Arsenic acid

Last updated
Arsenic acid
Arsenate.svg
Arsenic-acid-3D-balls.png
Names
IUPAC name
Arsoric acid [1]
Other names
  • Desiccant L-10
  • Orthoarsenic acid
  • Trihydrogen arsenate
  • Zotox
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.029.001 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 231-901-9
KEGG
PubChem CID
RTECS number
  • CG0700000
UNII
UN number 1553, 1554
  • InChI=1S/AsH3O4/c2-1(3,4)5/h(H3,2,3,4,5) Yes check.svgY
    Key: DJHGAFSJWGLOIV-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/AsH3O4/c2-1(3,4)5/h(H3,2,3,4,5)
    Key: DJHGAFSJWGLOIV-UHFFFAOYAY
  • O[As+](O)([O-])O
Properties
H3AsO4
Molar mass 141.942 g·mol−1
AppearanceWhite translucent or colorless crystals, hygroscopic
Density 2.5 g/cm3
Melting point 35.5 °C (95.9 °F; 308.6 K)
Boiling point 120 °C (248 °F; 393 K) decomposes
16.7 g/(100 mL)
Solubility soluble in ethanol
Vapor pressure 55 hPa (50 °C)
Acidity (pKa)pKa1 = 2.19
pKa2 = 6.94
pKa3 = 11.5 [2]
Conjugate base Arsenate
Structure
Tetrahedral at arsenic atom
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Extremely toxic, carcinogenic, corrosive
GHS labelling:
GHS-pictogram-acid.svg GHS-pictogram-skull.svg GHS-pictogram-exclam.svg GHS-pictogram-silhouette.svg GHS-pictogram-pollu.svg
Danger
H301, H312, H314, H331, H350, H361, H410
P201, P202, P260, P261, P264, P270, P271, P273, P280, P281, P301+P310, P301+P330+P331, P302+P352, P303+P361+P353, P304+P340, P305+P351+P338, P308+P313, P310, P311, P312, P321, P322, P330, P363, P391, P403+P233, P405, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 4: Very short exposure could cause death or major residual injury. E.g. VX gasFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
4
0
0
Flash point Non-flammable
Lethal dose or concentration (LD, LC):
48 mg/kg (rat, oral)

6 mg/kg (rabbit, oral)

Related compounds
Other cations
Sodium arsenate
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)
Three bottles of arsenic acid from the Great Exhibition: impure, pure and distilled. Arseniksyrlighet, prov.jpg
Three bottles of arsenic acid from the Great Exhibition: impure, pure and distilled.

Arsenic acid or arsoric acid is the chemical compound with the formula H3AsO4. More descriptively written as AsO(OH)3, this colorless acid is the arsenic analogue of phosphoric acid. Arsenate and phosphate salts behave very similarly. Arsenic acid as such has not been isolated, but is only found in solution, where it is largely ionized. Its hemihydrate form (2H3AsO4·H2O) does form stable crystals. Crystalline samples dehydrate with condensation at 100 °C. [3]

Contents

Properties

It is a tetrahedral species of idealized symmetry C3v with AsO bond lengths ranging from 1.66 to 1.71 Å. [4]

Being a triprotic acid, its acidity is described by three equilibria:

H3AsO4 + H2O ⇌ H2AsO4 + [H3O]+, pKa1 = 2.19
H2AsO4 + H2O ⇌ HAsO2−4 + [H3O]+, pKa2 = 6.94
HAsO2−4 + H2O ⇌ AsO3−4 + [H3O]+, pKa3 = 11.5

These pKa values are close to those for phosphoric acid. The highly basic arsenate ion (AsO3−
4
) is the product of the third ionization. Unlike phosphoric acid, arsenic acid is an oxidizer, as illustrated by its ability to convert iodide to iodine.

Preparation

Arsenic acid is prepared by treating arsenic trioxide with concentrated nitric acid. Dinitrogen trioxide is produced as a by-product. [5]

As2O3 + 2 HNO3 + 2 H2O → 2 H3AsO4 + N2O3

The resulting solution is cooled to give colourless crystals of the hemihydrate H3AsO4·0.5H2O (or 2H3AsO4·H2O), although the dihydrate H3AsO4·2H2O is produced when crystallisation occurs at lower temperatures. [5]

Other methods

Arsenic acid is slowly formed when arsenic pentoxide is dissolved in water, and when meta- or pyroarsenic acid (H4As2O7) is treated with cold water. Arsenic acid can also be prepared directly from elemental arsenic by moistening it and treating with ozone.

2 As + 3 H2O + 5 O3 → 2 H3AsO4 + 5 O2

Applications

Commercial applications of arsenic acid are limited by its toxicity. It is a precursor to a variety of pesticides. It has found occasional use as a wood preservative, a broad-spectrum biocide, a finishing agent for glass and metal, and a reagent in the synthesis of some dyestuffs and organic arsenic compounds. [6]

Safety

Arsenic acid is extremely toxic and carcinogenic, like all arsenic compounds. It is also corrosive. The LD50 in rabbits is 6 mg/kg (0.006 g/kg). [7]

Related Research Articles

In chemistry, perxenates are salts of the yellow xenon-containing anion XeO4−
6
. This anion has octahedral molecular geometry, as determined by Raman spectroscopy, having O–Xe–O bond angles varying between 87° and 93°. The Xe–O bond length was determined by X-ray crystallography to be 1.875 Å.

An acidic oxide is an oxide that either produces an acidic solution upon addition to water, or acts as an acceptor of hydroxide ions effectively functioning as a Lewis acid. Acidic oxides will typically have a low pKa and may be inorganic or organic. A commonly encountered acidic oxide, carbon dioxide produces an acidic solution when dissolved.

<span class="mw-page-title-main">Chromium trioxide</span> Chemical compound

Chromium trioxide is an inorganic compound with the formula CrO3. It is the acidic anhydride of chromic acid, and is sometimes marketed under the same name. This compound is a dark-purple solid under anhydrous conditions and bright orange when wet. The substance dissolves in water accompanied by hydrolysis. Millions of kilograms are produced annually, mainly for electroplating. Chromium trioxide is a powerful oxidiser, a mutagen, and a carcinogen.

Molybdenum trioxide describes a family of inorganic compounds with the formula MoO3(H2O)n where n = 0, 1, 2. The anhydrous compound is produced on the largest scale of any molybdenum compound since it is the main intermediate produced when molybdenum ores are purified. The anhydrous oxide is a precursor to molybdenum metal, an important alloying agent. It is also an important industrial catalyst. It is a yellow solid, although impure samples can appear blue or green.

<span class="mw-page-title-main">Arsenic trioxide</span> Chemical compound (industrial chemical and medication)

Arsenic trioxide is an inorganic compound with the formula As
2
O
3
. As an industrial chemical, its major uses include the manufacture of wood preservatives, pesticides, and glass. It is sold under the brand name Trisenox among others when used as a medication to treat a type of cancer known as acute promyelocytic leukemia. For this use it is given by injection into a vein.

Selenic acid is the inorganic compound with the formula H2SeO4. It is an oxoacid of selenium, and its structure is more accurately described as O2Se(OH)2. It is a colorless compound. Although it has few uses, one of its salts, sodium selenate is used in the production of glass and animal feeds.

<span class="mw-page-title-main">Telluric acid</span> Chemical compound (Te(OH)6)

Telluric acid, or more accurately orthotelluric acid, is a chemical compound with the formula Te(OH)6, often written as H6TeO6. It is a white crystalline solid made up of octahedral Te(OH)6 molecules which persist in aqueous solution. In the solid state, there are two forms, rhombohedral and monoclinic, and both contain octahedral Te(OH)6 molecules, containing one hexavalent tellurium (Te) atom in the +6 oxidation state, attached to six hydroxyl (–OH) groups, thus, it can be called tellurium(VI) hydroxide. Telluric acid is a weak acid which is dibasic, forming tellurate salts with strong bases and hydrogen tellurate salts with weaker bases or upon hydrolysis of tellurates in water. It is used as tellurium-source in the synthesis of oxidation catalysts.

The arsenate is an ion with the chemical formula AsO3−4. Bonding in arsenate consists of a central arsenic atom, with oxidation state +5, double bonded to one oxygen atom and single bonded to a further three oxygen atoms. The four oxygen atoms orient around the arsenic atom in a tetrahedral geometry. Resonance disperses the ion's −3 charge across all four oxygen atoms.

<span class="mw-page-title-main">Arsenous acid</span> Chemical compound

Arsenous acid (or arsenious acid) is the inorganic compound with the formula H3AsO3. It is known to occur in aqueous solutions, but it has not been isolated as a pure material, although this fact does not detract from the significance of As(OH)3.

In chemistry, an arsenite is a chemical compound containing an arsenic oxyanion where arsenic has oxidation state +3. Note that in fields that commonly deal with groundwater chemistry, arsenite is used generically to identify soluble AsIII anions. IUPAC have recommended that arsenite compounds are to be named as arsenate(III), for example ortho-arsenite is called trioxidoarsenate(III). Ortho-arsenite contrasts to the corresponding anions of the lighter members of group 15, phosphite which has the structure HPO2−3 and nitrite, NO−2 which is bent.

<span class="mw-page-title-main">Tellurous acid</span> Chemical compound

Tellurous acid is an inorganic compound with the formula H2TeO3. It is the oxoacid of tellurium(IV). This compound is not well characterized. An alternative way of writing its formula is (HO)2TeO. In principle, tellurous acid would form by treatment of tellurium dioxide with water, that is by hydrolysis. The related conjugate base is well known in the form of several salts such as potassium hydrogen tellurite, KHTeO3.

<span class="mw-page-title-main">Arsenic pentoxide</span> Chemical compound

Arsenic pentoxide is the inorganic compound with the formula As2O5. This glassy, white, deliquescent solid is relatively unstable, consistent with the rarity of the As(V) oxidation state. More common, and far more important commercially, is arsenic(III) oxide (As2O3). All inorganic arsenic compounds are highly toxic and thus find only limited commercial applications.

<span class="mw-page-title-main">Xenon trioxide</span> Chemical compound

Xenon trioxide is an unstable compound of xenon in its +6 oxidation state. It is a very powerful oxidizing agent, and liberates oxygen from water slowly, accelerated by exposure to sunlight. It is dangerously explosive upon contact with organic materials. When it detonates, it releases xenon and oxygen gas.

<span class="mw-page-title-main">Selenium compounds</span> Chemical compounds containing selenium

Selenium compounds are compounds containing the element selenium (Se). Among these compounds, selenium has various oxidation states, the most common ones being −2, +4, and +6. Selenium compounds exist in nature in the form of various minerals, such as clausthalite, guanajuatite, tiemannite, crookesite etc., and can also coexist with sulfide minerals such as pyrite and chalcopyrite. For many mammals, selenium compounds are essential. For example, selenomethionine and selenocysteine are selenium-containing amino acids present in the human body. Selenomethionine participates in the synthesis of selenoproteins. The reduction potential and pKa (5.47) of selenocysteine are lower than those of cysteine, making some proteins have antioxidant activity. Selenium compounds have important applications in semiconductors, glass and ceramic industries, medicine, metallurgy and other fields.

<span class="mw-page-title-main">Sodium arsenate</span> Chemical compound

Sodium arsenate is the inorganic compound with the formula Na3AsO4. Related salts are also called sodium arsenate, including Na2HAsO4 (disodium hydrogen arsenate) and NaH2AsO4 (sodium dihydrogen arsenate). The trisodium salt is a white or colourless solid that is highly toxic. It is usually handled as the dodecahydrate Na3AsO4.12H2O.

<span class="mw-page-title-main">Dichlorine hexoxide</span> Chemical compound

Dichlorine hexoxide is the chemical compound with the molecular formula Cl
2
O
6
, which is correct for its gaseous state. However, in liquid or solid form, this chlorine oxide ionizes into the dark red ionic compound chloryl perchlorate [ClO
2
]+
[ClO
4
]
, which may be thought of as the mixed anhydride of chloric and perchloric acids. This compound is a notable perchlorating agent.

<span class="mw-page-title-main">Sodium bismuthate</span> Chemical compound

Sodium bismuthate is an inorganic compound, and a strong oxidiser with chemical formula NaBiO3. It is somewhat hygroscopic, but not soluble in cold water, which can be convenient since the reagent can be easily removed after the reaction. It is one of the few water insoluble sodium salts. Commercial samples may be a mixture of bismuth(V) oxide, sodium carbonate and sodium peroxide.

Ammonium orthomolybdate is the inorganic compound with the chemical formula (NH4)2MoO4. It is a white solid that is prepared by treating molybdenum trioxide with aqueous ammonia. Upon heating these solutions, ammonia is lost, to give ammonium heptamolybdate ((NH4)6Mo7O24·4H2O).

<span class="mw-page-title-main">Disodium hydrogen arsenate</span> Chemical compound

Disodium hydrogen arsenate is the inorganic compound with the formula Na2HAsO4.7H2O. The compound consists of a salt and seven molecules of water of crystallization although for simplicity the formula usually omits the water component. The other sodium arsenates are NaH2AsO4 and Na3AsO4, the latter being called sodium arsenate. Disodium hydrogen arsenate is highly toxic. The salt is the conjugate base of arsenic acid. It is a white, water-soluble solid.

<span class="mw-page-title-main">Monopotassium arsenate</span> Chemical compound

Monopotassium arsenate is the inorganic compound with the formula KH2AsO4. A white solid, this salt is used to prepared other arsenic-containing compounds, mainly pesticides. It is prepared by calcining arsenic oxide and potassium nitrate, followed by extraction with water.

References

  1. "Arsenic acid".
  2. Perrin, D. D., ed. (1982) [1969]. Ionisation Constants of Inorganic Acids and Bases in Aqueous Solution. IUPAC Chemical Data (2nd ed.). Oxford: Pergamon (published 1984). Entry 11. ISBN   0-08-029214-3. LCCN   82-16524.
  3. Holleman, A. F.; Wiberg, E. (2001). Inorganic Chemistry. San Diego: Academic Press. ISBN   0-12-352651-5.
  4. Lee, C.; Harrison, W. T. A. (2007). "Tetraethylammonium dihydrogenarsenate bis(arsenic acid) and 1,4-diazoniabicyclo[2.2.2]octane bis(dihydrogenarsenate) arsenic acid: hydrogen-bonded networks containing dihydrogenarsenate anions and neutral arsenic acid molecules". Acta Crystallographica C . 63 (Pt 7): m308 –m311. doi:10.1107/S0108270107023967. PMID   17609552.
  5. 1 2 G. Brauer, ed. (1963). "Arsenic Acid". Handbook of Preparative Inorganic Chemistry. Vol. 1 (2nd ed.). New York: Academic Press. p. 601.
  6. Minerals Yearbook, 2008, V. 1, Metals and Minerals. Government Printing Office. 2010. pp. 6–. ISBN   978-1-4113-3015-3.
  7. Grund, Sabina C.; Hanusch, Kunibert; Wolf, Hans Uwe (2008). "Arsenic and Arsenic Compounds". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a03_113.pub2. ISBN   978-3527306732.