Dinitrogen trioxide

Last updated
Dinitrogen trioxide
Dinitrogen trioxide resonance hybrid.png
Beautiful nitrogen trioxide2.jpg
Names
IUPAC name
N-Oxonitramide [1]
Other names
  • Nitrous anhydride
  • Nitrogen sesquioxide
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.031.013 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 234-128-5
PubChem CID
UNII
UN number 2421
  • InChI=1S/N2O3/c3-1-2(4)5 Yes check.svgY
    Key: LZDSILRDTDCIQT-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/N2O3/c3-1-2(4)5
    Key: LZDSILRDTDCIQT-UHFFFAOYAC
  • [O-][N+](=O)N=O
Properties
N2O3
Molar mass 76.011 g·mol−1
AppearanceDeep blue liquid
Density
  • 1.447 g/cm3, liquid
  • 1.783 g/cm3, gas
Melting point −100.7 [2]  °C (−149.3 °F; 172.5 K)
Boiling point 3.5 °C (38.3 °F; 276.6 K) (dissociates [2] )
reacts to form nitrous acid
Solubility soluble in ether
−16.0·10−6 cm3/mol
Structure
planar, Cs
2.122 D
Thermochemistry
65.3 J/(mol·K)
Std molar
entropy
(S298)
314.63 J/(mol·K)
91.20 kJ/mol
Hazards
GHS labelling: [3]
GHS-pictogram-rondflam.svg GHS-pictogram-acid.svg GHS-pictogram-skull.svg
Danger
H270, H310+H330, H314
P220, P244, P260, P262, P264, P270, P271, P280, P284, P301+P330+P331, P302+P350, P303+P361+P353, P304+P340, P305+P351+P338, P310, P320, P321, P322, P361, P363, P370+P376, P403, P403+P233, P405, P410+P403, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 4: Very short exposure could cause death or major residual injury. E.g. VX gasFlammability 0: Will not burn. E.g. waterInstability 2: Undergoes violent chemical change at elevated temperatures and pressures, reacts violently with water, or may form explosive mixtures with water. E.g. white phosphorusSpecial hazard OX: Oxidizer. E.g. potassium perchlorate
4
0
2
OX
Flash point Non-flammable
Related compounds
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Dinitrogen trioxide (also known as nitrous anhydride) is the inorganic compound with the formula N 2 O 3. It is a nitrogen oxide. It forms upon mixing equal parts of nitric oxide and nitrogen dioxide and cooling the mixture below −21 °C (−6 °F): [4]

Contents


NO
+
NO
2
N
2
O
3

Dinitrogen trioxide is only isolable at low temperatures (i.e., in the liquid and solid phases). In liquid and solid states, it has a deep blue color. [2] At higher temperatures the equilibrium favors the constituent gases, with KD  = 193 kPa (25 °C). [5] [ clarification needed ]

This compound is sometimes called "nitrogen trioxide", but this name properly refers to another compound, the (uncharged) nitrate radical •NO3.

Structure and bonding

Dinitrogen trioxide molecule contains an N–N bond. One of the numerous resonant structures of the molecule of dinitrogen trioxide is O=N−NO2, which can be described as a nitroso group −N=O attached to a nitro group −NO2 by a single bond between the two nitrogen atoms. This isomer is considered as the "anhydride" of the unstable nitrous acid (HNO2), and produces it when mixed with water, although an alternative structure might be anticipated for the true anhydride of nitrous acid (i.e., O=N−O−N=O). This isomer can be produced from the reaction of tetrabutylammonium nitrite and triflic anhydride in dichloromethane solution at -30°C. [6]

If the nitrous acid is not then used up quickly, it decomposes into nitric oxide and nitric acid. Nitrite salts are sometimes produced by adding N2O3 to water solutions of bases:

N2O3 + 2 NaOH → 2 NaNO2 + H2O

Typically, N–N bonds are similar in length to that in hydrazine (145 pm). Dinitrogen trioxide, however, has an unusually long N–N bond at 186 pm. Some other nitrogen oxides also possess long N–N bonds, including dinitrogen tetroxide (175 pm). The N2O3 molecule is planar and exhibits Cs symmetry. The dimensions displayed on the picture below come from microwave spectroscopy of low-temperature, gaseous N2O3: [4]

Dinitrogen-trioxide-2D-geometry.png

Similar to nitronium nitrate, this molecule can also co-exist in equilibrium with an ionic gas called nitrosonium nitrite ([NO]+[NO2]) [7]

Related Research Articles

<span class="mw-page-title-main">Nitrogen</span> Chemical element with atomic number 7 (N)

Nitrogen is a chemical element; it has symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at seventh in total abundance in the Milky Way and the Solar System. At standard temperature and pressure, two atoms of the element bond to form N2, a colourless and odourless diatomic gas. N2 forms about 78% of Earth's atmosphere, making it the most abundant chemical species in air. Because of the volatility of nitrogen compounds, nitrogen is relatively rare in the solid parts of the Earth.

<span class="mw-page-title-main">Nitric acid</span> Highly corrosive mineral acid

Nitric acid is an inorganic compound with the formula HNO3. It is a highly corrosive mineral acid. The compound is colorless, but samples tend to acquire a yellow cast over time due to decomposition into oxides of nitrogen. Most commercially available nitric acid has a concentration of 68% in water. When the solution contains more than 86% HNO3, it is referred to as fuming nitric acid. Depending on the amount of nitrogen dioxide present, fuming nitric acid is further characterized as red fuming nitric acid at concentrations above 86%, or white fuming nitric acid at concentrations above 95%.

<span class="mw-page-title-main">Nitronium ion</span> Polyatomic ion

The nitronium ion, [NO2]+, is a cation. It is an onium ion because its nitrogen atom has +1 charge, similar to ammonium ion [NH4]+. It is created by the removal of an electron from the paramagnetic nitrogen dioxide molecule NO2, or the protonation of nitric acid HNO3.

<span class="mw-page-title-main">Dinitrogen tetroxide</span> Chemical compound

Dinitrogen tetroxide, commonly referred to as nitrogen tetroxide (NTO), and occasionally (usually among ex-USSR/Russian rocket engineers) as amyl, is the chemical compound N2O4. It is a useful reagent in chemical synthesis. It forms an equilibrium mixture with nitrogen dioxide. Its molar mass is 92.011 g/mol.

<span class="mw-page-title-main">Nitric oxide</span> Colorless gas with the formula NO

Nitric oxide is a colorless gas with the formula NO. It is one of the principal oxides of nitrogen. Nitric oxide is a free radical: it has an unpaired electron, which is sometimes denoted by a dot in its chemical formula. Nitric oxide is also a heteronuclear diatomic molecule, a class of molecules whose study spawned early modern theories of chemical bonding.

<span class="mw-page-title-main">Nitrogen dioxide</span> Chemical compound with formula NO₂

Nitrogen dioxide is a chemical compound with the formula NO2. One of several nitrogen oxides, nitrogen dioxide is a reddish-brown gas. It is a paramagnetic, bent molecule with C2v point group symmetry. Industrially, NO2 is an intermediate in the synthesis of nitric acid, millions of tons of which are produced each year, primarily for the production of fertilizers.

Nitrogen oxide may refer to a binary compound of oxygen and nitrogen, or a mixture of such compounds:

<span class="mw-page-title-main">Nitrous acid</span> Chemical compound

Nitrous acid is a weak and monoprotic acid known only in solution, in the gas phase, and in the form of nitrite salts. It was discovered by Carl Wilhelm Scheele, who called it "phlogisticated acid of niter". Nitrous acid is used to make diazonium salts from amines. The resulting diazonium salts are reagents in azo coupling reactions to give azo dyes.

The nitrite ion has the chemical formula NO
2
. Nitrite is widely used throughout chemical and pharmaceutical industries. The nitrite anion is a pervasive intermediate in the nitrogen cycle in nature. The name nitrite also refers to organic compounds having the –ONO group, which are esters of nitrous acid.

<span class="mw-page-title-main">Dinitrogen pentoxide</span> Chemical compound

Dinitrogen pentoxide is the chemical compound with the formula N2O5. It is one of the binary nitrogen oxides, a family of compounds that contain only nitrogen and oxygen. It exists as colourless crystals that sublime slightly above room temperature, yielding a colorless gas.

<span class="mw-page-title-main">Sulfamic acid</span> Chemical compound

Sulfamic acid, also known as amidosulfonic acid, amidosulfuric acid, aminosulfonic acid, sulphamic acid and sulfamidic acid, is a molecular compound with the formula H3NSO3. This colourless, water-soluble compound finds many applications. Sulfamic acid melts at 205 °C before decomposing at higher temperatures to water, sulfur trioxide, sulfur dioxide and nitrogen.

The nitrosonium ion is NO+, in which the nitrogen atom is bonded to an oxygen atom with a bond order of 3, and the overall diatomic species bears a positive charge. It can be viewed as nitric oxide with one electron removed. This ion is usually obtained as the following salts: NOClO4, NOSO4H (nitrosylsulfuric acid, more descriptively written ONSO3OH) and NOBF4. The ClO−4 and BF−4 salts are slightly soluble in acetonitrile CH3CN. NOBF4 can be purified by sublimation at 200–250 °C and 0.01 mmHg (1.3 Pa).

Nitrite reductase refers to any of several classes of enzymes that catalyze the reduction of nitrite. There are two classes of NIR's. A multi haem enzyme reduces NO2 to a variety of products. Copper containing enzymes carry out a single electron transfer to produce nitric oxide.

The chemical element nitrogen is one of the most abundant elements in the universe and can form many compounds. It can take several oxidation states; but the most common oxidation states are -3 and +3. Nitrogen can form nitride and nitrate ions. It also forms a part of nitric acid and nitrate salts. Nitrogen compounds also have an important role in organic chemistry, as nitrogen is part of proteins, amino acids and adenosine triphosphate.

<span class="mw-page-title-main">Nitrosyl chloride</span> Chemical compound

Nitrosyl chloride is the chemical compound with the formula NOCl. It is a yellow gas that is commonly encountered as a component of aqua regia, a mixture of 3 parts concentrated hydrochloric acid and 1 part of concentrated nitric acid. It is a strong electrophile and oxidizing agent. It is sometimes called Tilden's reagent, after William A. Tilden, who was the first to produce it as a pure compound.

<span class="mw-page-title-main">Reactive nitrogen species</span>

Reactive nitrogen species (RNS) are a family of antimicrobial molecules derived from nitric oxide (•NO) and superoxide (O2•−) produced via the enzymatic activity of inducible nitric oxide synthase 2 (NOS2) and NADPH oxidase respectively. NOS2 is expressed primarily in macrophages after induction by cytokines and microbial products, notably interferon-gamma (IFN-γ) and lipopolysaccharide (LPS).

<span class="mw-page-title-main">Nitrate radical</span> Chemical compound

Nitrogen trioxide or nitrate radical is an oxide of nitrogen with formula NO
3
, consisting of three oxygen atoms covalently bound to a nitrogen atom. This highly unstable blue compound has not been isolated in pure form, but can be generated and observed as a short-lived component of gas, liquid, or solid systems.

<span class="mw-page-title-main">Transition metal nitrite complex</span> Chemical complexes containing one or more –NO₂ ligands

In organometallic chemistry, transition metal complexes of nitrite describes families of coordination complexes containing one or more nitrite ligands. Although the synthetic derivatives are only of scholarly interest, metal-nitrite complexes occur in several enzymes that participate in the nitrogen cycle.

<span class="mw-page-title-main">Transition metal nitrate complex</span> Compound of nitrate ligands

A transition metal nitrate complex is a coordination compound containing one or more nitrate ligands. Such complexes are common starting reagents for the preparation of other compounds.

<span class="mw-page-title-main">Nitrosyl perchlorate</span> Chemical compound

Nitrosyl perchlorate is the inorganic compound with the formula NO(ClO4). A hygroscopic white solid, it is the salt of the nitrosonium cation with the perchlorate anion. It is an oxidant and strong electrophile, but has fallen out of use with the availability of the closely related salt nitrosonium tetrafluoroborate NO(BF4).

References

  1. "Dinitrogen trioxide".
  2. 1 2 3 Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 444. ISBN   978-0-08-037941-8.
  3. "Dinitrogen trioxide". pubchem.ncbi.nlm.nih.gov. Retrieved 23 December 2021.
  4. 1 2 Greenwood, Norman N.; Earnshaw, Alan (1984). Chemistry of the Elements. Oxford: Pergamon Press. pp. 521–22. ISBN   978-0-08-022057-4.
  5. Holleman, Arnold Frederik; Wiberg, Egon (2001), Wiberg, Nils (ed.), Inorganic Chemistry, translated by Eagleson, Mary; Brewer, William, San Diego/Berlin: Academic Press/De Gruyter, ISBN   0-12-352651-5
  6. Reddy, G. Sudhakar; Suh, Elijah J.; Corey, E. J. (2022-06-17). "Nitrosyl Triflate and Nitrous Anhydride, Same Mode of Generation, but Very Different Reaction Pathways. Direct Synthesis of 1,2-Oxazetes, Nitroso or Bisoxazo Compounds from Olefins". Organic Letters. 24 (23): 4202–4206. doi:10.1021/acs.orglett.2c01466. ISSN   1523-7052. PMID   35653176.
  7. Zakharov, I. I.; Zakharova, O. I. (2009-04-01). "Nitrosonium nitrite isomer of N2O3: Quantum-chemical data". Journal of Structural Chemistry. 50 (2): 212–218. doi:10.1007/s10947-009-0031-1. ISSN   1573-8779.