Names | |||
---|---|---|---|
IUPAC name Cyanamide | |||
Other names Amidocyanogen, carbamonitrile, carbimide, carbodiimide, cyanoamine, cyanoazane, N-cyanoamine, cyanogenamide, cyanogen amide, cyanogen nitride, diiminomethane, hydrogen cyanamide, methanediimine | |||
Identifiers | |||
3D model (JSmol) | |||
3DMet | |||
ChEBI | |||
ChEMBL | |||
ChemSpider | |||
DrugBank | |||
ECHA InfoCard | 100.006.358 | ||
EC Number |
| ||
784 | |||
KEGG | |||
PubChem CID | |||
RTECS number |
| ||
UNII | |||
UN number | 2811 | ||
CompTox Dashboard (EPA) | |||
| |||
| |||
Properties | |||
CH2N2 | |||
Molar mass | 42.040 g/mol | ||
Appearance | Crystalline solid | ||
Density | 1.28 g/cm3 | ||
Melting point | 44 °C (111 °F; 317 K) | ||
Boiling point | 260 °C (500 °F; 533 K) (decomposes) 83 °C at 6.7 Pa 140 °C at 2.5 kPa | ||
85 g/100 ml (25 °C) | |||
Solubility in organic solvents | soluble | ||
log P | -0.82 | ||
Acidity (pKa) | 10.3 [1] | ||
Hazards | |||
GHS labelling: | |||
Danger | |||
H301, H311, H314, H317, H351, H361, H373, H412 | |||
P201, P202, P260, P261, P264, P270, P272, P273, P280, P281, P301+P310, P301+P330+P331, P302+P352, P303+P361+P353, P304+P340, P305+P351+P338, P308+P313, P310, P312, P314, P321, P322, P330, P333+P313, P361, P363, P405, P501 | |||
NFPA 704 (fire diamond) | |||
Flash point | 141 °C (286 °F; 414 K) | ||
NIOSH (US health exposure limits): | |||
PEL (Permissible) | none [2] | ||
REL (Recommended) | TWA 2 mg/m3 | ||
IDLH (Immediate danger) | N.D. [2] | ||
Safety data sheet (SDS) | ICSC 0424 | ||
Related compounds | |||
Related compounds | Calcium cyanamide | ||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Cyanamide is an organic compound with the formula C N 2 H 2. This white solid is widely used in agriculture and the production of pharmaceuticals and other organic compounds. It is also used as an alcohol-deterrent drug. The molecule features a nitrile group attached to an amino group. Derivatives of this compound are also referred to as cyanamides, the most common being calcium cyanamide (CaCN2). [3]
Containing both a nucleophilic and electrophilic site within the same molecule, cyanamide undergoes various reactions with itself. Cyanamide exists as two tautomers, one with the connectivity N≡C–NH2 and the other with the formula HN=C=NH ("carbodiimide" tautomer). The N≡C–NH2 form dominates, but in a few reactions (e.g. silylation) the diimide form appears to be important. [3]
Cyanamide dimerizes to give 2-cyanoguanidine (dicyandiamide). This dimerization is hindered or reversed by acids and is inhibited by low temperatures. The cyclic trimer is called melamine. [3]
Cyanamide is produced by hydrolysis of calcium cyanamide, which in turn is prepared from calcium carbide via the Frank-Caro process. [4]
The conversion is conducted on slurries.
Cyanamide can be regarded as a functional single carbon fragment which can react as an electrophile or nucleophile. The main reaction exhibited by cyanamide involves additions of compounds containing an acidic proton. Water, hydrogen sulfide, and hydrogen selenide react with cyanamide to give urea, thiourea, and selenourea, respectively:
In this way, cyanamide behaves as a dehydration agent and thus can induce condensation reactions. Alcohols, thiols, and amines react analogously to give alkylisoureas, isothioureas, and guanidines. The anti-ulcer drug cimetidine is generated using such reactivity. Related reactions exploit the bifunctionality of cyanamide to give heterocycles, and this latter reactivity is the basis of several pharmaceutical syntheses such as the aminopyrimidine imatinib, and agrichemicals Amitrol and hexazinone. The hair-loss treatment minoxidil and the anthelmintics albendazole, flubendazole, and mebendazole feature 2-aminoimidazole substructures derived from cyanamide. [3] Cyanamide is also used in the synthesis of other pharmaceutical drugs including tirapazamine, etravirine, revaprazan, and dasantafil.
The cyanamide anion has the character of a pseudo chalcogen, cyanamide can therefore be regarded as analogue to water or hydrogen sulfide.
A convenient method for the preparation of secondary amines which are not contaminated with primary or tertiary amines is the reaction of cyanamide with alkyl halides to N,N-dialkylcyanamides which can easily be hydrolyzed to dialkylamines and then decarboxylated. [5] Cyanamide adds itself in the presence of N-bromosuccinimide to olefinic double bonds. The addition product is converted by bases to N-Cyanaziridine, [6] cyclized in the presence of acids to imidazolines, which can be further reacted to vicinal diamines by alkaline cleavage. [7]
Cyanamide is also a versatile synthetic building block for heterocycles: it forms 2-aminobenzimidazole with 1,2-diaminobenzene [8] and it forms with the readily available cyclic enamine 4-(1-cyclohexenyl)morpholine [9] and with elemental sulfur a 2-aminothiazole in good yields. [10]
Sodium dicyanamide is available in good yield and high purity from cyanamid and cyanogen chloride, [11] [12] which is suitable as an intermediate for the synthesis of active pharmaceutical ingredients. [13] A guanidino group is introduced by reaction of cyanamide with sarcosine In the industrial synthesis of creatine:. [14]
This synthesis route mostly avoids problematic impurities like chloroacetic acid, iminodiacetic acid, or dihydrotriazine that occur in other routes. The physiological precursor guanidinoacetic is obtained analogously by reacting cyanamide with glycine.
Methods to stabilize cyanamide make it available on an industrial scale. Due to the strong affinity towards self-condensation in alkaline media (see above) solutions of cyanamide are stabilized by the addition of 0.5 wt% of monosodium phosphate as buffer. Solid cyanamide is produced by careful evaporation of the solvent and subsequent addition of a hydrolysis-labile ester of formic acid. The ester absorbs traces of moisture (suppression of urea formation), neutralizes alkalinity (ammonia) and continually releases small amounts of formic acid. [15]
Cyanamide, under the trade name Dormex, is a common agricultural rest-breaking agent applied in spring to stimulate uniform opening of buds, early foliation and bloom. Cyanamide can effectively compensate for the moderate lack of chilling units accumulated in the previous autumn and save the harvest that would otherwise be lost. It is particularly effective for woody plants such as blueberries, grapes, apples, peaches and kiwifruit. Most recently the product was approved for use on almonds and pistachios in the USA. Overdosage, high concentration and error in timing of application can damage the buds (especially of peach trees). [16] Growers may avoid damage by applying 30 days prior to bud break according to the label.
A 50% aqueous solution of cyanamide is also used as a biocide (disinfectant) particularly in pig farming, because it effectively kills salmonella and shigella and fights flies in all stages of development. [17]
Cyanamide degrades via hydrolysis to urea, an excellent fertilizer. Fungi, like Myrothecium verrucaria , accelerate this process utilizing the enzyme cyanamide hydratase. [18]
Cyanamide is the name for a functional group with the formula R1R2N−C≡N where R1 and R2 can be a variety of groups. These compounds are called cyanamides. One example is naphthylcyanamide, C10H7N(CH3)CN, which has been produced by the von Braun reaction, [19] a general method for the conversion of tertiary amines to cyanamides using cyanogen bromide as reagent. [20] Alternatively, secondary amines can attack an aryl cyanate to give a carbamimidate; heating then eliminates the arenol to give a cyanamide. A similar reaction occurs with sulfonyl cyanides, but thiocyanates require a thiophilic metal to induce elimination. [21] : 1389
Some cyanamides where R1 and R2 are identical alkyl groups are prepared directly by alkylation of a salt of the parent cyanamide. [11] Likewise, acyl cyanamides can be formed from an acyl chloride and cyanamide, often with a base. [21] : 1388
Alternatively, dehydration of ureas or dehydrosulfurization of thioureas can produce cyanamides, sometimes with rearrangement. [21] : 1390–1392 Isonitrile dichlorides react with ammonia to give cyanamides. [21] : 1392 As a stabler valence isomer of carbodiimides, cyanamides form when carbodiimides are heated or undergo electrophilic substitution. [21] : 1393
Secondary cyanamides are stable, but primary cyanamides trimerize to the corresponding triazine. [21] : 1398
Cyanamides are more acidic and less basic than alkylamines, protonating at the terminal nitrogen. However, nickel(0) complexes are known in which nickel coordinates to both nitrogen atoms. When protonated, the central carbon is very electrophilic, and will add a variety of nucleophiles. [21] : 1393–1395, 1399
Due to its high permanent dipole moment (i.e., 4.32 ± 0.08 D), [22] cyanamide was detected in spectral emissions coming from the Sgr B2 molecular cloud (T < 100 K) through its microwave transitions as the first known interstellar molecule containing the NCN frame. [23]
It is used as an alcohol-deterrent drug in Canada, Europe, and Japan. [3]
Cyanamide has a modest toxicity in humans. [24] Workplace exposure to hydrogen cyanamide sprays or exposure in people living in the vicinity of spraying have been reported as causing respiratory irritation, contact dermatitis, headache, and gastrointestinal symptoms of nausea, vomiting, or diarrhea. [24]
In organic chemistry, an amide, also known as an organic amide or a carboxamide, is a compound with the general formula R−C(=O)−NR′R″, where R, R', and R″ represent any group, typically organyl groups or hydrogen atoms. The amide group is called a peptide bond when it is part of the main chain of a protein, and an isopeptide bond when it occurs in a side chain, as in asparagine and glutamine. It can be viewed as a derivative of a carboxylic acid with the hydroxyl group replaced by an amine group ; or, equivalently, an acyl (alkanoyl) group joined to an amine group.
In organic chemistry, a ketone is an organic compound with the structure R−C(=O)−R', where R and R' can be a variety of carbon-containing substituents. Ketones contain a carbonyl group −C(=O)−. The simplest ketone is acetone, with the formula (CH3)2CO. Many ketones are of great importance in biology and industry. Examples include many sugars (ketoses), many steroids, and the solvent acetone.
N,N-Dimethylaniline (DMA) is an organic chemical compound, a substituted derivative of aniline. It is a tertiary amine, featuring a dimethylamino group attached to a phenyl group. This oily liquid is colourless when pure, but commercial samples are often yellow. It is an important precursor to dyes such as crystal violet.
Hydrazones are a class of organic compounds with the structure R1R2C=N−NH2. They are related to ketones and aldehydes by the replacement of the oxygen =O with the =N−NH2 functional group. They are formed usually by the action of hydrazine on ketones or aldehydes.
In organic chemistry, an imine is a functional group or organic compound containing a carbon–nitrogen double bond. The nitrogen atom can be attached to a hydrogen or an organic group (R). The carbon atom has two additional single bonds. Imines are common in synthetic and naturally occurring compounds and they participate in many reactions.
In organic chemistry, a nitrile is any organic compound that has a −C≡N functional group. The name of the compound is composed of a base, which includes the carbon of the −C≡N, suffixed with "nitrile", so for example CH3CH2C≡N is called "propionitrile". The prefix cyano- is used interchangeably with the term nitrile in industrial literature. Nitriles are found in many useful compounds, including methyl cyanoacrylate, used in super glue, and nitrile rubber, a nitrile-containing polymer used in latex-free laboratory and medical gloves. Nitrile rubber is also widely used as automotive and other seals since it is resistant to fuels and oils. Organic compounds containing multiple nitrile groups are known as cyanocarbons.
In organic chemistry, an acyl halide is a chemical compound derived from an oxoacid by replacing a hydroxyl group with a halide group.
Diazomethane is an organic chemical compound with the formula CH2N2, discovered by German chemist Hans von Pechmann in 1894. It is the simplest diazo compound. In the pure form at room temperature, it is an extremely sensitive explosive yellow gas; thus, it is almost universally used as a solution in diethyl ether. The compound is a popular methylating agent in the laboratory, but it is too hazardous to be employed on an industrial scale without special precautions. Use of diazomethane has been significantly reduced by the introduction of the safer and equivalent reagent trimethylsilyldiazomethane.
Thiourea is an organosulfur compound with the formula SC(NH2)2 and the structure H2N−C(=S)−NH2. It is structurally similar to urea, except that the oxygen atom is replaced by a sulfur atom ; however, the properties of urea and thiourea differ significantly. Thiourea is a reagent in organic synthesis. Thioureas are a broad class of compounds with the general structure R2N−C(=S)−NR2.
Trimethylaluminium is one of the simplest examples of an organoaluminium compound. Despite its name it has the formula Al2(CH3)6 (abbreviated as Al2Me6 or TMA), as it exists as a dimer. This colorless liquid is pyrophoric. It is an industrially important compound, closely related to triethylaluminium.
Amidines are organic compounds with the functional group RC(NR)NR2, where the R groups can be the same or different. They are the imine derivatives of amides (RC(O)NR2). The simplest amidine is formamidine, HC(=NH)NH2.
N,N′-Dicyclohexylcarbodiimide (DCC or DCCD) is an organic compound with the chemical formula (C6H11N)2C. It is a waxy white solid with a sweet odor. Its primary use is to couple amino acids during artificial peptide synthesis. The low melting point of this material allows it to be melted for easy handling. It is highly soluble in dichloromethane, tetrahydrofuran, acetonitrile and dimethylformamide, but insoluble in water.
In organic chemistry, a carbodiimide is a functional group with the formula RN=C=NR. On Earth they are exclusively synthetic, but in interstellar space the parent compound HN=C=NH has been detected by its maser emissions.
In organic chemistry, an azo coupling is an reaction between a diazonium compound and another aromatic compound that produces an azo compound. In this electrophilic aromatic substitution reaction, the aryldiazonium cation is the electrophile, and the activated carbon, serves as a nucleophile. Classical coupling agents are phenols and naphthols. Usually the diazonium reagent attacks at the para position of the coupling agent. When the para position is occupied, coupling occurs at a ortho position, albeit at a slower rate.
In organic chemistry, an α-halo ketone is a functional group consisting of a ketone group or more generally a carbonyl group with an α-halogen substituent. α-Halo ketones are alkylating agents. Prominent α-halo ketones include phenacyl bromide and chloroacetone.
The Dakin oxidation (or Dakin reaction) is an organic redox reaction in which an ortho- or para-hydroxylated phenyl aldehyde (2-hydroxybenzaldehyde or 4-hydroxybenzaldehyde) or ketone reacts with hydrogen peroxide (H2O2) in base to form a benzenediol and a carboxylate. Overall, the carbonyl group is oxidised, whereas the H2O2 is reduced.
Diethylamine is an organic compound with the formula (CH3CH2)2NH. It is a secondary amine. It is a flammable, weakly alkaline liquid that is miscible with most solvents. It is a colorless liquid, but commercial samples often appear brown due to impurities. It has a strong ammonia-like odor.
In organic chemistry, thioureas are members of a family of organosulfur compounds with the formula S=C(NR2)2 and structure R2N−C(=S)−NR2. The parent member of this class of compounds is thiourea. Substituted thioureas are found in several commercial chemicals.
4-Nitroaniline, p-nitroaniline or 1-amino-4-nitrobenzene is an organic compound with the formula C6H6N2O2. A yellow solid, it is one of three isomers of nitroaniline. It is an intermediate in the production of dyes, antioxidants, pharmaceuticals, gasoline, gum inhibitors, poultry medicines, and as a corrosion inhibitor.
Hydroxylamine-O-sulfonic acid (HOSA) or aminosulfuric acid is the inorganic compound with molecular formula H3NO4S that is formed by the sulfonation of hydroxylamine with oleum. It is a white, water-soluble and hygroscopic, solid, commonly represented by the condensed structural formula H2NOSO3H, though it actually exists as a zwitterion and thus is more accurately represented as +H3NOSO3−. It is used as a reagent for the introduction of amine groups (–NH2), for the conversion of aldehydes into nitriles and alicyclic ketones into lactams (cyclic amides), and for the synthesis of variety of nitrogen-containing heterocycles.
{{cite journal}}
: CS1 maint: multiple names: authors list (link).