Nexus for Exoplanet System Science

Last updated

Nexus for Exoplanet System Science
Legal statusActive
PurposeTo search for life beyond the Solar System
Parent organization
US$1012 million [1]
Website NASA Ames Research Center

The Nexus for Exoplanet System Science (NExSS) initiative is a National Aeronautics and Space Administration (NASA) virtual institute designed to foster interdisciplinary collaboration in the search for life on exoplanets. Led by the Ames Research Center, the NASA Exoplanet Science Institute, and the Goddard Institute for Space Studies, NExSS will help organize the search for life on exoplanets from participating research teams and acquire new knowledge about exoplanets and extrasolar planetary systems. [2] [3] [4] [5] [6]



What does life produce? NASA-WhatBiosignaturesDoesLifeProduce-20180625.jpg
What does life produce?

In 1995, astronomers using ground-based observatories discovered 51 Pegasi b, the first exoplanet orbiting a Sun-like star. [7] NASA launched the Kepler space telescope in 2009 to search for Earth-size exoplanets. By 2015, they had confirmed more than a thousand exoplanets, [note 1] while several thousand additional candidates awaited confirmation. [9]

To help coordinate efforts to sift through and understand the data, NASA needed a way for researchers to collaborate across disciplines. The success of the Virtual Planetary Laboratory research network at the University of Washington led Mary A. Voytek, director of the NASA Astrobiology Program, to model its structure and create the Nexus for Exoplanet System Science (NExSS) initiative. [1] [10] Leaders from three NASA research centers will run the program: Natalie Batalha of NASA's Ames Research Center, Dawn Gelino of the NASA Exoplanet Science Institute, and Anthony Del Genio of NASA's Goddard Institute for Space Studies. [11]


Functioning as a virtual institute, NExSS is currently composed of sixteen interdisciplinary science teams from ten universities, three NASA centers and two research institutes, who will work together to search for habitable exoplanets that can support life. [12] The US teams were initially selected from a total of about 200 proposals; however, the coalition is expected to expand nationally and internationally as the project gets underway. [13] Teams will also work with amateur citizen scientists who will have the ability to access the public Kepler data and search for exoplanets. [11]

NExSS will draw from scientific expertise in each of the four divisions of the Science Mission Directorate: Earth science, planetary science, heliophysics and astrophysics. [2] NExSS research will directly contribute to understanding and interpreting future exoplanet data from the upcoming launches of the Transiting Exoplanet Survey Satellite and James Webb Space Telescope, as well as the planned Nancy Grace Roman Space Telescope mission. [2]

Current NExSS research projects as of 2015: [2]

Subject PI InstitutionDescriptionNotes
Planetary formation and properties James Graham University of California, Berkeley
Stanford University
"Exoplanets Unveiled"; Direct imaging, Doppler and transit methods, using the Gemini Planet Imager of the Gemini South Telescope, the Keck Observatory, and the proposed Thirty Meter Telescope. [14] [15] [16]
Stellar proximity and Earth-like planet formation Daniel Apai University of Arizona "Earths in Other Solar Systems"; development of computer model; Large Binocular Telescope [17] [18]
Planetary formation Eric Ford Penn State University Statistical models applied to Kepler data [19]
Atmospheres of Hot Jupiters Jason Wright Penn State UniversityDiffuser-assisted photometry using ground based observatories [19]
Chemistry of planetary atmospheres Hiroshi Imanaka SETI Institute Habitable zones; atmosphere of Titan as an analogue to exoplanet atmospheres [20]
Geochemical cycle of exoplanets Steven Desch Arizona State University "Periodic Table of Planets"; geochemical modeling [21]
Atmospheres of exoplanets Drake Deming University of Maryland Analysis of Kepler data to study exoplanet atmospheres [22]
Atmospheric evolution William B. Moore Hampton University "Living, Breathing Planet". Determine past habitability of planets in the Solar System and apply results to exoplanetary habitability [23] [24]
Atmospheric structure and spectra of exoplanets Jonathan Fortney University of California, Santa Cruz New tools to analyze exoplanet transmission spectra to identify molecular features in the atmosphere [25]
Planetary formation and evolution Hannah Jang-Condell University of Wyoming Modeling planet formation, focusing on transitional, protostellar disks [26] [27]
Formation of exoplanets Neal Turner Jet Propulsion Laboratory Computer modeling of exoplanet formation [22]
Exoplanet exospheres Adam Jensen University of Nebraska-Kearney Detection and evolution of exospheres [28]
Habitable exoplanets Victoria Meadows University of Washington Virtual Planetary Laboratory (VPL) [10] [29]
Planetary surface habitability Anthony Del Genio Goddard Institute for Space Studies Planet simulation using the GISS Earth global climate model [30]
Tidal dynamics and orbital evolution of terrestrial exoplanets Wade Henning University of Maryland, College Park
Goddard Space Flight Center
Study of how tidal heating can prevent the ejection of young, Earth-sized planets [19] [31]
Detection of Earth-size exoplanets Debra Fischer Yale University Design new spectrometer to detect Earth-size exoplanets; improve access to citizen science with Planet Hunters [32]

See also


  1. There are 5,307 confirmed exoplanets as of February 1, 2023. [8]

Related Research Articles

<span class="mw-page-title-main">Astrobiology</span> Science concerned with life in the universe

Astrobiology is a scientific field within the life and environmental sciences that studies the origins, early evolution, distribution, and future of life in the universe through investigating its deterministic conditions and contingent events. As a discipline, astrobiology is founded on the premise that life may exist beyond Earth.

<span class="mw-page-title-main">Extraterrestrial life</span> Life that did not originate on Earth

Extraterrestrial life, colloquially referred to as alien life, is life that may occur outside of Earth and which did not originate on Earth. No extraterrestrial life has yet been conclusively detected, although efforts are underway. Such life might range from simple forms like prokaryotes to intelligent beings, possibly bringing forth civilizations that might be far more advanced than humankind. The Drake equation speculates about the existence of sapient life elsewhere in the universe. The science of extraterrestrial life is known as astrobiology.

<span class="mw-page-title-main">SETI Institute</span> Not-for-profit research organization

The SETI Institute is a not-for-profit research organization incorporated in 1984 whose mission is to explore, understand, and explain the origin and nature of life in the universe, and to use this knowledge to inspire and guide present and future generations, sharing knowledge with the public, the press, and the government. SETI stands for the "search for extraterrestrial intelligence".

<span class="mw-page-title-main">Circumstellar habitable zone</span> Orbits where planets may have liquid surface water

In astronomy and astrobiology, the circumstellar habitable zone (CHZ), or simply the habitable zone, is the range of orbits around a star within which a planetary surface can support liquid water given sufficient atmospheric pressure. The bounds of the CHZ are based on Earth's position in the Solar System and the amount of radiant energy it receives from the Sun. Due to the importance of liquid water to Earth's biosphere, the nature of the CHZ and the objects within it may be instrumental in determining the scope and distribution of planets capable of supporting Earth-like extraterrestrial life and intelligence.

A biosignature is any substance – such as an element, isotope, or molecule – or phenomenon that provides scientific evidence of past or present life. Measurable attributes of life include its complex physical or chemical structures and its use of free energy and the production of biomass and wastes. A biosignature can provide evidence for living organisms outside the Earth and can be directly or indirectly detected by searching for their unique byproducts.

The NASA Astrobiology Institute (NAI) was established in 1998 by the National Aeronautics and Space Administration (NASA) "to develop the field of astrobiology and provide a scientific framework for flight missions." In December 2019 the institute's activities were suspended.

<span class="mw-page-title-main">Planetary habitability</span> Known extent to which a planet is suitable for life

Planetary habitability is the measure of a planet's or a natural satellite's potential to develop and maintain environments hospitable to life. Life may be generated directly on a planet or satellite endogenously or be transferred to it from another body, through a hypothetical process known as panspermia. Environments do not need to contain life to be considered habitable nor are accepted habitable zones (HZ) the only areas in which life might arise.

<span class="mw-page-title-main">Habitability of natural satellites</span> Measure of the potential of natural satellites to have environments hospitable to life

The habitability of natural satellites is a measure of their potential to sustain life in favorable circumstances. Habitable environments do not necessarily harbor life. Natural satellite habitability is a new area that is significant to astrobiology for various reasons, the most important of which being that natural satellites are expected to outnumber planets by a large margin, and it is projected that habitability parameters will be comparable to those of planets. There are, nevertheless, significant environmental variables that affect moons as prospective alien life locations. The strongest candidates for natural satellite habitability are currently icy satellites such as those of Jupiter and Saturn—Europa and Enceladus respectively, although if life exists in either place, it would probably be confined to subsurface habitats. Historically, life on Earth was thought to be strictly a surface phenomenon, but recent studies have shown that up to half of Earth's biomass could live below the surface. Europa and Enceladus exist outside the circumstellar habitable zone which has historically defined the limits of life within the Solar System as the zone in which water can exist as liquid at the surface. In the Solar System's habitable zone, there are only three natural satellites—the Moon, and Mars's moons Phobos and Deimos —none of which sustain an atmosphere or water in liquid form. Tidal forces are likely to play as significant a role providing heat as stellar radiation in the potential habitability of natural satellites.

<span class="mw-page-title-main">Earth analog</span> Planet with environment similar to Earths

An Earth analog, also called an Earth analogue, Earth twin, or second Earth, is a planet or moon with environmental conditions similar to those found on Earth. The term Earth-like planet is also used, but this term may refer to any terrestrial planet.

<span class="mw-page-title-main">Mary Voytek</span> Director of NASA Astrobiology Program and USGS microbiologist

Dr. Mary A. Voytek is the director of the National Aeronautics and Space Administration (NASA) Astrobiology Program at NASA Headquarters in Washington, D.C. In 2015, Voytek formed Nexus for Exoplanet System Science (NExSS), a systems science initiative by NASA, to search for life on exoplanets. Voytek came to NASA from the U.S. Geological Survey in Reston, VA, where she headed the USGS Microbiology and Molecular Ecology Laboratory from 1998 to 2009.

<span class="mw-page-title-main">Lisa Kaltenegger</span> Austrian astronomer

Lisa Kaltenegger is an Austrian astronomer with expertise in the modeling and characterization of exoplanets and the search for life. On July 1, 2014, she was appointed Associate Professor of Astronomy at Cornell University. Previously, she held a joint position at the Max Planck Institute for Astronomy in Heidelberg where she was the Emmy Noether Research Group Leader for the "Super-Earths and Life" group, and at the Center for Astrophysics | Harvard & Smithsonian in Cambridge, MA. She was appointed Lecturer in 2008 at Harvard University and 2011 at University of Heidelberg.

<span class="mw-page-title-main">Kepler-62f</span> Super-Earth orbiting Kepler-62

Kepler-62f is a super-Earth exoplanet orbiting within the habitable zone of the star Kepler-62, the outermost of five such planets discovered around the star by NASA's Kepler spacecraft. It is located about 990 light-years from Earth in the constellation of Lyra.

The Virtual Planetary Laboratory (VPL) is a virtual institute based at the University of Washington that studies how to detect exoplanetary habitability and their potential biosignatures. First formed in 2001, the VPL is part of the NASA Astrobiology Institute (NAI) and connects more than fifty researchers at twenty institutions together in an interdisciplinary effort. VPL is also part of the Nexus for Exoplanet System Science (NExSS) network, with principal investigator Victoria Meadows leading the NExSS VPL team.

The Carl Sagan Institute: Pale Blue Dot and Beyond was founded in 2014 at Cornell University in Ithaca, New York to further the search for habitable planets and moons in and outside the Solar System. It is focused on the characterization of exoplanets and the instruments to search for signs of life in the universe. The founder and current director of the institute is astronomer Lisa Kaltenegger.

Breakthrough Initiatives is a science-based program founded in 2015 and funded by Julia and Yuri Milner, also of Breakthrough Prize, to search for extraterrestrial intelligence over a span of at least 10 years. The program is divided into multiple projects. Breakthrough Listen will comprise an effort to search over 1,000,000 stars for artificial radio or laser signals. A parallel project called Breakthrough Message is an effort to create a message "representative of humanity and planet Earth". The project Breakthrough Starshot, co-founded with Mark Zuckerberg, aims to send a swarm of probes to the nearest star at about 20% the speed of light. The project Breakthrough Watch aims to identify and characterize Earth-sized, rocky planets around Alpha Centauri and other stars within 20 light years of Earth. Breakthrough plans to send a mission to Saturn's moon Enceladus, in search for life in its warm ocean, and in 2018 signed a partnership agreement with NASA for the project.

<span class="mw-page-title-main">Kepler-452b</span> Super-Earth exoplanet orbiting Kepler-452

Kepler-452b is a super-Earth exoplanet orbiting within the inner edge of the habitable zone of the sun-like star Kepler-452 and is the only planet in the system discovered by Kepler. It is located about 1,800 light-years (550 pc) from Earth in the constellation of Cygnus.

Aomawa L. Shields is an associate professor of physics and astronomy at UC Irvine. Her research is focused on exploring the climate and habitability of small exoplanets, using data from observatories including NASA's Kepler spacecraft. Shields was a 2015 TED Fellow, and is active in science communication and outreach. She develops interactive workshops to encourage self-esteem and teach about astronomy, combines her training in theater and her career in astronomy.

<span class="mw-page-title-main">Stephen R. Kane</span>

Stephen Kane is a full professor of astronomy and planetary astrophysics at the University of California, Riverside who specializes in exoplanetary science. His work covers a broad range of exoplanet detection methods, including the microlensing, transit, radial velocity, and imaging techniques. He is a leading expert on the topic of planetary habitability and the habitable zone of planetary systems. He has published hundreds of peer reviewed scientific papers and has discovered/co-discovered several hundred planets orbiting other stars. He is a prolific advocate of interdisciplinarity science and studying Venus as an exoplanet analog.

<span class="mw-page-title-main">Habitable Exoplanet Imaging Mission</span> Proposed space observatory to characterize exoplanets atmospheres

The Habitable Exoplanet Observatory (HabEx) is a space telescope concept that would be optimized to search for and image Earth-size habitable exoplanets in the habitable zones of their stars, where liquid water can exist. HabEx would aim to understand how common terrestrial worlds beyond the Solar System may be and determine the range of their characteristics. It would be an optical, UV and infrared telescope that would also use spectrographs to study planetary atmospheres and eclipse starlight with either an internal coronagraph or an external starshade.

<span class="mw-page-title-main">Habitability of yellow dwarf systems</span> Area of study

Habitability of yellow dwarf systems defines the suitability for life of exoplanets belonging to yellow dwarf stars. These systems are the object of study among the scientific community because they are considered the most suitable for harboring living organisms, together with those belonging to K-type stars.


  1. 1 2 Tollefson, Jeff (April 17, 2015). "Climate scientists join search for alien Earths." Nature 520, 420. doi:10.1038/520420a.
  2. 1 2 3 4 Loff, Sarah (April 21, 2015). "NASA’s NExSS Coalition to Lead Search for Life on Distant Worlds." NASA. Retrieved April 22, 2015.
  3. Gronstal, Aaron L. (April 2015). "NASA's Exoplanet Nexus — Part 1: A History in Climate Studies, Part II: Looking to the Stars". NASA. GISS. Retrieved April 25, 2015.
  4. David J. Des Marais; et al. (2008). "The NASA Astrobiology Roadmap" (PDF). Astrobiology. 8 (4): 718. Bibcode:2008AsBio...8..715D. doi:10.1089/ast.2008.0819. PMID   18793098.
  5. 1 2 Cofield, Calla; Chou, Felicia (June 25, 2018). "NASA Asks: Will We Know Life When We See It?". NASA . Retrieved June 25, 2018.
  6. 1 2 Staff (June 25, 2018). "UCR team among scientists developing guidebook for finding life beyond earth - Major series of review articles outlines past, present, and future of searching for life on other planets". University of California - Riverside . Retrieved June 26, 2018.
  7. "NASA Taps UW Scientist in Search for Life Beyond the Solar System." University of Wyoming News. Retrieved April 25, 2015.
  8. Schneider, J. "Interactive Extra-solar Planets Catalog". The Extrasolar Planets Encyclopedia .
  9. Netburn, Deborah (April 24, 2015). "NASA gathers scientists to help find life beyond Earth". Los Angeles Times. Retrieved April 25, 2015.
  10. 1 2 Kelley, Peter (April 22, 2015). "UW key player in new NASA coalition to search for life on distant worlds." UW Today. Retrieved May 3, 2015.
  11. 1 2 Carreau, Mark (April 24, 2015). "NASA Widens Circle of Experts In Search for Life Beyond Earth." Aviation Week. Retrieved April 25, 2015.
  12. Sanders, Robert (April 22, 2015). "Astronomers join forces to speed discovery of habitable worlds." UC Berkeley News Center. Retrieved April 22, 2015.
  13. Cassidy, Chris (April 25, 2015). "NASA leaves local aerospace stars Harvard, MIT off ‘unprecedented’ mission to find extraterrestrial life." Boston Herald. Retrieved April 26, 2015.
  14. Carey, Bjorn (April 27, 2015). "Stanford and UC Berkeley partner on NASA's new effort to detect life on other planets." Stanford Report. Retrieved April 30, 2015.
  15. Goldberg, Logan (April 23, 2015). "UC Berkeley astronomers, Stanford physics professor lead NASA-funded project to discover habitable planets." The Daily Californian. Retrieved April 30, 2015.
  16. Sanders, Robert (April 22, 2015). "Astronomers join forces to speed discovery of habitable worlds." UC Berkeley News Center. Retrieved April 30, 2015.
  17. Beal, Tom (April 22, 2015). "UA, ASU teams to search for alien life." Arizona Daily Star. Retrieved April 30, 2015.
  18. Stolte, Daniel (April 20, 2015). "UA to Join 'A-Team' in Search for Earthlike Planets [Usurped!]." UA News. Retrieved April 30, 2015.
  19. 1 2 3 Cantillo, Laura; Barbara Kennedy (April 21, 2015). "New NASA coalition to lead search for life on distant worlds includes two leaders at Penn State." Pennsylvania State University Science News. Retrieved May 1, 2015.
  20. (April 21, 2015). A New Collaboration to Aid the Search for Life on Distant Worlds. SETI Institute. Retrieved April 25, 2015.
  21. Cassis, Nikki (April 21, 2015). "ASU team searching for signs of life in the stars." ASU News. Retrieved April 30, 2015.
  22. 1 2 "NASA's NExSS Coalition to Lead Search for Life on Distant Worlds." Jet Propulsion Laboratory. California Institute of Technology. April 21, 2015. Retrieved May 3, 2015.
  23. Dietrich, Tamara (May 1, 2015). "Hampton University professor chosen to head NASA planet project." Daily Press. Retrieved May 3, 2015.
  24. "HU research team selected to lead NASA search for life on distant worlds." HU News. April 28, 2015. Retrieved May 3, 2015.
  25. Stephens, Tim (April 21, 2015). "UC Santa Cruz part of NASA coalition leading search for life on distant worlds." UC Santa Cruz News Center. Retrieved May 2, 2015.
  26. Victor, Jeff (May 1, 2015). "UW professor to head NASA team." The Branding Iron. Retrieved May 3, 2015.
  27. "NASA Taps UW Scientist in Search for Life Beyond the Solar System." Sweetwater Now. April 23, 2015. Retrieved May 3, 2015.
  28. Gottula, Todd (April 28, 2015). "UNK faculty Adam Jensen picked for NASA exoplanet project." UNK News. Retrieved May 1, 2015.
  29. Jensen, Kyle (April 29, 2015). "UW-led ‘super group’ boosts NASA’s quest for extraterrestrial life." Seattle Post-Intelligencer. Retrieved May 3, 2015.
  30. Scharf, Caleb A. (April 24, 2015). NASA Goes Big and Bold for Exoplanet Science. Scientific American. Retrieved April 25, 2015.
  31. "NASA GISS To Help Lead Search for Habitable Exoplanets". NASA, Goddard Institute for Space Studies. NASA.
  32. Shelton, Jim (April 21, 2015). "Yale joins new NASA team searching for life outside the solar system." Yale News. Retrieved May 1, 2015.