Polycarbonate

Last updated
Polycarbonate
Lexan.svg
Repeating chemical structure unit of
Polycarbonate made from bisphenol A
VisibleLightSpectrum2.svg
Transmission spectrum of polycarbonate
Physical properties
Density (ρ)1.20–1.22 g/cm3
Abbe number (V)34.0
Refractive index (n) 1.584–1.586
Flammability HB-V2
Limiting oxygen index 25–29%
Water absorptionEquilibrium (ASTM)0.16–0.35%
Water absorption—over 24 hours0.1%
Radiation resistance Fair
Ultraviolet (1–380 nm) resistance Fair
Mechanical properties
Young's modulus (E)2.0–2.4 G Pa
Tensile strength (σt)55–75 MPa
Elongation (ε)at break 80–150%
Compressive strength (σc)>80 MPa
Poisson's ratio (ν)0.37
HardnessRockwell M70
Izod impact strength 600–850 J/m
Notch test 20–35 kJ/m2
Abrasive resistance ASTM D104410–15 m g/1000 cycles
Coefficient of friction (μ)0.31
Speed of sound 2270 m/s
Thermal properties
Glass transition temperature (Tg)147 °C (297 °F)
Heat deflection temperature
  • 0.45 MPa: 140 °C (284 °F)
  • 1.8 MPa: 128–138 °C (262–280 °F)
Vicat softening point at 50 N 145–150 °C (293–302 °F) [1]
Upper working temperature115–130 °C (239–266 °F)
Lower working temperature−40 °C (−40 °F) [2]
Thermal conductivity (k) at 23 °C0.19–0.22 W/(m·K)
Thermal diffusivity (a) at 25 °C0.144 mm²/s [3]
Linear thermal expansion coefficient (α)65–70 × 10−6/K
Specific heat capacity (c)1.2–1.3 kJ/(kg·K)
Electrical properties
Dielectric constant (εr) at 1 MHz 2.9
Permittivity (ε)2.568 × 10−11 F/m
Relative permeability (μr) at 1 MHz0.866(2)
Permeability (μ) at 1 MHz1.089(2) μN/A 2
Dissipation factor at 1 MHz 0.01
Surface resistivity 1015 Ω/sq
Volume resistivity (ρ)1012–1014 Ω·m
Chemical resistance
Acidsconcentrated Poor
Acidsdilute Good
Alcohols Good
Alkalis Good-Poor
Aromatic hydrocarbons Poor
Greases and oils Good-fair
Halogenated hydrocarbons Good-poor
Halogens Poor
Ketones Poor
Gas permeation at 20 °C
Nitrogen 10–25 cm3·mm/(m2·day·Bar)
Oxygen 70–130 cm3·mm/(m2·day·Bar)
Carbon dioxide 400–800 cm3·mm/(m2·day·Bar)
Water vapour 1–2 g·mm/(m2·day) @ 85%–0% RH gradient
Economics
Price2.6–2.8 €/kg [4]

Polycarbonates (PC) are a group of thermoplastic polymers containing carbonate groups in their chemical structures. Polycarbonates used in engineering are strong, tough materials, and some grades are optically transparent. They are easily worked, molded, and thermoformed. Because of these properties, polycarbonates find many applications. Polycarbonates do not have a unique resin identification code (RIC) and are identified as "Other", 7 on the RIC list. Products made from polycarbonate can contain the precursor monomer bisphenol A (BPA).

Contents

Structure

Structure of dicarbonate (PhOC(O)OC6H4 )2CMe2 derived from bis(phenol-A) and two equivalents of phenol. This molecule reflects a subunit of a typical polycarbonate derived from bis(phenol-A). DINWOM10.png
Structure of dicarbonate (PhOC(O)OC6H4 )2CMe2 derived from bis(phenol-A) and two equivalents of phenol. This molecule reflects a subunit of a typical polycarbonate derived from bis(phenol-A).

Carbonate esters have planar OC(OC)2 cores, which confer rigidity. The unique O=C bond is short (1.173 Å in the depicted example), while the C-O bonds are more ether-like (the bond distances of 1.326 Å for the example depicted). Polycarbonates received their name because they are polymers containing carbonate groups (−O−(C=O)−O−). A balance of useful features, including temperature resistance, impact resistance and optical properties, positions polycarbonates between commodity plastics and engineering plastics.

Production

Phosgene route

The main polycarbonate material is produced by the reaction of bisphenol A (BPA) and phosgene COCl
2
. The overall reaction can be written as follows:

Polycarbonatsynthese.svg

The first step of the synthesis involves treatment of bisphenol A with sodium hydroxide, which deprotonates the hydroxyl groups of the bisphenol A. [6]

(HOC6H4)2CMe2 + 2 NaOH → Na2(OC6H4)2CMe2 + 2 H2O

The diphenoxide (Na2(OC6H4)2CMe2) reacts with phosgene to give a chloroformate, which subsequently is attacked by another phenoxide. The net reaction from the diphenoxide is:

Na2(OC6H4)2CMe2 + COCl2 → 1/n [OC(OC6H4)2CMe2]n + 2 NaCl

In this way, approximately one billion kilograms of polycarbonate is produced annually. Many other diols have been tested in place of bisphenol A, e.g. 1,1-bis(4-hydroxyphenyl)cyclohexane and dihydroxybenzophenone. The cyclohexane is used as a comonomer to suppress crystallisation tendency of the BPA-derived product. Tetrabromobisphenol A is used to enhance fire resistance. Tetramethylcyclobutanediol has been developed as a replacement for BPA. [6]

Transesterification route

An alternative route to polycarbonates entails transesterification from BPA and diphenyl carbonate:

(HOC6H4)2CMe2 + (C6H5O)2CO → 1/n [OC(OC6H4)2CMe2]n + 2 C6H5OH [6]

Properties and processing

Polycarbonate is a durable material. Although it has high impact-resistance, it has low scratch-resistance. Therefore, a hard coating is applied to polycarbonate eyewear lenses and polycarbonate exterior automotive components. The characteristics of polycarbonate compare to those of polymethyl methacrylate (PMMA, acrylic), but polycarbonate is stronger and will hold up longer to extreme temperature. Thermally processed material is usually totally amorphous, [7] and as a result is highly transparent to visible light, with better light transmission than many kinds of glass.

Polycarbonate has a glass transition temperature of about 147 °C (297 °F), [8] so it softens gradually above this point and flows above about 155 °C (311 °F). [9] Tools must be held at high temperatures, generally above 80 °C (176 °F) to make strain-free and stress-free products. Low molecular mass grades are easier to mold than higher grades, but their strength is lower as a result. The toughest grades have the highest molecular mass, but are more difficult to process.

Unlike most thermoplastics, polycarbonate can undergo large plastic deformations without cracking or breaking. As a result, it can be processed and formed at room temperature using sheet metal techniques, such as bending on a brake. Even for sharp angle bends with a tight radius, heating may not be necessary. This makes it valuable in prototyping applications where transparent or electrically non-conductive parts are needed, which cannot be made from sheet metal. PMMA/Acrylic, which is similar in appearance to polycarbonate, is brittle and cannot be bent at room temperature.

Main transformation techniques for polycarbonate resins:

Polycarbonate may become brittle when exposed to ionizing radiation above 25 kGy (kJ/kg). [10]

A bottle made from polycarbonate Polycarbonate water bottle.JPG
A bottle made from polycarbonate

Applications

Electronic components

Polycarbonate is mainly used for electronic applications that capitalize on its collective safety features. A good electrical insulator with heat-resistant and flame-retardant properties, it is used in products associated with power systems and telecommunications hardware. It can serve as a dielectric in high-stability capacitors. [6] Commercial manufacture of polycarbonate capacitors mostly stopped after sole manufacturer Bayer AG stopped making capacitor-grade polycarbonate film at the end of 2000. [11] [12]

Construction materials

Polycarbonate sheeting in a greenhouse Polycarbonate Greenhouse-00.jpg
Polycarbonate sheeting in a greenhouse

The second largest consumer of polycarbonates is the construction industry, e.g. for domelights, flat or curved glazing, roofing sheets and sound walls. Polycarbonates are used to create materials used in buildings that must be durable but light.

3D Printing

Polycarbonates are used extensively in 3D FDM printing, producing durable strong plastic products with a high melting point. Polycarbonate is relatively difficult for casual hobbyists to print compared to thermoplastics such as Polylactic acid (PLA) or Acrylonitrile butadiene styrene (ABS) because of the high melting point, difficulty with print bed adhesion, tendency to warp during printing, and tendency to absorb moisture in humid environments. Despite these issues, 3D printing using polycarbonates is common in the professional community.

Data storage

A major polycarbonate market is the production of compact discs, DVDs, and Blu-ray discs. [13] These discs are produced by injection-molding polycarbonate into a mold cavity that has on one side a metal stamper containing a negative image of the disc data, while the other mold side is a mirrored surface. Typical products of sheet/film production include applications in advertisement (signs, displays, poster protection). [6]

Automotive, aircraft, and security components

In the automotive industry, injection-molded polycarbonate can produce very smooth surfaces that make it well-suited for sputter deposition or evaporation deposition of aluminium without the need for a base-coat. Decorative bezels and optical reflectors are commonly made of polycarbonate. Its low weight and high impact resistance have made polycarbonate the dominant material for automotive headlamp lenses. However, automotive headlamps require outer surface coatings because of its low scratch resistance and susceptibility to ultraviolet degradation (yellowing). The use of polycarbonate in automotive applications is limited to low stress applications. Stress from fasteners, plastic welding and molding render polycarbonate susceptible to stress corrosion cracking when it comes in contact with certain accelerants such as salt water and plastisol. It can be laminated to make bullet-proof "glass", although "bullet-resistant" is more accurate for the thinner windows, such as are used in bullet-resistant windows in automobiles. The thicker barriers of transparent plastic used in teller's windows and barriers in banks are also polycarbonate.

So-called "theft-proof" large plastic packaging for smaller items, which cannot be opened by hand, is typically made from polycarbonate.

Lockheed Martin F-22 cockpit canopy F-22 Raptor and pilot at Marine Corps Air Station Miramar 25 Jun 2010.jpg
Lockheed Martin F-22 cockpit canopy

The cockpit canopy of the Lockheed Martin F-22 Raptor jet fighter is fabricated from high optical quality polycarbonate. It is the largest item of its type. [14] [15]

Niche applications

Polycarbonate, being a versatile material with attractive processing and physical properties, has attracted myriad smaller applications. The use of injection molded drinking bottles, glasses and food containers is common, but the use of BPA in the manufacture of polycarbonate has stirred concerns (see Potential hazards in food contact applications), leading to development and use of "BPA-free" plastics in various formulations.

Laboratory safety goggles Laboratory protection goggles-blue.jpg
Laboratory safety goggles

Polycarbonate is commonly used in eye protection, as well as in other projectile-resistant viewing and lighting applications that would normally indicate the use of glass, but require much higher impact-resistance. Polycarbonate lenses also protect the eye from UV light. Many kinds of lenses are manufactured from polycarbonate, including automotive headlamp lenses, lighting lenses, sunglass/eyeglass lenses, swimming goggles and SCUBA masks, and safety glasses/goggles/visors including visors in sporting helmets/masks and police riot gear (helmet visors, riot shields, etc.). Windscreens in small motorized vehicles are commonly made of polycarbonate, such as for motorcycles, ATVs, golf carts, and small airplanes and helicopters.

The light weight of polycarbonate as opposed to glass has led to development of electronic display screens that replace glass with polycarbonate, for use in mobile and portable devices. Such displays include newer e-ink and some LCD screens, though CRT, plasma screen and other LCD technologies generally still require glass for its higher melting temperature and its ability to be etched in finer detail.

As more and more governments are restricting the use of glass in pubs and clubs due to the increased incidence of glassings, polycarbonate glasses are becoming popular for serving alcohol because of their strength, durability, and glass-like feel. [16] [17]

Lamy 2000 piston filler made of polycarbonate and stainless steel, launched in 1966 and still in production Lamy 2000 fountain pen, EF semi hooded nib.jpg
Lamy 2000 piston filler made of polycarbonate and stainless steel, launched in 1966 and still in production


Other miscellaneous items include durable, lightweight luggage, MP3/digital audio player cases, ocarinas, computer cases, riot shields, instrument panels, tealight candle containers and food blender jars. Many toys and hobby items are made from polycarbonate parts, like fins, gyro mounts, and flybar locks in radio-controlled helicopters, [18] and transparent LEGO (ABS is used for opaque pieces). [19]

Standard polycarbonate resins are not suitable for long term exposure to UV radiation. To overcome this, the primary resin can have UV stabilisers added. These grades are sold as UV stabilized polycarbonate to injection moulding and extrusion companies. Other applications, including polycarbonate sheets, may have the anti-UV layer added as a special coating or a coextrusion for enhanced weathering resistance.

Polycarbonate is also used as a printing substrate for nameplate and other forms of industrial grade under printed products. The polycarbonate provides a barrier to wear, the elements, and fading.

Medical applications

Many polycarbonate grades are used in medical applications and comply with both ISO 10993-1 and USP Class VI standards (occasionally referred to as PC-ISO). Class VI is the most stringent of the six USP ratings. These grades can be sterilized using steam at 120 °C, gamma radiation, or by the ethylene oxide (EtO) method. [20] Trinseo strictly limits all its plastics with regard to medical applications. [21] [22] Aliphatic polycarbonates have been developed with improved biocompatibility and degradability for nanomedicine applications. [23]

Mobile phones

Some smartphone manufacturers use polycarbonate. Nokia used polycarbonate in their phones starting with the N9's unibody case in 2011. This practice continued with various phones in the Lumia series. Samsung started using polycarbonate with Galaxy S III's hyperglaze-branded removable battery cover in 2012. This practice continues with various phones in the Galaxy series. Apple started using polycarbonate with the iPhone 5C's unibody case in 2013.

Benefits over glass and metal back covers include durability against shattering (advantage over glass), bending and scratching (advantage over metal), shock absorption, low manufacturing costs, and no interference with radio signals and wireless charging (advantage over metal). [24] Polycarbonate back covers are available in glossy or matte surface textures. [24]

History

Polycarbonates were first discovered in 1898 by Alfred Einhorn, a German scientist working at the University of Munich. [25] However, after 30 years' laboratory research, this class of materials was abandoned without commercialization. Research resumed in 1953, when Hermann Schnell at Bayer in Uerdingen, Germany patented the first linear polycarbonate. The brand name "Makrolon" was registered in 1955. [26]

Also in 1953, and one week after the invention at Bayer, Daniel Fox at General Electric (GE) in Pittsfield, Massachusetts, independently synthesized a branched polycarbonate. Both companies filed for U.S. patents in 1955, and agreed that the company lacking priority would be granted a license to the technology. [27] [28]

Patent priority was resolved in Bayer's favor, and Bayer began commercial production under the trade name Makrolon in 1958. GE began production under the name Lexan in 1960, creating the GE Plastics division in 1973. [29]

After 1970, the original brownish polycarbonate tint was improved to "glass-clear".

Potential hazards in food contact applications

The use of polycarbonate containers for the purpose of food storage is controversial. The basis of this controversy is their hydrolysis (degradation by water, often referred to as leaching) occurring at high temperature, releases bisphenol A:

1/n [OC(OC6H4)2CMe2]n + H2O → (HOC6H4)2CMe2 + CO2

More than 100 studies have explored the bioactivity of bisphenol A derived from polycarbonates. Bisphenol A appeared to be released from polycarbonate animal cages into water at room temperature and it may have been responsible for enlargement of the reproductive organs of female mice. [30] However, the animal cages used in the research were fabricated from industrial grade polycarbonate, rather than FDA food grade polycarbonate.

An analysis of the literature on bisphenol A leachate low-dose effects by vom Saal and Hughes published in August 2005 seems to have found a suggestive correlation between the source of funding and the conclusion drawn. Industry-funded studies tend to find no significant effects whereas government-funded studies tend to find significant effects. [31]

Sodium hypochlorite bleach and other alkali cleaners catalyze the release of the bisphenol A from polycarbonate containers. [32] [33] Polycarbonate is incompatible with ammonia and acetone. Alcohol is a recommended organic solvent for cleaning grease and oils from polycarbonate.

Environmental impact

Disposal

Studies have shown that at temperatures above 70 °C, and high humidity, polycarbonate will hydrolyze to bisphenol A (BPA). After about 30 days at 85 °C/96% RH, surface crystals are formed which for 70% consisted of BPA. [34] BPA is a compound that is currently on the list of potential environmental hazardous chemicals. It is on the watch list of many countries, such as United States and Germany. [35]

-(-OC6H4)2C(CH3)2CO-)-n + H2O → (CH3)2C(C6H4OH)2 + CO2

The leaching of BPA from polycarbonate can also occur at environmental temperature and normal pH (in landfills).The amount of leaching increases as the polycarbonate parts get older. A study found that the decomposition of BPA in landfills (under anaerobic conditions) will not occur. [35] It will therefore be persistent in landfills. Eventually, it will find its way into water bodies and contribute to aquatic pollution. [35] [36]

Photo-oxidation of polycarbonate

In the presence of UV light, oxidation of this polymer yields compounds such as ketones, phenols, o-phenoxybenzoic acid, benzyl alcohol and other unsaturated compounds. This has been suggested through kinetic and spectral studies. The yellow color formed after long exposure to sun can also be related to further oxidation of phenolic end group [37]

(OC6H4)2C(CH3)2CO )n + O2 , R* → (OC6H4)2C(CH3CH2)CO)n

This product can be further oxidized to form smaller unsaturated compounds. This can proceed via two different pathways, the products formed depends on which mechanism takes place. [38]

Pathway A

(OC6H4)2C(CH3CH2)CO + O2, H* HO(OC6H4)OCO + CH3COCH2(OC6H4)OCO

Pathway B

(OC6H4)2C(CH3CH2)CO)n + O2, H* OCO(OC6H4)CH2OH + OCO(OC6H4)COCH3

Photo-aging reaction

Photo-aging is another degradation route for polycarbonates. Polycarbonate molecules (such as the aromatic ring) absorb UV radiation. This absorbed energy causes cleavage of covalent bonds which initiates the photo-aging process. The reaction can be propagated via side chain oxidation, ring oxidation or photo-Fries rearrangement. Products formed include phenyl salicylate, dihydroxybenzophenone groups, and hydroxydiphenyl ether groups. [37] [39] [40]

(C16H14O3)n C16H17O3 + C13H10O3

Thermal degradation

Waste polycarbonate will degrade at high temperatures to form solid, liquid and gaseous pollutants. A study showed that the products were about 40–50 wt.% liquid, 14–16 wt.% gases, while 34–43 wt.% remained as solid residue. Liquid products contained mainly phenol derivatives (~75wt.%) and bisphenol (~10wt.%) also present. [39] Polycarbonate, however, can be safely used as a carbon source in the steel-making industry. [41]

Phenol derivatives are environmental pollutants, classified as volatile organic compounds (VOC). Studies show they are likely to facilitate ground level ozone formation and increase photo-chemical smog. [42] In aquatic bodies, they can potentially accumulate in organisms. They are persistent in landfills, do not readily evaporate and would remain in the atmosphere. [43]

Effect of fungi

In 2001 a species of fungus in Belize, Geotrichum candidum , was found to consume the polycarbonate found in compact discs (CD). [44] This has prospects for bioremediation. However, this effect has not been reproduced.

See also

Related Research Articles

<span class="mw-page-title-main">Poly(methyl methacrylate)</span> Transparent thermoplastic, commonly called acrylic

Poly(methyl methacrylate) (PMMA) is the synthetic polymer derived from methyl methacrylate. It is used as an engineering plastic, and it is a transparent thermoplastic. PMMA is also known as acrylic, acrylic glass, as well as by the trade names and brands Crylux, Hesalite, Plexiglas, Acrylite, Lucite, and Perspex, among several others. This plastic is often used in sheet form as a lightweight or shatter-resistant alternative to glass. It can also be used as a casting resin, in inks and coatings, and for many other purposes.

<span class="mw-page-title-main">Thermoplastic</span> Plastic that softens with heat and hardens on cooling

A thermoplastic, or thermosoftening plastic, is any plastic polymer material that becomes pliable or moldable at a certain elevated temperature and solidifies upon cooling.

<span class="mw-page-title-main">Epoxy</span> Type of material

Epoxy is the family of basic components or cured end products of epoxy resins. Epoxy resins, also known as polyepoxides, are a class of reactive prepolymers and polymers which contain epoxide groups. The epoxide functional group is also collectively called epoxy. The IUPAC name for an epoxide group is an oxirane.

<span class="mw-page-title-main">Acrylonitrile butadiene styrene</span> Thermoset polymer

Acrylonitrile butadiene styrene (ABS) (chemical formula (C8H8)x·​(C4H6)y·​(C3H3N)z ) is a common thermoplastic polymer. Its glass transition temperature is approximately 105 °C (221 °F). ABS is amorphous and therefore has no true melting point.

<span class="mw-page-title-main">Polymer degradation</span> Alteration in the polymer properties under the influence of environmental factors

Polymer degradation is the reduction in the physical properties of a polymer, such as strength, caused by changes in its chemical composition. Polymers and particularly plastics are subject to degradation at all stages of their product life cycle, including during their initial processing, use, disposal into the environment and recycling. The rate of this degradation varies significantly; biodegradation can take decades, whereas some industrial processes can completely decompose a polymer in hours.

<span class="mw-page-title-main">Nalgene</span> Brand of plastic products

Nalgene is a brand of plastic products developed originally for laboratory use, including items such as jars, bottles, test tubes, and Petri dishes, that were shatterproof and lighter than glass. The properties of plastic products make them suitable for work with many substances in various temperature ranges.

<span class="mw-page-title-main">Plasticizer</span> Substance added to a material to make it softer and more flexible

A plasticizer is a substance that is added to a material to make it softer and more flexible, to increase its plasticity, to decrease its viscosity, and/or to decrease friction during its handling in manufacture.

<span class="mw-page-title-main">Bisphenol A</span> Chemical compound used in plastics manufacturing

Bisphenol A (BPA) is a chemical compound primarily used in the manufacturing of various plastics. It is a colourless solid which is soluble in most common organic solvents, but has very poor solubility in water. BPA is produced on an industrial scale by the condensation reaction of phenol and acetone. Global production in 2022 was estimated to be in the region of 10 million tonnes.

<span class="mw-page-title-main">High-density polyethylene</span> Class of polyethylenes

High-density polyethylene (HDPE) or polyethylene high-density (PEHD) is a thermoplastic polymer produced from the monomer ethylene. It is sometimes called "alkathene" or "polythene" when used for HDPE pipes. With a high strength-to-density ratio, HDPE is used in the production of plastic bottles, corrosion-resistant piping, geomembranes and plastic lumber. HDPE is commonly recycled, and has the number "2" as its resin identification code.

<span class="mw-page-title-main">CR-39</span> Plastic

Poly(allyl diglycol carbonate) (PADC) is a plastic commonly used in the manufacture of eyeglass lenses alongside the material PMMA (polymethyl methacrylate). The monomer is allyl diglycol carbonate (ADC). The term CR-39 technically refers to the ADC monomer, but is more commonly used to refer to the finished plastic.

Polysulfones are a family of high performance thermoplastics. These polymers are known for their toughness and stability at high temperatures. Technically used polysulfones contain an aryl-SO2-aryl subunit. Due to the high cost of raw materials and processing, polysulfones are used in specialty applications and often are a superior replacement for polycarbonates.

<span class="mw-page-title-main">Polyester</span> Category of polymers, in which the monomers are joined together by ester links

Polyester is a category of polymers that contain the ester functional group in every repeat unit of their main chain. As a specific material, it most commonly refers to a type called polyethylene terephthalate (PET). Polyesters include naturally occurring chemicals, such as in plants and insects, as well as synthetics such as polybutyrate. Natural polyesters and a few synthetic ones are biodegradable, but most synthetic polyesters are not. Synthetic polyesters are used extensively in clothing.

Coated paper is paper that has been coated by a mixture of materials or a polymer to impart certain qualities to the paper, including weight, surface gloss, smoothness, or reduced ink absorbency. Various materials, including kaolinite, calcium carbonate, bentonite, and talc, can be used to coat paper for high-quality printing used in the packaging industry and in magazines.

<span class="mw-page-title-main">Cyclic olefin copolymer</span> Chemical compound

Cyclic olefin copolymer (COC) is an amorphous polymer made by several polymer manufacturers. COC is a relatively new class of polymers as compared to commodities such as polypropylene and polyethylene. This newer material is used in a wide variety of applications including packaging films, lenses, vials, displays, and medical devices.

<span class="mw-page-title-main">Plastic bottle</span> Narrow-necked container

A plastic bottle is a bottle constructed from high-density or low density plastic. Plastic bottles are typically used to store liquids such as water, soft drinks, motor oil, cooking oil, medicine, shampoo, milk, and ink. The size ranges from very small bottles to large carboys. Consumer blow molded containers often have integral handles or are shaped to facilitate grasping.

<span class="mw-page-title-main">Filler (materials)</span> Particles added to improve its properties

Filler materials are particles added to resin or binders that can improve specific properties, make the product cheaper, or a mixture of both. The two largest segments for filler material use is elastomers and plastics. Worldwide, more than 53 million tons of fillers are used every year in application areas such as paper, plastics, rubber, paints, coatings, adhesives, and sealants. As such, fillers, produced by more than 700 companies, rank among the world's major raw materials and are contained in a variety of goods for daily consumer needs. The top filler materials used are ground calcium carbonate (GCC), precipitated calcium carbonate (PCC), kaolin, talc, and carbon black. Filler materials can affect the tensile strength, toughness, heat resistance, color, clarity, etc. A good example of this is the addition of talc to polypropylene. Most of the filler materials used in plastics are mineral or glass based filler materials. Particulates and fibers are the main subgroups of filler materials. Particulates are small particles of filler that are mixed in the matrix where size and aspect ratio are important. Fibers are small circular strands that can be very long and have very high aspect ratios.

Polymer engineering is generally an engineering field that designs, analyses, and modifies polymer materials. Polymer engineering covers aspects of the petrochemical industry, polymerization, structure and characterization of polymers, properties of polymers, compounding and processing of polymers and description of major polymers, structure property relations and applications.

Polymer stabilizers are chemical additives which may be added to polymeric materials, such as plastics and rubbers, to inhibit or retard their degradation. Common polymer degradation processes include oxidation, UV-damage, thermal degradation, ozonolysis, combinations thereof such as photo-oxidation, as well as reactions with catalyst residues, dyes, or impurities. All of these degrade the polymer at a chemical level, via chain scission, uncontrolled recombination and cross-linking, which adversely affects many key properties such as strength, malleability, appearance and colour.

<span class="mw-page-title-main">Twinwall plastic</span>

Twin-wall plastic, specifically twin-wall polycarbonate, is an extruded multi-wall polymer product created for applications where its strength, thermally insulative properties, and moderate cost are ideal. Polycarbonate, which is most commonly formed through the reaction of Bisphenol A and Carbonyl Chloride, is an extremely versatile material. It is significantly lighter than glass, while managing to be stronger, more flexible, and more impact resistant. Twin-wall polycarbonate is used most commonly for green houses, where it can support itself in a structurally sound configuration, limit the amount of UV light due to its nominal translucence, and can withstand the rigors of daily abuse in an outdoor environment. The stagnant air in the cellular space between sheets provides insulation, and additional cell layers can be extruded to enhance insulative properties at the cost of light transmission.

<span class="mw-page-title-main">Plastic</span> Material of a wide range of synthetic or semi-synthetic organic solids

Plastics are a wide range of synthetic or semi-synthetic materials that use polymers as a main ingredient. Their plasticity makes it possible for plastics to be moulded, extruded or pressed into solid objects of various shapes. This adaptability, plus a wide range of other properties, such as being lightweight, durable, flexible, and inexpensive to produce, has led to its widespread use. Plastics typically are made through human industrial systems. Most modern plastics are derived from fossil fuel-based chemicals like natural gas or petroleum; however, recent industrial methods use variants made from renewable materials, such as corn or cotton derivatives.

References

  1. "Lexan sheet technical manual" (PDF). SABIC. 2009. Archived from the original (PDF) on 2015-03-16. Retrieved 2015-07-18.
  2. Parvin, M. & Williams, J. G. (1975). "The effect of temperature on the fracture of polycarbonate". Journal of Materials Science. 10 (11): 1883. Bibcode:1975JMatS..10.1883P. doi:10.1007/BF00754478. S2CID   135645940.
  3. Blumm, J.; Lindemann, A. (2003). "Characterization of the thermophysical properties of molten polymers and liquids using the flash technique" (PDF). High Temperatures – High Pressures. 35/36 (6): 627. doi:10.1068/htjr144.
  4. CES Edupack 2010, Polycarbonate (PC) specs sheet
  5. Perez, Serge; Scaringe, Raymond P. (1987). "Crystalline features of 4,4'-isopropylidenediphenylbis(phenyl carbonate) and conformational analysis of the polycarbonate of 2,2-bis(4-hydroxyphenyl)propane". Macromolecules. 20 (1): 68–77. Bibcode:1987MaMol..20...68P. doi:10.1021/ma00167a014.
  6. 1 2 3 4 5 Volker Serini "Polycarbonates" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2000. doi : 10.1002/14356007.a21_207
  7. Djurner, K.; M??nson, J-A.; Rigdahl, M. (1978). "Crystallization of polycarbonate during injection molding at high pressures". Journal of Polymer Science: Polymer Letters Edition. 16 (8): 419–424. Bibcode:1978JPoSL..16..419D. doi:10.1002/pol.1978.130160806. ISSN   0360-6384.
  8. Answers to Common Questions about Bayer Polycarbonate Resins. bayermaterialsciencenafta.com
  9. "Polycarbonate". city plastics. Archived from the original on 2018-10-16. Retrieved 2013-12-18.
  10. David W. Plester (1973). "The Effects of Radiation Sterilization on Plastics" (PDF). Sterilization Technology. p. 149. S2CID   18798850. Archived from the original (PDF) on 2015-05-12. Polycarbonate can satisfactorily be given a single-dose sterilization exposure (22) but tends to become brittle much above 2.5 Mrad.
  11. "Film". execpc.com. Archived from the original on 2023-03-09. Retrieved 2012-07-19.
  12. "WIMA". wima.com. Archived from the original on June 12, 2017.
  13. "Is this the end of owning music?". BBC News. 3 January 2019.
  14. Egress technicians keep raptor pilots covered. Pacaf.af.mil. Retrieved on 2011-02-26.
  15. Emsley, John (9 November 2015). A Healthy, Wealthy, Sustainable World. Royal Society of Chemistry. p. 119. ISBN   978-1-78262-589-6 . Retrieved 1 October 2023.
  16. Alcohol restrictions for violent venues. State of New South Wales (Office of Liquor, Gaming & Racing)
  17. Ban on regular glass in licensed premises. The State of Queensland (Department of Justice and Attorney-General)
  18. "RDLohr's Clearly Superior Products" (PDF). wavelandps.com. Archived from the original (PDF) on 1 April 2010.
  19. Linda Jablanski (2015-03-31). "Which Plastic Material is Used in Lego Sets?". Archived from the original on 2017-03-05.{{cite web}}: CS1 maint: unfit URL (link)
  20. Powell, Douglas G. (September 1998). "Medical Applications of Polycarbonate". Medical Plastics and Biomaterials Magazine. Archived from the original on 23 February 1999.
  21. "Dow Plastics Medical Application Policy". Plastics.dow.com. Archived from the original on February 9, 2010.
  22. "Makrolon Polycarbonate Biocompatibility Grades". Archived from the original on 2013-04-10. Retrieved 2007-04-14.
  23. Chan, Julian M. W.; Ke, Xiyu; Sardon, Haritz; Engler, Amanda C.; Yang, Yi Yan; Hedrick, James L. (2014). "Chemically Modifiable N-Heterocycle-Functionalized Polycarbonates as a Platform for Diverse Smart Biomimetic Nanomaterials". Chemical Science. 5 (8): 3294–3300. doi:10.1039/C4SC00789A.
  24. 1 2 "Build materials: metal vs glass vs plastic". Android Authority. 19 July 2018.
  25. "Polycarbonate (PC)". UL Prospector. Retrieved 5 May 2014.
  26. Philip Kotler; Waldemar Pfoertsch (17 May 2010). Ingredient Branding: Making the Invisible Visible. Springer Science & Business Media. pp. 205–. ISBN   978-3-642-04214-0.
  27. "Polycarbonate is Polyfunctional". Chemical Institute of Canada. Archived from the original on 5 May 2014. Retrieved 5 May 2014.
  28. Jerome T. Coe (27 August 2010). "Lexan Polycarbonate: 1953–1968". Unlikely Victory: How General Electric Succeeded in the Chemical Industry. John Wiley & Sons. pp. 71–77. ISBN   978-0-470-93547-7.
  29. "General Electric to Sell Plastics Division". NY Times. 2007-05-22. Retrieved 2020-07-21.
  30. Howdeshell, KL; Peterman PH; Judy BM; Taylor JA; Orazio CE; Ruhlen RL; Vom Saal FS; Welshons WV (2003). "Bisphenol A is released from used polycarbonate animal cages into water at room temperature". Environmental Health Perspectives. 111 (9): 1180–7. doi:10.1289/ehp.5993. PMC   1241572 . PMID   12842771.
  31. vom Saal FS, Hughes C (2005). "An extensive new literature concerning low-dose effects of bisphenol A shows the need for a new risk assessment". Environ. Health Perspect. 113 (8): 926–33. doi:10.1289/ehp.7713. PMC   1280330 . PMID   16079060.
  32. Hunt, PA; Kara E. Koehler; Martha Susiarjo; Craig A. Hodges; Arlene Ilagan; Robert C. Voigt; Sally Thomas; Brian F. Thomas; Terry J. Hassold (2003). "Bisphenol A Exposure Causes Meiotic Aneuploidy in the Female Mouse". Current Biology. 13 (7): 546–553. doi: 10.1016/S0960-9822(03)00189-1 . PMID   12676084. S2CID   10168552.
  33. Koehler, KE; Robert C. Voigt; Sally Thomas; Bruce Lamb; Cheryl Urban; Terry Hassold; Patricia A. Hunt (2003). "When disaster strikes: rethinking caging materials". Lab Animal. 32 (4): 24–27. doi:10.1038/laban0403-24. PMID   19753748. S2CID   37343342. Archived from the original on 2009-07-06. Retrieved 2008-05-06.
  34. Bair, H. E.; Falcone, D. R.; Hellman, M. Y.; Johnson, G. E.; Kelleher, P. G. (1981-06-01). "Hydrolysis of polycarbonate to yield BPA". Journal of Applied Polymer Science. 26 (6): 1777. doi:10.1002/app.1981.070260603.
  35. 1 2 3 Morin, Nicolas; Arp, Hans Peter H.; Hale, Sarah E. (July 2015). "Bisphenol A in Solid Waste Materials, Leachate Water, and Air Particles from Norwegian Waste-Handling Facilities: Presence and Partitioning Behavior". Environmental Science & Technology. 49 (13): 7675–7683. Bibcode:2015EnST...49.7675M. doi:10.1021/acs.est.5b01307. PMID   26055751.
  36. Chin, Yu-Ping; Miller, Penney L.; Zeng, Lingke; Cawley, Kaelin; Weavers, Linda K. (November 2004). "Photosensitized Degradation of Bisphenol A by Dissolved Organic Matter †". Environmental Science & Technology. 38 (22): 5888–5894. Bibcode:2004EnST...38.5888C. doi:10.1021/es0496569. PMID   15573586.
  37. 1 2 Chow, Jimmy T. (2007-08-06). Environmental assessment for bisphenol-a and polycarbonate (Master thesis). Kansas State University. hdl: 2097/368 .
  38. Carroccio, Sabrina; Puglisi, Concetto; Montaudo, Giorgio (2002). "Mechanisms of Thermal Oxidation of Poly(bisphenol A carbonate)". Macromolecules. 35 (11): 4297–4305. Bibcode:2002MaMol..35.4297C. doi:10.1021/ma012077t.
  39. 1 2 Collin, S.; Bussière, P. -O.; Thérias, S.; Lambert, J. -M.; Perdereau, J.; Gardette, J. -L. (2012-11-01). "Physicochemical and mechanical impacts of photo-ageing on bisphenol a polycarbonate". Polymer Degradation and Stability. 97 (11): 2284–2293. doi:10.1016/j.polymdegradstab.2012.07.036.
  40. Tjandraatmadja, G. F.; Burn, L. S.; Jollands, M. J. (1999). "The effects of ultraviolet radiation on polycarbonate glazing" (PDF).
  41. Assadi, M. Hussein N.; Sahajwalla, V. (2014). "Recycling End-of-Life Polycarbonate in Steelmaking: Ab Initio Study of Carbon Dissolution in Molten Iron". Ind. Eng. Chem. Res. 53 (10): 3861–3864. arXiv: 2204.08706 . doi:10.1021/ie4031105. S2CID   101308914.
  42. "Pollution Database". pollution.unibuc.ro. Archived from the original on 2017-12-29. Retrieved 2016-11-14.
  43. "Pollutant Fact Sheet". apps.sepa.org.uk. Archived from the original on 2017-01-09. Retrieved 2016-11-14.
  44. Bosch, Xavier (2001-06-27). "Fungus eats CD". Nature News. doi:10.1038/news010628-11.