Polyoxymethylene

Last updated
Polyoxymethylene
Polyoxymethylene.svg
Polyoxymethylene 3D spacefill.png
Names
Other names
Poly(oxymethylene) glycol; polymethylene glycol
Identifiers
ChemSpider
  • None
UNII
Properties
(CH2O)n
Molar mass Variable
AppearanceWhite solid (but can be dyed)
Density 1.41–1.42 g/cm3 [1]
Melting point 165 °C (329 °F) [2]
Electrical resistivity 14×1015 Ω⋅cm [2]
−9.36×10−6 (SI, at 22 °C) [3]
Thermochemistry
1500 J/kg·K [2]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)
Keck clips made of polyoxymethylene Keck clips.jpg
Keck clips made of polyoxymethylene

Polyoxymethylene (POM), also known as acetal, [4] polyacetal, and polyformaldehyde, is an engineering thermoplastic used in precision parts requiring high stiffness, low friction, and excellent dimensional stability. Short-chained POM (chain length between 8 and 100 repeating units) is also better known as paraformaldehyde (PFA). As with many other synthetic polymers, polyoxymethylenes are produced by different chemical firms with slightly different formulas and sold as Delrin, Kocetal, Ultraform, Celcon, Ramtal, Duracon, Kepital, Polypenco, Tenac and Hostaform.

Contents

POM is characterized by its high strength, hardness and rigidity to −40 °C. POM is intrinsically opaque white because of its high crystalline composition but can be produced in a variety of colors. [1] POM has a density of 1.410–1.420 g/cm3. [5]

Typical applications for injection-molded POM include high-performance engineering components such as small gear wheels, eyeglass frames, ball bearings, ski bindings, fasteners, gun parts, knife handles, and lock systems. The material is widely used in the automotive and consumer electronics industry. POM's electrical resistivity is 14×1015 Ω⋅cm making it a dielectric with a 19.5MV/m breakdown voltage. [2] [6]

Development

Polyoxymethylene was discovered by Hermann Staudinger, a German chemist who received the 1953 Nobel Prize in Chemistry. [7] He had studied the polymerization and structure of POM in the 1920s while researching macromolecules, which he characterized as polymers. Due to problems with thermostability, POM was not commercialized at that time. [8]

Circa 1952, research chemists at DuPont synthesized a version of POM, [9] and in 1956 the company filed for patent protection of the homopolymer, [10] forgetting to mention in the patent the term copolymer, opening thus the road to competitors. DuPont credits R. N. MacDonald as the inventor of high-molecular-weight POM. [11] Patents by MacDonald and coworkers describe the preparation of high-molecular-weight hemiacetal-terminated (~O−CH2OH) POM, [12] but these lack sufficient thermal stability to be commercially viable. The inventor of a heat-stable (and therefore useful) POM homopolymer was Stephen Dal Nogare, [13] who discovered that reacting the hemiacetal ends with acetic anhydride converts the readily depolymerizable hemiacetal into a thermally stable, melt-processable plastic.

In 1960, DuPont completed construction of a plant to produce its own version of acetal resin, named Delrin, at Parkersburg, United States. [14] Also in 1960, Celanese completed its own research. Shortly thereafter, in a limited partnership with the Frankfurt firm Hoechst AG, a factory was built in Kelsterbach, Hessen; from there, Celcon was produced starting in 1962, [15] with Hostaform joining it a year later. Both remain in production under the auspices of Celanese and are sold as parts of a product group now called 'Hostaform/Celcon POM.

Production

Different manufacturing processes are used to produce the homopolymer and copolymer versions of POM.

Homopolymer

To make polyoxymethylene homopolymer, anhydrous formaldehyde must be generated. The principal method is by reaction of the aqueous formaldehyde with an alcohol to create a hemiformal, dehydration of the hemiformal/water mixture (either by extraction or vacuum distillation) and release of the formaldehyde by heating the hemiformal. The formaldehyde is then polymerized by anionic catalysis, and the resulting polymer stabilized by reaction with acetic anhydride. Due to the manufacturing process, large-diameter cross-sections may have pronounced centerline porosity. [16] A typical example is DuPont's Delrin.

Copolymer

The polyoxymethylene copolymer replaces about 1–1.5% of the −CH2O− groups with −CH2CH2O−. [17]

To make polyoxymethylene copolymer, formaldehyde is generally converted to trioxane (specifically 1,3,5-trioxane, also known as trioxin). [18] This is done by acid catalysis (either sulfuric acid or acidic ion-exchange resins) followed by purification of the trioxane by distillation and/or extraction to remove water and other active hydrogen-containing impurities. Typical copolymers are Hostaform from Celanese and Ultraform from BASF.

The co-monomer is typically dioxolane, but ethylene oxide can also be used. Dioxolane is formed by reaction of ethylene glycol with aqueous formaldehyde over an acid catalyst. Other diols can also be used.

Trioxane and dioxolane are polymerized using an acid catalyst, often boron trifluoride etherate, BF3OEt2. The polymerization can take place in a non-polar solvent (in which case the polymer forms as a slurry) or in neat trioxane (e.g. in an extruder). After polymerization, the acidic catalyst must be deactivated and the polymer stabilized by melt or solution hydrolysis to remove unstable end groups.

Stable polymer is melt-compounded, adding thermal and oxidative stabilizers and optionally lubricants and miscellaneous fillers.

Fabrication

POM is supplied in a granulated form and can be formed into the desired shape by applying heat and pressure. [19] The two most common forming methods employed are injection molding and extrusion. Rotational molding and blow molding are also possible.[ citation needed ]

Typical applications for injection-molded POM include high-performance engineering components (e.g. gear wheels, ski bindings, yoyos, fasteners, lock systems). The material is widely used in the automotive and consumer electronics industry. There are special grades that offer higher mechanical toughness, stiffness or low-friction/wear properties.

POM is commonly extruded as continuous lengths of round or rectangular section. These sections can be cut to length and sold as bar or sheet stock for machining.

Typical mechanical properties

POM is a hard plastic, that cannot be glued, but can be joined to POM by melting. Melted POM does not adhere to steel tools used to shape it. [20] [21]

Density1.41kg/dm3
Melting point165°C
Specific thermal capacity1500J/kg/K
Specific thermal conductivy0.31 to 0.37W/m/K
Coefficient of thermal expansion120 [21] ppm/K

POM is a relatively strong plastic, nearly as strong as epoxy, or aluminum, but a bit more flexible:

Propertyvalueunits
Tensile yield stress62MPa
Tensile modulus2700MPa
Elongation at yield2.5%
Tensile breaking stress67MPa
Elongation at break35%
Impact strength80kJ/m2

  POM is wear-resistant:

Propertyconditionsvalueunits
Coefficient of friction against steel0.3 m/s, 0.49 MPa0.31
Coefficient of friction against steel0.3 m/s, 0.98 MPa0.37
Specific wear against steel0.49 MPa0.65mm3/N/km
Specific wear against steel0.98 MPa0.30mm3/N/km
Coefficient of friction against POM0.15 m/s, 0.06 MPa0.37

Availability and price

POM materials can have trademarked producer-specific names, for example "Delrin".

Prices for large quantities, in October 2023, in US$/kg: [22]

Prices and availability retail / small wholesale :

Retail price November 2023 in the Netherlands : from 19 to 27 euro/dm3

Advantages and disadvantages

POM is a strong and hard plastic, about as strong as plastics can be, and therefore competes with e.g. epoxy resins and polycarbonates.

The price of POM is about the same as that of epoxy.

There are two main differences between POM and epoxy resins:

while POM can be cast when melted and adheres to practically nothing.

Epoxy resins are often used with glass fiber reinforcement, but for POM that is not an option because it does not adhere to the glass fibres.

Epoxy resins needs time to cure, while POM has fully matured as soon as it has cooled down.

POM has very little shrinkage: from 165 °C to 20 °C it shrinks by just 0.17%.

Machining

When supplied as extruded bar or sheet, POM may be machined using traditional methods such as turning, milling, drilling etc. These techniques are best employed where production economics do not merit the expense of melt processing. The material is free-cutting, but does require sharp tools with a high clearance angle. The use of soluble cutting lubricant is not necessary, but is recommended.

POM sheets can be cut cleanly and accurately using an infrared laser, such as in a CO2 laser cutter.

Because the material lacks the rigidity of most metals, care should be taken to use light clamping forces and sufficient support for the work piece.

As can be the case with many polymers, machined POM can be dimensionally unstable, especially with parts that have large variations in wall thicknesses. It is recommended that such features be "designed-out" e.g. by adding fillets or strengthening ribs. Annealing of pre-machined parts before final finishing is an alternative. A rule of thumb is that in general, small components machined in POM suffer from less warping.

Bonding

POM is typically very difficult to bond, with the copolymer typically responding worse to conventional adhesives than the homopolymer. [24] Special processes and treatments have been developed to improve bonding. Typically these processes involve surface etching, flame treatment, using a specific primer/adhesive system, or mechanical abrasion.

Typical etching processes involve chromic acid at elevated temperatures. DuPont uses a patented process for treating acetal homopolymer called satinizing that creates a surface roughness sufficient for micromechanical interlocking. There are also processes involving oxygen plasma and corona discharge. [25] [26] In order to get a high bond strength without specialized tools, treatments, or roughening, one can use Loctite 401 prism adhesive combined with Loctite 770 prism primer to get bond strengths of ~1700psi. [24]

Once the surface is prepared, a number of adhesives can be used for bonding. These include epoxies, polyurethanes, and cyanoacrylates. Epoxies have shown 150–1,050 psi (1,000–7,200 kPa) [24] shear strength. Cyanoacrylates are useful for bonding to metal, leather, rubber, cotton, and other plastics.

Solvent welding is typically unsuccessful on acetal polymers, due to the excellent solvent resistance of acetal.[ citation needed ]

Thermal welding through various methods has been used successfully on both homopolymer and copolymer. [27]

Usage

Degradation

Chlorine attack of acetal-resin plumbing joint Chlorine attack1.jpg
Chlorine attack of acetal-resin plumbing joint

Acetal resins are sensitive to acid hydrolysis and oxidation by agents such as mineral acid and chlorine. [36] POM homopolymer is also susceptible to alkaline attack and is more susceptible to degradation in hot water. Thus low levels of chlorine in potable water supplies (1–3 ppm) can be sufficient to cause environmental stress cracking, a problem experienced in both the US and Europe in domestic and commercial water supply systems. Defective mouldings are most sensitive to cracking, but normal mouldings can succumb if the water is hot. Both POM homopolymer and copolymer are stabilized to mitigate these types of degradation.

In chemistry applications, although the polymer is often suitable for the majority of glassware work, it can succumb to catastrophic failure. An example of this would be using the polymer clips on hot areas of the glassware (such as a flask-to-column, column-to-head or head-to-condenser joint during distillation). As the polymer is sensitive to both chlorine and acid hydrolysis, it may perform very poorly when exposed to the reactive gases, particularly hydrogen chloride (HCl). Failures in this latter instance can occur with seemingly unimportant exposures from well sealed joints and do so without warning and rapidly (the component will split or fall apart). This can be a significant health hazard, as the glass may open or smash. Here, PTFE or a high-grade stainless steel may be a more appropriate choice.

In addition, POM can have undesirable characteristics when burned. The flame is not self-extinguishing, shows little to no smoke, and the blue flame can be almost invisible in ambient light. Burning also releases formaldehyde gas, which irritates nose, throat, and eye tissues.

See also

Related Research Articles

<span class="mw-page-title-main">Nylon</span> Early synthetic polymer developed as a textile fibre

Nylon is a family of synthetic polymers with amide backbones, usually linking aliphatic or semi-aromatic groups.

<span class="mw-page-title-main">Polymer</span> Substance composed of macromolecules with repeating structural units

A polymer is a substance or material that consists of very large molecules, or macromolecules, that are constituted by many repeating subunits derived from one or more species of monomers. Due to their broad spectrum of properties, both synthetic and natural polymers play essential and ubiquitous roles in everyday life. Polymers range from familiar synthetic plastics such as polystyrene to natural biopolymers such as DNA and proteins that are fundamental to biological structure and function. Polymers, both natural and synthetic, are created via polymerization of many small molecules, known as monomers. Their consequently large molecular mass, relative to small molecule compounds, produces unique physical properties including toughness, high elasticity, viscoelasticity, and a tendency to form amorphous and semicrystalline structures rather than crystals.

<span class="mw-page-title-main">Acetal</span> Organic compound with the structure >C(O–)2

In organic chemistry, an acetal is a functional group with the connectivity R2C(OR')2. Here, the R groups can be organic fragments or hydrogen, while the R' groups must be organic fragments not hydrogen. The two R' groups can be equivalent to each other or not. Acetals are formed from and convertible to aldehydes or ketones and have the same oxidation state at the central carbon, but have substantially different chemical stability and reactivity as compared to the analogous carbonyl compounds. The central carbon atom has four bonds to it, and is therefore saturated and has tetrahedral geometry.

<span class="mw-page-title-main">Thermoplastic</span> Plastic that softens with heat and hardens on cooling

A thermoplastic, or ThermoSoftNingplastic, is any plastic polymer material that becomes pliable or moldable at a certain elevated temperature and solidifies upon cooling.

<span class="mw-page-title-main">Epoxy</span> Type of material

Epoxy is the family of basic components or cured end products of epoxy resins. Epoxy resins, also known as polyepoxides, are a class of reactive prepolymers and polymers which contain epoxide groups. The epoxide functional group is also collectively called epoxy. The IUPAC name for an epoxide group is an oxirane.

<span class="mw-page-title-main">Thermosetting polymer</span> Polymer obtained by irreversibly hardening (curing) a resin

In materials science, a thermosetting polymer, often called a thermoset, is a polymer that is obtained by irreversibly hardening ("curing") a soft solid or viscous liquid prepolymer (resin). Curing is induced by heat or suitable radiation and may be promoted by high pressure or mixing with a catalyst. Heat is not necessarily applied externally, and is often generated by the reaction of the resin with a curing agent. Curing results in chemical reactions that create extensive cross-linking between polymer chains to produce an infusible and insoluble polymer network.

<span class="mw-page-title-main">Phenol formaldehyde resin</span> Chemical compound

Phenol formaldehyde resins (PF) are synthetic polymers obtained by the reaction of phenol or substituted phenol with formaldehyde. Used as the basis for Bakelite, PFs were the first commercial synthetic resins. They have been widely used for the production of molded products including billiard balls, laboratory countertops, and as coatings and adhesives. They were at one time the primary material used for the production of circuit boards but have been largely replaced with epoxy resins and fiberglass cloth, as with fire-resistant FR-4 circuit board materials.

<span class="mw-page-title-main">Cross-link</span> Bonds linking one polymer chain to another

In chemistry and biology, a cross-link is a bond or a short sequence of bonds that links one polymer chain to another. These links may take the form of covalent bonds or ionic bonds and the polymers can be either synthetic polymers or natural polymers.

<span class="mw-page-title-main">Polyglycolide</span> Chemical compound

Polyglycolide or poly(glycolic acid) (PGA), also spelled as polyglycolic acid, is a biodegradable, thermoplastic polymer and the simplest linear, aliphatic polyester. It can be prepared starting from glycolic acid by means of polycondensation or ring-opening polymerization. PGA has been known since 1954 as a tough fiber-forming polymer. Owing to its hydrolytic instability, however, its use has initially been limited. Currently polyglycolide and its copolymers (poly(lactic-co-glycolic acid) with lactic acid, poly(glycolide-co-caprolactone) with ε-caprolactone and poly (glycolide-co-trimethylene carbonate) with trimethylene carbonate) are widely used as a material for the synthesis of absorbable sutures and are being evaluated in the biomedical field.

<span class="mw-page-title-main">Polyphthalamide</span> Semi-crystalline high-temperature plastic in the Nylon family

Polyphthalamide is a subset of thermoplastic synthetic resins in the polyamide (nylon) family defined as when 55% or more moles of the carboxylic acid portion of the repeating unit in the polymer chain is composed of a combination of terephthalic (TPA) and isophthalic (IPA) acids. The substitution of aliphatic diacids by aromatic diacids in the polymer backbone increases the melting point, glass transition temperature, chemical resistance and stiffness.

<span class="mw-page-title-main">Zytel</span> Trademark

Zytel is a trademark owned by Celanese and used to make different high-strength, abrasion, and impact-resistant thermoplastic polyamide formulations, in the family of material more commonly known as nylon. The Zytel product line is based mostly on nylon 66, but also includes grades based on nylon 6 as a matrix, long chain nylons such as nylon 610, and copolymers including a transparent resin called Zytel 330. Resins based on polyphthalamides are branded 'Zytel HTN'. The Zytel product range takes advantage of the fact that nylons are one of the most compatible polymers with modifiers and so offers grades with varying degrees of fiberglass, from 13% to 60%, rubber toughened resins and flame retarded grades. Nylon resins with mineral reinforcements are branded 'Minlon'.

<span class="mw-page-title-main">Paraformaldehyde</span> Chemical compound

Paraformaldehyde (PFA) is the smallest polyoxymethylene, the polymerization product of formaldehyde with a typical degree of polymerization of 8–100 units. Paraformaldehyde commonly has a slight odor of formaldehyde due to decomposition. Paraformaldehyde is a poly-acetal.

<span class="mw-page-title-main">Fluorinated ethylene propylene</span> Polymer

Fluorinated ethylene propylene (FEP) is a copolymer of hexafluoropropylene and tetrafluoroethylene. It differs from the polytetrafluoroethylene (PTFE) resins in that it is melt-processable using conventional injection molding and screw extrusion techniques. Fluorinated ethylene propylene was invented by DuPont and is sold under the brandname Teflon FEP. Other brandnames are Neoflon FEP from Daikin or Dyneon FEP from Dyneon/3M.

Synthetic resins are industrially produced resins, typically viscous substances that convert into rigid polymers by the process of curing. In order to undergo curing, resins typically contain reactive end groups, such as acrylates or epoxides. Some synthetic resins have properties similar to natural plant resins, but many do not.

Polymer engineering is generally an engineering field that designs, analyses, and modifies polymer materials. Polymer engineering covers aspects of the petrochemical industry, polymerization, structure and characterization of polymers, properties of polymers, compounding and processing of polymers and description of major polymers, structure property relations and applications.

A thermoset polymer matrix is a synthetic polymer reinforcement where polymers act as binder or matrix to secure in place incorporated particulates, fibres or other reinforcements. They were first developed for structural applications, such as glass-reinforced plastic radar domes on aircraft and graphite-epoxy payload bay doors on the Space Shuttle.

Resin casting is a method of plastic casting where a mold is filled with a liquid synthetic resin, which then hardens. It is primarily used for small-scale production like industrial prototypes and dentistry. It can be done by amateur hobbyists with little initial investment, and is used in the production of collectible toys, models and figures, as well as small-scale jewellery production.

Glass-filled polymer, is a mouldable composite material. It comprises short glass fibers in a matrix of a polymer material. It is used to manufacture a wide range of structural components by injection or compression moulding. It is an ideal glass alternative that offers flexibility in the part, chemical resistance, shatter resistance and overall better durability.

Nylon 1,6 is a type of polyamide or nylon. Unlike most other nylons, nylon 1,6 is not a condensation polymer, but instead is formed by an acid-catalyzed synthesis from adiponitrile, formaldehyde, and water. The material was produced and studied by researchers at DuPont in the 1950s. Synthesis can be performed at room temperature in open beakers.

References

  1. 1 2 "Colored Delrin" . Retrieved 12 March 2021.
  2. 1 2 3 4 "Data Sheet: POM (Delrin, Acetal)" (PDF). xometry.eu. 2021. Retrieved June 19, 2022.
  3. Wapler, M. C.; Leupold, J.; Dragonu, I.; von Elverfeldt, D.; Zaitsev, M.; Wallrabe, U. (2014). "Magnetic properties of materials for MR engineering, micro-MR and beyond". JMR. 242: 233–242. arXiv: 1403.4760 . Bibcode:2014JMagR.242..233W. doi:10.1016/j.jmr.2014.02.005. PMID   24705364. S2CID   11545416.
  4. "MatWeb:acetal".
  5. "Ticona MSDS for Hostaform". Archived from the original on 2011-05-12.
  6. Acetal (Polyoxymethylene)
  7. "The Nobel Prize in Chemistry 1953". NobelPrize.org. Retrieved 8 March 2016.
  8. Kincaid, Courtney (2018-07-06). "Acetal - Polyoxymethylene (POM) - Thermoplastic". Polymershapes. Retrieved 2024-05-13.
  9. Joseph P. Kennedy; Wayne H. Watkins (31 July 2012). How to Invent and Protect Your Invention: A Guide to Patents for Scientists and Engineers. John Wiley & Sons. pp. 194–. ISBN   978-1-118-41009-7.
  10. "A History of Plastics". British Plastics Federation. Retrieved 8 March 2016.
  11. News & Media Relations Home - DuPont EMEA [ permanent dead link ]
  12. US 2768994,Macdonald, Robert Neal,"Polyoxymethylenes",published 1956-10-30, assigned to E. I. Du Pont de Nemours and Co.
  13. US 2998409,Nogare, Stephen Dal&Punderson, John Oliver,"Polyoxymethylene carboxylates of improved thermal stability",published 1961-08-29, assigned to E. I. Du Pont de Nemours and Co.
  14. Paul C. Painter; Michael M. Coleman (2008). Essentials of Polymer Science and Engineering. DEStech Publications, Inc. pp. 313–. ISBN   978-1-932078-75-6.
  15. Christopher C. Ibeh (25 April 2011). Thermoplastic Materials: Properties, Manufacturing Methods, and Applications. CRC Press. pp. 473–. ISBN   978-1-4200-9384-1.
  16. "Acetal Products Comparison: Acetal vs. Delrin" (PDF). Lion Engineering Plastics. Retrieved 2016-10-01.
  17. "How to Maximise the Property Advantages of DuPont Delrin Acetal Homopolymer over Acetal Copolymer" (PDF). DuPont. 2013. Archived from the original (PDF) on 2016-05-19. Retrieved 2016-10-01.
  18. US5344911A,Yamamoto, Kaoru; Maeda, Nagayoshi& Kamiya, Makotoet al.,"Process for producing polyoxymethylene copolymer having reduced amount of unstable terminal groups",issued 1994-09-06
  19. "Polyoxymethylene". Ataman Chemicals. September 18, 2024.
  20. "POM standard values" (PDF). POM_standard_values.pdf. Archived from the original (PDF) on November 3, 2023. Retrieved November 3, 2023.
  21. 1 2 "General Properties of M90-44". DURACON® POM Grade Catalog M90-44. Retrieved November 3, 2023.
  22. "Polyoxymethylene (POM) price index". BusinessAnalytIQ. 7 October 2020. Retrieved November 3, 2023.
  23. "POM-C staf wit Ø 100mm". Rich Kunststoffen. Retrieved November 3, 2023.
  24. 1 2 3 "Design Guide for Bonding Plastics" (PDF). Retrieved 22 February 2020.
  25. BASF Ultraform product information
  26. Snogren, R. C. (1974). Handbook of Surface Preparation. New York: Palmerton Publishing Co.
  27. "Tamshell Engineering Corner". Archived from the original on 16 September 2017. Retrieved 15 September 2017.
  28. "Ticona Polymer and Processing Expertise Helps Rodon Deliver Successes, Including K'NEX® Toys". celanese.com. Celanese Corporation. Retrieved 19 March 2016.
  29. The Smart Doll Body
  30. "Acetal Plastic Sheet, Rod, Tube and Accessories". Interstate Plastics. Retrieved September 1, 2015.
  31. Murphy, Joe. "The Loud Buzzer". unknown. Archived from the original on 2013-10-04. Retrieved 2012-03-17.
  32. Barry, Kenneth. "Saxscape Mouthpieces".
  33. "Chronography 4: Lemania 5100". 19 October 2015.
  34. "BiC® Werbefeuerzeuge für Geschäftskunden". www.bic-feuerzeuge.de (in German). Retrieved 2017-08-14.
  35. "ABS vs PBT vs POM Keycap Plastic". numpad. 2020-01-14. Archived from the original on 2020-07-24. Retrieved 2020-01-18.
  36. https://www.industrialspec.com/images/files/acetal-pom-chemical-compatibility-chart-from-ism.pdf [ bare URL PDF ]