somewhat modified variation of its eighteenth-century precursor "elective affinity" or elective attractions, a term that was used by the 18th century chemistry lecturer William Cullen. [6] Whether Cullen coined the phrase is not clear, but his usage seems to predate most others, although it rapidly became widespread across Europe, and was used in particular by the Swedish chemist Torbern Olof Bergman throughout his book De attractionibus electivis (1775). Affinity theories were used in one way or another by most chemists from around the middle of the 18th century into the 19th century to explain and organise the different combinations into which substances could enter and from which they could be retrieved. [7] [8] Antoine Lavoisier, in his famed 1789 Traité Élémentaire de Chimie (Elements of Chemistry), refers to Bergman's work and discusses the concept of elective affinities or attractions.

According to chemistry historian Henry Leicester, the influential 1923 textbook Thermodynamics and the Free Energy of Chemical Reactions by Gilbert N. Lewis and Merle Randall led to the replacement of the term "affinity" by the term "free energy" in much of the English-speaking world.

According to Prigogine, [9] the term was introduced and developed by Théophile de Donder. [10]

Goethe used the concept in his novel Elective Affinities (1809).

Visual representations

Geoffroy's Affinity Table (1718): At the head of the column is a substance with which all the substances below can combine, where each column below the header is ranked by degrees of "affinity" Affinity-table.jpg
Geoffroy's Affinity Table (1718): At the head of the column is a substance with which all the substances below can combine, where each column below the header is ranked by degrees of "affinity"

The affinity concept was very closely linked to the visual representation of substances on a table. The first-ever affinity table, which was based on displacement reactions, was published in 1718 by the French chemist Étienne François Geoffroy. Geoffroy's name is best known in connection with these tables of "affinities" (tables des rapports), which were first presented to the French Academy of Sciences in 1718 and 1720.

During the 18th century many versions of the table were proposed with leading chemists like Torbern Bergman in Sweden and Joseph Black in Scotland adapting it to accommodate new chemical discoveries. All the tables were essentially lists, prepared by collating observations on the actions of substances one upon another, showing the varying degrees of affinity exhibited by analogous bodies for different reagents.

Crucially, the table was the central graphic tool used to teach chemistry to students and its visual arrangement was often combined with other kinds diagrams. Joseph Black, for example, used the table in combination with chiastic and circlet diagrams to visualise the core principles of chemical affinity. [11] Affinity tables were used throughout Europe until the early 19th century when they were displaced by affinity concepts introduced by Claude Berthollet.

Modern conceptions

In chemical physics and physical chemistry, chemical affinity is the electronic property by which dissimilar chemical species are capable of forming chemical compounds. [1] Chemical affinity can also refer to the tendency of an atom or compound to combine by chemical reaction with atoms or compounds of unlike composition.

In modern terms, we relate affinity to the phenomenon whereby certain atoms or molecules have the tendency to aggregate or bond. For example, in the 1919 book Chemistry of Human Life physician George W. Carey states that, "Health depends on a proper amount of iron phosphate Fe3(PO4)2 in the blood, for the molecules of this salt have chemical affinity for oxygen and carry it to all parts of the organism." In this antiquated context, chemical affinity is sometimes found synonymous with the term "magnetic attraction". Many writings, up until about 1925, also refer to a "law of chemical affinity".

Ilya Prigogine summarized the concept of affinity, saying, "All chemical reactions drive the system to a state of equilibrium in which the affinities of the reactions vanish."

Thermodynamics

The present IUPAC definition is that affinity A is the negative partial derivative of Gibbs free energy G with respect to extent of reaction ξ at constant pressure and temperature. [12] That is,

It follows that affinity is positive for spontaneous reactions.

In 1923, the Belgian mathematician and physicist Théophile de Donder derived a relation between affinity and the Gibbs free energy of a chemical reaction. Through a series of derivations, de Donder showed that if we consider a mixture of chemical species with the possibility of chemical reaction, it can be proven that the following relation holds:

With the writings of Théophile de Donder as precedent, Ilya Prigogine and Defay in Chemical Thermodynamics (1954) defined chemical affinity as the rate of change of the uncompensated heat of reaction Q' as the reaction progress variable or reaction extent ξ grows infinitesimally:

This definition is useful for quantifying the factors responsible both for the state of equilibrium systems (where A = 0), and for changes of state of non-equilibrium systems (where A ≠ 0).

See also

Notes

  1. 1 2 Chisholm 1911 , Affinity, Chemical
  2. 1 2 Levere, Trevor, H. (1971). Affinity and Matter – Elements of Chemical Philosophy 1800-1865. Gordon and Breach Science Publishers. ISBN   2-88124-583-8.
  3. Malthauf, R. P. (1966). The Origins of Chemistry. Pg. 299. London.
  4. Partington, J.R. (1937). A Short History of Chemistry. New York: Dover Publications, Inc. ISBN   0-486-65977-1
  5. Thomas Thomson. (1831). A System of Chemistry, vol. 1. p.31 (chemical affinity is described as an "unknown force"). 7th ed., 2 vols.
  6. See Arthur Donovan, Philosophical Chemistry in the Scottish Enlightenment, Edinburgh, 1975
  7. Eddy, Matthew Daniel (2004). "Elements, Principles and the Narrative of Affinity". Foundations of Chemistry. 6 (2): 161–175. doi:10.1023/B:FOCH.0000035061.02831.45. S2CID   143754994.
  8. On the variety of affinity theories, see Georgette Taylor, Variations on a Theme; Patterns of Congruence and Divergence among 18th Century Affinity Theories, VDM Verlag Dr Muller Aktiengesellschaft, 2008
  9. I.Prigogine. (1980). From being to becoming. Time and Complexity in the Physical Sciences. San Francisco: W.H.Freeman and Co
  10. de Donder, T. (1936). L'affinité. Ed. Pierre Van Rysselberghe. Paris: Gauthier-Villars
  11. Eddy, Matthew Daniel (2014). "How to See a Diagram: A Visual Anthropology of Chemical Affinity". Osiris. 29: 178–196. doi:10.1086/678093. PMID   26103754. S2CID   20432223.
  12. "IUPAC Green Book and Gold Book in .pdf".

Related Research Articles

Chemistry is the scientific study of the properties and behavior of matter. It is a physical science under natural sciences that covers the elements that make up matter to the compounds made of atoms, molecules and ions: their composition, structure, properties, behavior and the changes they undergo during a reaction with other substances. Chemistry also addresses the nature of chemical bonds in chemical compounds.

Chemical thermodynamics is the study of the interrelation of heat and work with chemical reactions or with physical changes of state within the confines of the laws of thermodynamics. Chemical thermodynamics involves not only laboratory measurements of various thermodynamic properties, but also the application of mathematical methods to the study of chemical questions and the spontaneity of processes.

<span class="mw-page-title-main">Physical chemistry</span> Physics applied to chemical systems

Physical chemistry is the study of macroscopic and microscopic phenomena in chemical systems in terms of the principles, practices, and concepts of physics such as motion, energy, force, time, thermodynamics, quantum chemistry, statistical mechanics, analytical dynamics and chemical equilibria.

<span class="mw-page-title-main">Thermodynamic free energy</span> State function whose change relates to the systems maximal work output

In thermodynamics, the thermodynamic free energy is one of the state functions of a thermodynamic system. The change in the free energy is the maximum amount of work that the system can perform in a process at constant temperature, and its sign indicates whether the process is thermodynamically favorable or forbidden. Since free energy usually contains potential energy, it is not absolute but depends on the choice of a zero point. Therefore, only relative free energy values, or changes in free energy, are physically meaningful.

In chemistry, the law of mass action is the proposition that the rate of the chemical reaction is directly proportional to the product of the activities or concentrations of the reactants. It explains and predicts behaviors of solutions in dynamic equilibrium. Specifically, it implies that for a chemical reaction mixture that is in equilibrium, the ratio between the concentration of reactants and products is constant.

<span class="mw-page-title-main">Thermodynamic system</span> Body of matter in a state of internal equilibrium

A thermodynamic system is a body of matter and/or radiation, considered as separate from its surroundings, and studied using the laws of thermodynamics. Thermodynamic systems may be isolated, closed, or open. An isolated system exchanges no matter or energy with its surroundings, whereas a closed system does not exchange matter but may exchange heat and experience and exert forces. An open system can interact with its surroundings by exchanging both matter and energy. The physical condition of a thermodynamic system at a given time is described by its state, which can be specified by the values of a set of thermodynamic state variables. A thermodynamic system is in thermodynamic equilibrium when there are no macroscopically apparent flows of matter or energy within it or between it and other systems.

In chemistry, reactivity is the impulse for which a chemical substance undergoes a chemical reaction, either by itself or with other materials, with an overall release of energy.

In chemistry, the amount of substance (symbol n) in a given sample of matter is defined as a ratio (n = N/NA) between the number of discrete particles (N) and the Avogadro constant (NA). The particles are usually molecules, atoms, or ions of a specified kind. The particular substance sampled may be specified using a subscript, e.g., the amount of sodium chloride (NaCl) would be denoted as nNaCl. The unit of amount of substance in the International System of Units is the mole (symbol: mol), a base unit. Since 2019, the value of the Avogadro constant NA is defined to be exactly 6.02214076×1023 mol−1. Sometimes, the amount of substance is referred to as the chemical amount.

<span class="mw-page-title-main">Torbern Bergman</span> Swedish chemist and mineralogist

Torbern Olaf (Olof) Bergman (KVO) was a Swedish chemist and mineralogist noted for his 1775 Dissertation on Elective Attractions, containing the largest chemical affinity tables ever published. Bergman was the first chemist to use the A, B, C, etc., system of notation for chemical species.

<i>Elective Affinities</i> 1809 novel by Johann Wolfgang von Goethe

Elective Affinities, also translated under the title Kindred by Choice, is the third novel by Johann Wolfgang von Goethe, published in 1809. Situated around the city of Weimar, the book relates the story of Eduard and Charlotte, an aristocratic couple enjoying an idyllic but somewhat mundane life on a secluded estate; although it is the second marriage for both, their relationship deteriorates after they invite Eduard's friend Captain Otto and Charlotte's orphaned niece, Ottilie, to live with them in their mansion. The invitation to Ottilie and the Captain is described as an "experiment", as it indeed is. The house and its surrounding gardens are described as "a chemical retort in which the human elements are brought together for the reader to observe the resulting reaction." As if in a chemical reaction, each of the spouses experiences a strong new attraction, which is reciprocated: Charlotte, who represents reason, to the sensible and energetic Captain Otto; the impulsive and passionate Eduard to the adolescent and charming Ottilie. The conflict between passion and reason leads to chaos and ultimately to a tragic end.

<span class="mw-page-title-main">History of chemistry</span> Historical development of chemistry

The history of chemistry represents a time span from ancient history to the present. By 1000 BC, civilizations used technologies that would eventually form the basis of the various branches of chemistry. Examples include the discovery of fire, extracting metals from ores, making pottery and glazes, fermenting beer and wine, extracting chemicals from plants for medicine and perfume, rendering fat into soap, making glass, and making alloys like bronze.

Chemism refers to forces of attraction or adhesion between entities. It has uses in chemistry and philosophy.

Merle Randall was an American physical chemist famous for his work with Gilbert N. Lewis, over a period of 25 years, in measuring reaction heat of chemical compounds and determining their corresponding free energy. Together, their 1923 textbook "Thermodynamics and the Free Energy of Chemical Substances" became a classic work in the field of chemical thermodynamics.

In the history of science, the principle of maximum work was a postulate concerning the relationship between chemical reactions, heat evolution, and the potential work produced there from. The principle was developed in approximate form in 1875 by French chemist Marcellin Berthelot, in the field of thermochemistry, and then in 1876 by American mathematical physicist Willard Gibbs, in the field of thermodynamics, in a more accurate form. Berthelot's version was essentially: "every pure chemical reaction is accompanied by evolution of heat.". The effects of irreversibility, however, showed this version to be incorrect. This was rectified, in thermodynamics, by incorporating the concept of entropy.

<span class="mw-page-title-main">Théophile de Donder</span> Belgian physicist, mathematician, and chemist (1872–1957)

Théophile Ernest de Donder was a Belgian mathematician, physicist and chemist famous for his work in developing correlations between the Newtonian concept of chemical affinity and the Gibbsian concept of free energy.

<span class="mw-page-title-main">History of molecular theory</span> Aspect of history

In chemistry, the history of molecular theory traces the origins of the concept or idea of the existence of strong chemical bonds between two or more atoms.

<span class="mw-page-title-main">Chemical substance</span> Matter of constant chemical composition and properties

A chemical substance is a form of matter having constant chemical composition and characteristic properties. Chemical substances can be simple substances, chemical compounds, or alloys.

This glossary of chemistry terms is a list of terms and definitions relevant to chemistry, including chemical laws, diagrams and formulae, laboratory tools, glassware, and equipment. Chemistry is a physical science concerned with the composition, structure, and properties of matter, as well as the changes it undergoes during chemical reactions; it features an extensive vocabulary and a significant amount of jargon.

In chemistry, chemical stability is the thermodynamic stability of a chemical system.

<span class="mw-page-title-main">Chemical compound</span> Substance composed of multiple elements that are chemically bonded

A chemical compound is a chemical substance composed of many identical molecules containing atoms from more than one chemical element held together by chemical bonds. A molecule consisting of atoms of only one element is therefore not a compound. A compound can be transformed into a different substance by a chemical reaction, which may involve interactions with other substances. In this process, bonds between atoms may be broken and/or new bonds formed.

References