Dichromic acid (left) and chromic acid (right) | |
Names | |
---|---|
IUPAC names Chromic acid Dichromic acid | |
Systematic IUPAC name Dihydroxidodioxidochromium | |
Other names Chromic(VI) acid Tetraoxochromic acid | |
Identifiers | |
3D model (JSmol) | |
ChEBI | |
ChemSpider | |
ECHA InfoCard | 100.028.910 |
EC Number |
|
25982 | |
PubChem CID | |
UNII | |
UN number | 1755 1463 |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
H2CrO4 (chromic acid) H2Cr2O7 (dichromic acid) | |
Molar mass | 118.008 g/mol (chromic acid) 218.001 g/mol (dichromic acid) |
Appearance | Dark purplish-red sand-like crystalline solid or powder[ clarification needed ] |
Odor | Odorless |
Density | 1.201 g/cm3[ clarification needed ] |
Melting point | 197 °C (387 °F; 470 K) [ clarification needed ] |
Boiling point | 250 °C (482 °F; 523 K) (decomposes)[ clarification needed ] |
169 g/(100 mL)[ clarification needed ] | |
Acidity (pKa) | −0.8 to 1.6 (chromic acid) |
Conjugate base | Chromate and dichromate |
Hazards | |
Occupational safety and health (OHS/OSH): | |
Main hazards | highly toxic, carcinogen, corrosive |
GHS labelling: | |
Danger | |
H271, H300+H310+H330, H301, H314, H317, H334, H340, H341, H350, H361, H372, H410 | |
P201, P202, P210, P220, P221, P260, P261, P262, P264, P270, P271, P272, P273, P280, P281, P283, P284, P285, P301+P310, P301+P330+P331, P302+P350, P302+P352, P303+P361+P353, P304+P340, P304+P341, P305+P351+P338, P306+P360, P308+P313, P310, P314, P320, P321, P322, P330, P333+P313, P342+P311, P361, P363, P370+P378, P371+P380+P375, P391, P403+P233, P405, P501 | |
NFPA 704 (fire diamond) | |
Lethal dose or concentration (LD, LC): | |
LD50 (median dose) | 51.9 mg/kg (H2CrO4·2Na, rat, oral) [1] |
NIOSH (US health exposure limits): | |
PEL (Permissible) | TWA 0.005 mg/m3 [2] |
REL (Recommended) | TWA 0.001 mg Cr(VI)/m3 [2] |
IDLH (Immediate danger) | 15 mg Cr(VI)/m3 [2] |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Chromic acid is jargon for a solution formed by the addition of sulfuric acid to aqueous solutions of dichromate. It consists at least in part of chromium trioxide. [3]
The term chromic acid is usually used for a mixture made by adding concentrated sulfuric acid to a dichromate, which may contain a variety of compounds, including solid chromium trioxide. This kind of chromic acid may be used as a cleaning mixture for glass. Chromic acid may also refer to the molecular species, H2CrO4 of which the trioxide is the anhydride. Chromic acid features chromium in an oxidation state of +6 (and a valence of VI or 6). It is a strong and corrosive oxidizing agent and a moderate carcinogen.
Molecular chromic acid, H2CrO4, in principle, resembles sulfuric acid, H2SO4. It would ionize accordingly:
The pKa for the equilibrium is not well characterized. Reported values vary between about −0.8 to 1.6. [4] The structure of the mono anion has been determined by X-ray crystallography. In this tetrahedral oxyanion, three Cr-O bond lengths are 156 pm and the Cr-OH bond is 201 pm [5]
[HCrO4]− condenses to form dichromate:
Furthermore, the dichromate can be protonated:
Loss of the second proton occurs in the pH range 4–8, making the ion [HCrO4]− a weak acid.[ citation needed ]
Molecular chromic acid could in principle be made by adding chromium trioxide to water (cf. manufacture of sulfuric acid).
In practice, the reverse reaction occurs: molecular chromic acid dehydrates. Some insights can be gleaned from observations on the reaction of dichromate solutions with sulfuric acid. The first colour change from orange to red signals the conversion of dichromate to chromic acid. Under these conditions deep red crystals of chromium trioxide precipitate from the mixture, without further colour change.
Chromium trioxide is the anhydride of molecular chromic acid. It is a Lewis acid and can react with a Lewis base, such as pyridine in a non-aqueous medium such as dichloromethane (Collins reagent).
Higher chromic acids with the formula H2CrnO(3n+1) are probable components of concentrated solutions of chromic acid.
Chromic acid is an intermediate in chromium plating, and is also used in ceramic glazes, and colored glass. Because a solution of chromic acid in sulfuric acid (also known as a sulfochromic mixture or chromosulfuric acid) is a powerful oxidizing agent, it can be used to clean laboratory glassware, particularly of otherwise insoluble organic residues. This application has declined due to environmental concerns. [8] Furthermore, the acid leaves trace amounts of paramagnetic chromic ions (Cr3+) that can interfere with certain applications, such as NMR spectroscopy. This is especially the case for NMR tubes. [9] Piranha solution can be used for the same task, without leaving metallic residues behind.
Chromic acid was widely used in the musical instrument repair industry, due to its ability to "brighten" raw brass. A chromic acid dip leaves behind a bright yellow patina on the brass. Due to growing health and environmental concerns, many have discontinued use of this chemical in their repair shops.
It was used in hair dye in the 1940s, under the name Melereon. [10]
It is used as a bleach in black and white photographic reversal processing. [11]
Chromic acid is capable of oxidizing many kinds of organic compounds and many variations on this reagent have been developed:
In organic chemistry, dilute solutions of chromic acid can be used to oxidize primary or secondary alcohols to the corresponding aldehydes and ketones. Similarly, it can also be used to oxidize an aldehyde to its corresponding carboxylic acid. Tertiary alcohols and ketones are unaffected. Because the oxidation is signaled by a color change from orange to brownish green (indicating chromium being reduced from oxidation state +6 to +3), chromic acid is commonly used as a lab reagent in high school or undergraduate college chemistry as a qualitative analytical test for the presence of primary or secondary alcohols, or aldehydes. [12]
In oxidations of alcohols or aldehydes into carboxylic acids, chromic acid is one of several reagents, including several that are catalytic. For example, nickel(II) salts catalyze oxidations by bleach (hypochlorite). [17] Aldehydes are relatively easily oxidized to carboxylic acids, and mild oxidizing agents are sufficient. Silver(I) compounds have been used for this purpose. Each oxidant offers advantages and disadvantages. Instead of using chemical oxidants, electrochemical oxidation is often possible.
Hexavalent chromium compounds (including chromium trioxide, chromic acids, chromates, chlorochromates) are toxic and carcinogenic. Chromium trioxide and chromic acids are strong oxidizers and may react violently if mixed with easily oxidizable organic substances.
Chromic acid burns are treated with a dilute sodium thiosulfate solution. [18]
Chromium is a chemical element; it has symbol Cr and atomic number 24. It is the first element in group 6. It is a steely-grey, lustrous, hard, and brittle transition metal.
In organic chemistry, an aldehyde is an organic compound containing a functional group with the structure R−CH=O. The functional group itself can be referred to as an aldehyde but can also be classified as a formyl group. Aldehydes are a common motif in many chemicals important in technology and biology.
Chromate salts contain the chromate anion, CrO2−
4. Dichromate salts contain the dichromate anion, Cr
2O2−
7. They are oxyanions of chromium in the +6 oxidation state and are moderately strong oxidizing agents. In an aqueous solution, chromate and dichromate ions can be interconvertible.
Potassium dichromate, K2Cr2O7, is a common inorganic chemical reagent, most commonly used as an oxidizing agent in various laboratory and industrial applications. As with all hexavalent chromium compounds, it is acutely and chronically harmful to health. It is a crystalline ionic solid with a very bright, red-orange color. The salt is popular in laboratories because it is not deliquescent, in contrast to the more industrially relevant salt sodium dichromate.
Pyridinium chlorochromate (PCC) is a yellow-orange salt with the formula [C5H5NH]+[CrO3Cl]−. It is a reagent in organic synthesis used primarily for oxidation of alcohols to form carbonyls. A variety of related compounds are known with similar reactivity. PCC offers the advantage of the selective oxidation of alcohols to aldehydes or ketones, whereas many other reagents are less selective.
Chromium trioxide is an inorganic compound with the formula CrO3. It is the acidic anhydride of chromic acid, and is sometimes marketed under the same name. This compound is a dark-purple solid under anhydrous conditions and bright orange when wet. The substance dissolves in water accompanied by hydrolysis. Millions of kilograms are produced annually, mainly for electroplating. Chromium trioxide is a powerful oxidiser, a mutagen, and a carcinogen.
Copper chromite often refers to inorganic compounds with the formula Cu2Cr2Ox. They are black solids. Cu2Cr2O4 is a well-defined material. The other copper chromite often is described as Cu2Cr2O5. It is used to catalyze reactions in organic chemistry.
Sodium dichromate is the inorganic compound with the formula Na2Cr2O7. However, the salt is usually handled as its dihydrate Na2Cr2O7·2H2O. Virtually all chromium ore is processed via conversion to sodium dichromate and virtually all compounds and materials based on chromium are prepared from this salt. In terms of reactivity and appearance, sodium dichromate and potassium dichromate are very similar. The sodium salt is, however, around twenty times more soluble in water than the potassium salt (49 g/L at 0 °C) and its equivalent weight is also lower, which is often desirable.
Glycol cleavage is a specific type of organic chemistry oxidation. The carbon–carbon bond in a vicinal diol (glycol) is cleaved and instead the two oxygen atoms become double-bonded to their respective carbon atoms. Depending on the substitution pattern in the diol, these carbonyls will be ketones and/or aldehydes.
Chromyl chloride is an inorganic compound with the formula CrO2Cl2. It is a reddish brown compound that is a volatile liquid at room temperature, which is unusual for transition metal compounds. It is the dichloride of chromic acid.
Chromium compounds are compounds containing the element chromium (Cr). Chromium is a member of group 6 of the transition metals. The +3 and +6 states occur most commonly within chromium compounds, followed by +2; charges of +1, +4 and +5 for chromium are rare, but do nevertheless occasionally exist.
The Sarett oxidation is an organic reaction that oxidizes primary and secondary alcohols to aldehydes and ketones, respectively, using chromium trioxide and pyridine. Unlike the similar Jones oxidation, the Sarett oxidation will not further oxidize primary alcohols to their carboxylic acid form, neither will it affect carbon-carbon double bonds. Use of the original Sarett oxidation has become largely antiquated however, in favor of other modified oxidation techniques. The unadulterated reaction is still occasionally used in teaching settings and in small scale laboratory research.
Collins reagent is the complex of chromium(VI) oxide with pyridine in dichloromethane. This metal-pyridine complex, a red solid, is used to oxidize primary alcohols to the corresponding aldehydes and secondary alcohols to the corresponding ketones. This complex is a hygroscopic orange solid.
The Cornforth reagent (pyridinium dichromate or PDC) is a pyridinium salt of dichromate with the chemical formula [C5H5NH]2[Cr2O7]. This compound is named after the Australian-British chemist Sir John Warcup Cornforth (b. 1917) who introduced it in 1962. The Cornforth reagent is a strong oxidizing agent which can convert primary and secondary alcohols to aldehydes and ketones respectively. In its chemical structure and functions it is closely related to other compounds made from hexavalent chromium oxide, such as pyridinium chlorochromate and Collins reagent. Because of their toxicity, these reagents are rarely used nowadays.
Sodium chromate is the inorganic compound with the formula Na2CrO4. It exists as a yellow hygroscopic solid, which can form tetra-, hexa-, and decahydrates. It is an intermediate in the extraction of chromium from its ores.
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids.
Oxidation with chromium(VI) complexes involves the conversion of alcohols to carbonyl compounds or more highly oxidized products through the action of molecular chromium(VI) oxides and salts. The principal reagents are Collins reagent, PDC, and PCC. These reagents represent improvements over inorganic chromium(VI) reagents such as Jones reagent.
The Jones oxidation is an organic reaction for the oxidation of primary and secondary alcohols to carboxylic acids and ketones, respectively. It is named after its discoverer, Sir Ewart Jones. The reaction was an early method for the oxidation of alcohols. Its use has subsided because milder, more selective reagents have been developed, e.g. Collins reagent.
Chromyl fluoride is an inorganic compound with the formula CrO2F2. It is a violet-red colored crystalline solid that melts to an orange-red liquid.
The Collins oxidation is an organic reaction for the oxidation of primary alcohols to aldehydes. It is distinguished from other chromium oxide-based oxidations by the use of Collins reagent, a complex of chromium(VI) oxide with pyridine in dichloromethane.