General information [1] | |
---|---|
Average surface pressure | 1.5 bars (147 kPa) [2] |
Chemical species | Molar fraction |
Composition [1] | |
Nitrogen | 94.2% |
Methane | 5.65% |
Hydrogen | 0.099% |
Argon | 0.0043% [3] |
The atmosphere of Titan is the dense layer of gases surrounding Titan, the largest moon of Saturn. Titan is the only natural satellite of a planet in the Solar System with an atmosphere that is denser than the atmosphere of Earth and is one of two moons with an atmosphere significant enough to drive weather (the other being the atmosphere of Triton). [4] Titan's lower atmosphere is primarily composed of nitrogen (94.2%), methane (5.65%), and hydrogen (0.099%). [1] There are trace amounts of other hydrocarbons, such as ethane, diacetylene, methylacetylene, acetylene, propane, PAHs [5] and of other gases, such as cyanoacetylene, hydrogen cyanide, carbon dioxide, carbon monoxide, cyanogen, acetonitrile, argon and helium. [3] The isotopic study of nitrogen isotopes ratio also suggests acetonitrile may be present in quantities exceeding hydrogen cyanide and cyanoacetylene. [6] The surface pressure is about 50% higher than on Earth at 1.5 bars (147 kPa) [2] which is near the triple point of methane and allows there to be gaseous methane in the atmosphere and liquid methane on the surface. [7] The orange color as seen from space is produced by other more complex chemicals in small quantities, possibly tholins, tar-like organic precipitates. [8]
The presence of a significant atmosphere was first suspected by Spanish astronomer Josep Comas i Solà, who observed distinct limb darkening on Titan in 1903 from the Fabra Observatory in Barcelona, Catalonia. [9] This observation was confirmed by Dutch astronomer Gerard P. Kuiper in 1944 using a spectroscopic technique that yielded an estimate of an atmospheric partial pressure of methane of the order of 100 millibars (10 kPa). [10] Subsequent observations in the 1970s showed that Kuiper's figures had been significant underestimates; methane abundances in Titan's atmosphere were ten times higher, and the surface pressure was at least double what he had predicted. The high surface pressure meant that methane could only form a small fraction of Titan's atmosphere. [11] In 1980, Voyager 1 made the first detailed observations of Titan's atmosphere, revealing that its surface pressure was higher than Earth's, at 1.5 bars (about 1.48 times that of Earth's). [12]
The joint NASA/ESA Cassini-Huygens mission provided a wealth of information about Titan, and the Saturn system in general, since entering orbit on July 1, 2004. It was determined that Titan's atmospheric isotopic abundances were evidence that the abundant nitrogen in the atmosphere came from materials in the Oort cloud, associated with comets, and not from the materials that formed Saturn in earlier times. [13] It was determined that complex organic chemicals could arise on Titan, [14] including polycyclic aromatic hydrocarbons, [15] [5] propylene, [16] and methane. [17] [18]
The Dragonfly mission by NASA is planning to land a large aerial vehicle on Titan in 2034. [19] The mission will study Titan's habitability and prebiotic chemistry at various locations. [20] The drone-like aircraft will perform measurements of geologic processes, and surface and atmospheric composition. [21]
Observations from the Voyager space probes have shown that the Titanean atmosphere is denser than Earth's, with a surface pressure about 1.48 times that of Earth's. [12] Titan's atmosphere is about 1.19 times as massive as Earth's overall, [22] or about 7.3 times more massive on a per surface area basis. It supports opaque haze layers that block most visible light from the Sun and other sources and renders Titan's surface features obscure. The atmosphere is so thick and the gravity so low that humans could fly through it by flapping "wings" attached to their arms. [23] Titan's lower gravity means that its atmosphere is far more extended than Earth's; even at a distance of 975 km, the Cassini spacecraft had to make adjustments to maintain a stable trajectory against atmospheric drag. [24] The atmosphere of Titan is opaque at many wavelengths and a complete reflectance spectrum of the surface is impossible to acquire from the outside. [25] It was not until the arrival of Cassini–Huygens in 2004 that the first direct images of Titan's surface were obtained. The Huygens probe was unable to detect the direction of the Sun during its descent, and although it was able to take images from the surface, the Huygens team likened the process to "taking pictures of an asphalt parking lot at dusk". [26]
Titan's vertical atmospheric structure is similar to Earth. They both have a troposphere, stratosphere, mesosphere, and thermosphere. However, Titan's lower surface gravity creates a more extended atmosphere, with scale heights of 15–50 km (9–31 mi) in comparison to 5–8 km (3.1-5 mi) on Earth. [7] Voyager data, combined with data from Huygens and radiative-convective models provide increased understanding of Titan's atmospheric structure. [27]
Titan's atmospheric chemistry is diverse and complex. Each layer of the atmosphere has unique chemical interactions occurring within that are then interacting with other sub layers in the atmosphere. For instance, the hydrocarbons are thought to form in Titan's upper atmosphere in reactions resulting from the breakup of methane by the Sun's ultraviolet light, producing a thick orange smog. [33] The table below highlights the production and loss mechanisms of the most abundant photochemically produced molecules in Titan's atmosphere. [7]
Molecule | Production | Loss |
---|---|---|
Hydrogen | Methane photolysis | Escape |
Carbon Monoxide | ||
Ethane | Condensation | |
Acetylene | Condensation | |
Propane | Condensation | |
Ethylene | ||
Hydrogen Cyanide | Condensation | |
Carbon Dioxide | Condensation | |
Methylacetylene | ||
Diacetylene |
Titan's internal magnetic field is negligible, and perhaps even nonexistent, although studies in 2008 showed that Titan retains remnants of Saturn's magnetic field on the brief occasions when it passes outside Saturn's magnetosphere and is directly exposed to the solar wind. [34] [35] This may ionize and carry away some molecules from the top of the atmosphere. One interesting case was detected as an example of the coronal mass ejection impact onto Saturn's magnetosphere, causing Titan's orbit to be exposed to the shocked solar wind in the magnetosheath. This leads to the increased particle precipitation and the formation of extreme electron densities in Titan's ionosphere. [36] Its orbital distance of 20.3 Saturn radii does place it within Saturn's magnetosphere occasionally. However, the difference between Saturn's rotational period (10.7 hours) and Titan's orbital period (15.95 days) causes a relative speed of about 100 km/s between the Saturn's magnetized plasma and Titan. [35] That can actually intensify reactions causing atmospheric loss, instead of guarding the atmosphere from the solar wind. [37]
In November 2007, scientists uncovered evidence of negative ions with roughly 13 800 times the mass of hydrogen in Titan's ionosphere, which are thought to fall into the lower regions to form the orange haze which obscures Titan's surface. [38] The smaller negative ions have been identified as linear carbon chain anions with larger molecules displaying evidence of more complex structures, possibly derived from benzene. [39] These negative ions appear to play a key role in the formation of more complex molecules, which are thought to be tholins, and may form the basis for polycyclic aromatic hydrocarbons, cyanopolyynes and their derivatives. Remarkably, negative ions such as these have previously been shown to enhance the production of larger organic molecules in molecular clouds beyond our Solar System, [40] a similarity which highlights the possible wider relevance of Titan's negative ions. [41]
There is a pattern of air circulation found flowing in the direction of Titan's rotation, from west to east. In addition, seasonal variation in the atmospheric circulation has also been detected. Observations by Cassini of the atmosphere made in 2004 also suggest that Titan is a "super rotator", like Venus, with an atmosphere that rotates much faster than its surface. [42] The atmospheric circulation is explained by a big Hadley circulation that is occurring from pole to pole. [1]
Similar to the hydrological cycle on Earth, Titan features a methane cycle. [43] [44] This methane cycle results in surface formations that resemble formations we find on Earth. Lakes of methane and ethane are found across Titan's polar regions. Methane condenses into clouds in the atmosphere, and then precipitates onto the surface. This liquid methane then flows into the lakes. Some of the methane in the lakes will evaporate over time, and form clouds in the atmosphere again, starting the process over. However, since methane is lost in the thermosphere, there has to be a source of methane to replenish atmospheric methane. [44] Energy from the Sun should have converted all traces of methane in Titan's atmosphere into more complex hydrocarbons within 50 million years — a short time compared to the age of the Solar System. This suggests that methane must be somehow replenished by a reservoir on or within Titan itself. Most of the methane on Titan is in the atmosphere. Methane is transported through the cold trap at the tropopause. [45] Therefore the circulation of methane in the atmosphere influences the radiation balance and chemistry of other layers in the atmosphere. If there is a reservoir of methane on Titan, the cycle would only be stable over geologic timescales. [7]
Evidence that Titan's atmosphere contains over a thousand times more methane than carbon monoxide would appear to rule out significant contributions from cometary impacts, because comets are composed of more carbon monoxide than methane. That Titan might have accreted an atmosphere from the early Saturnian nebula at the time of formation also seems unlikely; in such a case, it ought to have atmospheric abundances similar to the solar nebula, including hydrogen and neon. [46] Many astronomers have suggested that the ultimate origin for the methane in Titan's atmosphere is from within Titan itself, released via eruptions from cryovolcanoes. [47] [48] [49]
Another possible source for methane replenishment in Titan's atmosphere is methane clathrates. [50] Clathrates are compounds in which an ice lattice surrounds a gas particle, much like a cage. In this case, methane gas is surrounded by a water crystal cage. [51] These methane clathrates could be present underneath Titan's icy surface, having formed much earlier in Titan's history. [52] Through the dissociation of methane clathrates, methane could be outgassed into the atmosphere, replenishing the supply. [51] [50]
On December 1, 2022, astronomers reported viewing clouds, likely made of methane, moving across Titan, using the James Webb Space Telescope. [53] [54]
Sky brightness and viewing conditions are expected to be quite different from Earth and Mars due to Titan's farther distance from the Sun (~10 AU) and complex haze layers in its atmosphere. The sky brightness model videos show what a typical sunny day may look like standing on the surface of Titan based on radiative transfer models. [55]
For astronauts who see with visible light, the daytime sky has a distinctly dark orange color and appears uniform in all directions due to significant Mie scattering from the many high-altitude haze layers. [55] The daytime sky is calculated to be ~100–1000 times dimmer than an afternoon on Earth, [55] which is similar to the viewing conditions of a thick smog or dense fire smoke. The sunsets on Titan are expected to be "underwhelming events", [55] where the Sun disappears about half-way up in the sky (~50° above the horizon) with no distinct change in color. After that, the sky will slowly darken until it reaches night. However, the surface is expected to remain as bright as the full Moon up to 1 Earth day after sunset. [55]
In near-infrared light, the sunsets resemble a Martian sunset or dusty desert sunset. [55] Mie scattering has a weaker influence at longer infrared wavelengths, allowing for more colorful and variable sky conditions. During the daytime, the Sun has a noticeable solar corona that transitions color from white to "red" over the afternoon. [55] The afternoon sky brightness is ~100 times dimmer than Earth. [55] As evening time approaches, the Sun is expected to disappear fairly close to the horizon. Titan's atmospheric optical depth is the lowest at 5 microns. [56] So, the Sun at 5 microns may even be visible when it is below the horizon due to atmospheric refraction. Similar to images of Martian sunsets from Mars rovers, a fan-like corona is seen to develop above the Sun due to scattering from haze or dust at high-altitudes. [55]
In regards to Saturn, the planet is nearly fixed in its position in the sky because Titan's orbit is tidally locked around Saturn. However, there is a small 3° east-to-west motion over a Titan year due to the orbital eccentricity, [57] similar to the analemma on Earth. Sunlight reflected off of Saturn, Saturnshine, is about 1000 times weaker than solar insolation on the surface of Titan. [57] Even though Saturn appears several times bigger in the sky than the Moon in Earth's sky, the outline of Saturn is masked out by the brighter Sun during the daytime. Saturn may become discernible at night, but only at a wavelength of 5 microns. This is due to two factors: the small optical depth of Titan's atmosphere at 5 microns [56] [58] and the strong 5 μm emissions from Saturn's night side. [59] In visible light, Saturn will make the sky on Titan's Saturn-facing side appear slightly brighter, similar to an overcast night with a full moon on Earth. [55] [57] Saturn's rings are hidden from view owing to the alignment of Titan's orbital plane and the plane of the rings. [57] Saturn is expected to show phases, akin to the phases of Venus on Earth, that partially illuminate the surface of Titan at night, except for eclipses. [57]
From outer space, Cassini images from near-infrared to UV wavelengths have shown that the twilight periods (phase angles > 150°) are brighter than the daytime on Titan. [60] This observation has not been observed on any other planetary body with a thick atmosphere. [60] The Titanean twilight outshining the dayside is due to a combination of Titan's atmosphere extending hundreds of kilometers above the surface and intense forward Mie scattering from the haze. [60] Radiative transfer models have not reproduced this effect. [55]
This section possibly contains original research .(July 2024) |
This section needs additional citations for verification .(July 2024) |
The temperature of Titan is increased over the blackbody temperature by a strong greenhouse effect caused by infrared absorption by pressure-induced opacity of Titan's atmosphere, but the greenhouse warming is somewhat reduced by an effect tagged by Pollack the anti-greenhouse effect, [61] [62] absorbing some incoming solar energy before it can reach the surface, leading to cooler surface temperatures than if methane were less abundant. The greenhouse effect increases surface temperature by 21 K, while the anti-greenhouse takes away half this effect, [62] reducing this to an increase of 12 K. [61]
When comparing the atmospheric temperature profiles of Earth [63] and Titan, [64] stark contrasts emerge. On Earth, the temperature typically increases as altitude decreases from 80 to 60 kilometers above the surface. In contrast, Titan’s temperature profile shows a decline over the same altitude range. This variation is largely due to the differing impacts of greenhouse and anti-greenhouse effects in Earth's and Titan's atmospheres, respectively.[ citation needed ]
Titan orbits within Saturn's magnetosphere for approximately 95% of its orbital period. [65] During this time, charged particles trapped in the magnetosphere interact with Titan's upper atmosphere as the moon passes by, leading to the generation of a denser haze. Consequently, the variability of Saturn’s magnetic field over its approximately 30-year orbital period could cause variations in these interactions, potentially increasing or decreasing the haze density.[ citation needed ] Although most observed variations in Titan's atmosphere during its orbital period are typically attributed to its direct interactions with sunlight, the influence of Saturn's magnetospheric changes is believed to play a non-negligible role. The interaction between Titan’s atmosphere and Saturn’s magnetic environment underscores the complex interplay between celestial bodies and their atmospheres, revealing a dynamic system shaped by both internal chemical processes and external astronomical conditions; future studies, if approached, may help to prove (or disprove) the impact of a changing magnetosphere on a dense atmosphere like that of Titan.[ citation needed ]
The persistence of a dense atmosphere on Titan has been enigmatic as the atmospheres of the structurally similar satellites of Jupiter, Ganymede and Callisto, are negligible. Although the disparity is still poorly understood, data from recent missions have provided basic constraints on the evolution of Titan's atmosphere.
Roughly speaking, at the distance of Saturn, solar insolation and solar wind flux are sufficiently low that elements and compounds that are volatile on the terrestrial planets tend to accumulate in all three phases. [66] Titan's surface temperature is also quite low, about 94 K (–179 C/–290 F). [67] [68] Consequently, the mass fractions of substances that can become atmospheric constituents are much larger on Titan than on Earth. In fact, current interpretations suggest that only about 50% of Titan's mass is silicates, [69] with the rest consisting primarily of various H2O (water) ices and NH3·H2O (ammonia hydrates). NH3, which may be the original source of Titan's atmospheric N2 (dinitrogen), may constitute as much as 8% of the NH3·H2O mass. Titan is most likely differentiated into layers, where the liquid water layer beneath ice Ih may be rich in NH3.[ jargon ]
Tentative constraints are available, with the current loss mostly due to low gravity [70] and solar wind [71] aided by photolysis. The loss of Titan's early atmosphere can be estimated with the 14N–15N isotopic ratio, because the lighter 14N is preferentially lost from the upper atmosphere under photolysis and heating. Because Titan's original 14N–15N ratio is poorly constrained, the early atmosphere may have had more N2 by factors ranging from 1.5 to 100 with certainty only in the lower factor. [70] Because N2 is the primary component (98%) of Titan's atmosphere, [72] the isotopic ratio suggests that much of the atmosphere has been lost over geologic time. Nevertheless, atmospheric pressure on its surface remains nearly 1.5 times that of Earth as it began with a proportionally greater volatile budget than Earth or Mars. [68] It is possible that most of the atmospheric loss was within 50 million years of accretion, from a highly energetic escape of light atoms carrying away a large portion of the atmosphere (hydrodynamic escape). [71] Such an event could be driven by heating and photolysis effects of the early Sun's higher output of X-ray and ultraviolet (XUV) photons.
Because Callisto and Ganymede are structurally similar to Titan, it is unclear why their atmospheres are insignificant relative to Titan's. Nevertheless, the origin of Titan's N2 via geologically ancient photolysis of accreted and degassed NH3, as opposed to degassing of N2 from accretionary clathrates, may be the key to a correct inference. Had N2 been released from clathrates, 36Ar and 38Ar that are inert primordial isotopes of the Solar System should also be present in the atmosphere, but neither has been detected in significant quantities. [73] The insignificant concentration of 36Ar and 38Ar also indicates that the ~40 K temperature required to trap them and N2 in clathrates did not exist in the Saturnian sub-nebula. Instead, the temperature may have been higher than 75 K, limiting even the accumulation of NH3 as hydrates. [74] Temperatures would have been even higher in the Jovian sub-nebula due to the greater gravitational potential energy release, mass, and proximity to the Sun, greatly reducing the NH3 inventory accreted by Callisto and Ganymede. The resulting N2 atmospheres may have been too thin to survive the atmospheric erosion effects that Titan has withstood. [74]
An alternative explanation is that cometary impacts release more energy on Callisto and Ganymede than they do at Titan due to the higher gravitational field of Jupiter. That could erode the atmospheres of Callisto and Ganymede, whereas the cometary material would actually build Titan's atmosphere. However, the 2H–1H (i.e. D–H) ratio of Titan's atmosphere is (2.3±0.5)×10−4, [73] nearly 1.5 times lower than that of comets. [72] The difference suggests that cometary material is unlikely to be the major contributor to Titan's atmosphere. [7] [75] Titan's atmosphere also contains over a thousand times more methane than carbon monoxide which supports the idea that cometary material is not a likely contributor since comets are composed of more carbon monoxide than methane.
Saturn is the sixth planet from the Sun and the second largest in the Solar System, after Jupiter. It is a gas giant, with an average radius of about nine times that of Earth. It has an eighth the average density of Earth, but is over 95 times more massive. Even though Saturn is almost as big as Jupiter, Saturn has less than a third the mass of Jupiter. Saturn orbits the Sun at a distance of 9.59 AU (1,434 million km), with an orbital period of 29.45 years.
Titan is the largest moon of Saturn and the second-largest in the Solar System. It is the only moon known to have an atmosphere denser than the Earth's and is the only known object in space—other than Earth—on which there is clear evidence that stable bodies of liquid exist. Titan is one of seven gravitationally rounded moons of Saturn and the second-most distant among them. Frequently described as a planet-like moon, Titan is 50% larger in diameter than Earth's Moon and 80% more massive. It is the second-largest moon in the Solar System after Jupiter's Ganymede and is larger than Mercury; yet Titan is only 40% as massive as Mercury, because Mercury is mainly iron and rock while much of Titan is ice, which is less dense.
Cassini–Huygens, commonly called Cassini, was a space-research mission by NASA, the European Space Agency (ESA), and the Italian Space Agency (ASI) to send a space probe to study the planet Saturn and its system, including its rings and natural satellites. The Flagship-class robotic spacecraft comprised both NASA's Cassini space probe and ESA's Huygens lander, which landed on Saturn's largest moon, Titan. Cassini was the fourth space probe to visit Saturn and the first to enter its orbit, where it stayed from 2004 to 2017. The two craft took their names from the astronomers Giovanni Cassini and Christiaan Huygens.
Iapetus is the outermost of Saturn's large moons. With an estimated diameter of 1,469 km (913 mi), it is the third-largest moon of Saturn and the eleventh-largest in the Solar System. Named after the Titan Iapetus, the moon was discovered in 1671 by Giovanni Domenico Cassini.
Huygens was an atmospheric entry robotic space probe that landed successfully on Saturn's moon Titan in 2005. Built and operated by the European Space Agency (ESA), launched by NASA, it was part of the Cassini–Huygens mission and became the first spacecraft to land on Titan and the farthest landing from Earth a spacecraft has ever made. The probe was named after the 17th-century Dutch astronomer Christiaan Huygens, who discovered Titan in 1655.
The Schumann resonances (SR) are a set of spectrum peaks in the extremely low frequency portion of the Earth's electromagnetic field spectrum. Schumann resonances are global electromagnetic resonances, generated and excited by lightning discharges in the cavity formed by the Earth's surface and the ionosphere.
Tholins are a wide variety of organic compounds formed by solar ultraviolet or cosmic ray irradiation of simple carbon-containing compounds such as carbon dioxide, methane or ethane, often in combination with nitrogen or water. Tholins are disordered polymer-like materials made of repeating chains of linked subunits and complex combinations of functional groups, typically nitriles and hydrocarbons, and their degraded forms such as amines and phenyls. Tholins do not form naturally on modern-day Earth, but they are found in great abundance on the surfaces of icy bodies in the outer Solar System, and as reddish aerosols in the atmospheres of outer Solar System planets and moons.
The anti-greenhouse effect is a process that occurs when energy from a celestial object's sun is absorbed or scattered by the object's upper atmosphere, preventing that energy from reaching the surface, which results in surface cooling – the opposite of the greenhouse effect. In an ideal case where the upper atmosphere absorbs all sunlight and is nearly transparent to infrared (heat) energy from the surface, the surface temperature would be reduced by 16%, which is a significant amount of cooling.
The atmosphere of Mars is the layer of gases surrounding Mars. It is primarily composed of carbon dioxide (95%), molecular nitrogen (2.85%), and argon (2%). It also contains trace levels of water vapor, oxygen, carbon monoxide, hydrogen, and noble gases. The atmosphere of Mars is much thinner and colder than Earth's having a max density 20g/m3 with a temperature generally below zero down to -60 Celsius. The average surface pressure is about 610 pascals (0.088 psi) which is 0.6% of the Earth's value.
The study of extraterrestrial atmospheres is an active field of research, both as an aspect of astronomy and to gain insight into Earth's atmosphere. In addition to Earth, many of the other astronomical objects in the Solar System have atmospheres. These include all the giant planets, as well as Mars, Venus and Titan. Several moons and other bodies also have atmospheres, as do comets and the Sun. There is evidence that extrasolar planets can have an atmosphere. Comparisons of these atmospheres to one another and to Earth's atmosphere broaden our basic understanding of atmospheric processes such as the greenhouse effect, aerosol and cloud physics, and atmospheric chemistry and dynamics.
Whether there is life on Titan, the largest moon of Saturn, is currently an open question and a topic of scientific assessment and research. Titan is far colder than Earth, but of all the places in the Solar System, Titan is the only place besides Earth known to have liquids in the form of rivers, lakes, and seas on its surface. Its thick atmosphere is chemically active and rich in carbon compounds. On the surface there are small and large bodies of both liquid methane and ethane, and it is likely that there is a layer of liquid water under its ice shell. Some scientists speculate that these liquid mixes may provide prebiotic chemistry for living cells different from those on Earth.
Lakes of liquid ethane and methane exist on the surface of Titan, Saturn's largest moon. This was confirmed by the Cassini–Huygens space probe, as had been suspected since the 1980s. The large bodies of liquid are known as maria (seas) and the small ones as lacūs (lakes).
The climate of Titan, the largest moon of Saturn, is similar in many respects to that of Earth, despite having a far lower surface temperature. Its thick atmosphere, methane rain, and possible cryovolcanism create an analogue, though with different materials, to the climatic changes undergone by Earth during the far shorter year of Earth.
Titan Saturn System Mission (TSSM) was a joint NASA–ESA proposal for an exploration of Saturn and its moons Titan and Enceladus, where many complex phenomena were revealed by Cassini. TSSM was proposed to launch in 2020, get gravity assists from Earth and Venus, and arrive at the Saturn system in 2029. The 4-year prime mission would include a two-year Saturn tour, a 2-month Titan aero-sampling phase, and a 20-month Titan orbit phase.
A planetary surface is where the solid or liquid material of certain types of astronomical objects contacts the atmosphere or outer space. Planetary surfaces are found on solid objects of planetary mass, including terrestrial planets, dwarf planets, natural satellites, planetesimals and many other small Solar System bodies (SSSBs). The study of planetary surfaces is a field of planetary geology known as surface geology, but also a focus on a number of fields including planetary cartography, topography, geomorphology, atmospheric sciences, and astronomy. Land is the term given to non-liquid planetary surfaces. The term landing is used to describe the collision of an object with a planetary surface and is usually at a velocity in which the object can remain intact and remain attached.
Planetary oceanography, also called astro-oceanography or exo-oceanography, is the study of oceans on planets and moons other than Earth. Unlike other planetary sciences like astrobiology, astrochemistry, and planetary geology, it only began after the discovery of underground oceans in Saturn's moon Titan and Jupiter's moon Europa. This field remains speculative until further missions reach the oceans beneath the rock or ice layer of the moons. There are many theories about oceans or even ocean worlds of celestial bodies in the Solar System, from oceans made of liquid carbon with floating diamonds in Neptune to a gigantic ocean of liquid hydrogen that may exist underneath Jupiter's surface.
Chemical cycling describes systems of repeated circulation of chemicals between other compounds, states and materials, and back to their original state, that occurs in space, and on many objects in space including the Earth. Active chemical cycling is known to occur in stars, many planets and natural satellites.
Oceanus is a NASA/JPL orbiter mission concept proposed in 2017 for the New Frontiers mission #4, but it was not selected for development. If selected at some future opportunity, Oceanus would travel to Saturn's moon Titan to assess its habitability. Studying Titan would help understand the early Earth and exoplanets which orbit other stars. The mission is named after Oceanus, the Greek god of oceans.
Sushil K. Atreya is a planetary scientist, educator, and researcher. Atreya is a professor of Climate and Space Sciences and Engineering at the University of Michigan, Ann Arbor.
The geology of Titan encompasses the geological characteristics of Titan, the largest moon of Saturn. Titan's density of 1.881 g/cm3 indicates that it is roughly 40–60% rock by mass, with the rest being water ice and other materials. It is differentiated into a rocky core, liquid water ocean, and an icy shell; the core and ocean may be partitioned by a layer of exotic high-pressure ices, and the icy shell may have a chemically distinct surface crust.