Hydrodynamic escape

Last updated
Schematic of hydrodynamic escape. Energy from solar radiation is deposited in a thin shell. This energy heats the atmosphere, which then begins to expand. This expansion continues into the vacuum of space, accelerating as it goes until it escapes. Hydrodynamic escape.png
Schematic of hydrodynamic escape. Energy from solar radiation is deposited in a thin shell. This energy heats the atmosphere, which then begins to expand. This expansion continues into the vacuum of space, accelerating as it goes until it escapes.

Hydrodynamic escape refers to a thermal atmospheric escape mechanism that can lead to the escape of heavier atoms of a planetary atmosphere through numerous collisions with lighter atoms.

Contents

Description

Hydrodynamic escape occurs if there is a strong thermally driven atmospheric escape of light atoms which, through drag effects (collisions), also drive off heavier atoms. [1] The heaviest species of atom that can be removed in this manner is called the cross-over mass. [2]

In order to maintain a significant hydrodynamic escape, a large source of energy at a certain altitude is required. Soft X-ray or extreme ultraviolet radiation, momentum transfer from impacting meteoroids or asteroids, or the heat input from planetary accretion processes [3] may provide the requisite energy for hydrodynamic escape.

Calculations

Estimating the rate of hydrodynamic escape is important in analyzing both the history and current state of a planet's atmosphere. In 1981, Watson et al. published [4] calculations that describe energy-limited escape, where all incoming energy is balanced by escape to space. Recent numerical simulations on exoplanets have suggested that this calculation overestimates the hydrodynamic flux by 20 - 100 times.[30] However, as a special case and upper limit approximation on the atmospheric escape, it is worth noting here.

Hydrodynamic escape flux (, [ms]) in an energy-limited escape can be calculated, assuming (1) an atmosphere composed of non-viscous, (2) constant molecular weight gas, with (3) isotropic pressure, (4) fixed temperature, (5) perfect XUV absorption, and that (6) pressure decreases to zero as distance from the planet increases. [4]

where is the photon flux [J ms] over the wavelengths of interest, is the radius of the planet, is the gravitational constant, is the mass of the planet, and is the effective radius where the XUV absorption occurs. Corrections to this model have been proposed over the years to account for the Roche lobe of a planet and efficiency in absorbing photon flux. [5] [6] [7]

However, as computational power has improved, increasingly sophisticated models have emerged, incorporating radiative transfer, photochemistry, and hydrodynamics that provide better estimates of hydrodynamic escape. [8]

Isotope fractionation as evidence

The root mean square thermal velocity () of an atomic species is

where is the Boltzmann constant, is the temperature, and is the mass of the species. Lighter molecules or atoms will therefore be moving faster than heavier molecules or atoms at the same temperature. This is why atomic hydrogen escapes preferentially from an atmosphere and also explains why the ratio of lighter to heavier isotopes of atmospheric particles can indicate hydrodynamic escape.

Specifically, the ratio of different noble gas isotopes (20 Ne/22Ne, 36 Ar/38Ar, 78,80,82,83,86 Kr/84Kr, 124,126,128,129,131,132,134,136 Xe/130Xe) or hydrogen isotopes (D/H) can be compared to solar levels to indicate likelihood of hydrodynamic escape in the atmospheric evolution. Ratios larger or smaller than compared with that in the sun or CI chondrites, which are used as proxy for the sun, indicate that significant hydrodynamic escape has occurred since the formation of the planet. Since lighter atoms preferentially escape, we expect smaller ratios for the noble gas isotopes (or a larger D/H) correspond to a greater likelihood of hydrodynamic escape, as indicated in the table.

Isotopic fractionation in Venus, Earth, and Mars [9]
Source36Ar/38Ar20Ne/22Ne82Kr/84Kr128Xe/130Xe
Sun5.813.720.50150.873
CI chondrites5.3±0.058.9±1.320.149±0.08050.73±0.38
Venus5.56±0.6211.8±0.7----
Earth5.320±0.0029.800±0.0820.217±0.02147.146±0.047
Mars4.1±0.210.1±0.720.54±0.2047.67±1.03

Matching these ratios can also be used to validate or verify computational models seeking to describe atmospheric evolution. This method has also been used to determine the escape of oxygen relative to hydrogen in early atmospheres. [10]

Examples

Exoplanets that are extremely close to their parent star, such as hot Jupiters can experience significant hydrodynamic escape [11] [12] to the point where the star "burns off" their atmosphere upon which they cease to be gas giants and are left with just the core, at which point they would be called Chthonian planets. Hydrodynamic escape has been observed for exoplanets close to their host star, including the hot Jupiters HD 209458b. [13]

Within a stellar lifetime, the solar flux may change. Younger stars produce more EUV, and the early protoatmospheres of Earth, Mars, and Venus likely underwent hydrodynamic escape, which accounts for the noble gas isotope fractionation present in their atmospheres. [14]

Related Research Articles

<span class="mw-page-title-main">Orbital resonance</span> Regular and periodic gravitational influence by two orbiting celestial bodies exerted on each other

In celestial mechanics, orbital resonance occurs when orbiting bodies exert regular, periodic gravitational influence on each other, usually because their orbital periods are related by a ratio of small integers. Most commonly, this relationship is found between a pair of objects. The physical principle behind orbital resonance is similar in concept to pushing a child on a swing, whereby the orbit and the swing both have a natural frequency, and the body doing the "pushing" will act in periodic repetition to have a cumulative effect on the motion. Orbital resonances greatly enhance the mutual gravitational influence of the bodies. In most cases, this results in an unstable interaction, in which the bodies exchange momentum and shift orbits until the resonance no longer exists. Under some circumstances, a resonant system can be self-correcting and thus stable. Examples are the 1:2:4 resonance of Jupiter's moons Ganymede, Europa and Io, and the 2:3 resonance between Pluto and Neptune. Unstable resonances with Saturn's inner moons give rise to gaps in the rings of Saturn. The special case of 1:1 resonance between bodies with similar orbital radii causes large solar system bodies to eject most other bodies sharing their orbits; this is part of the much more extensive process of clearing the neighbourhood, an effect that is used in the current definition of a planet.

<span class="mw-page-title-main">63 Ausonia</span> Main-belt asteroid

Ausonia is a stony Vestian asteroid from the inner region of the asteroid belt, approximately 100 kilometers in diameter. It was discovered by Italian astronomer Annibale de Gasparis on 10 February 1861, from the Astronomical Observatory of Capodimonte, in Naples, Italy. The initial choice of name for the asteroid was "Italia", after Italy, but this was modified to Ausonia, an ancient classical name for the Italian region.

<span class="mw-page-title-main">144 Vibilia</span> Main-belt asteroid

144 Vibilia is a carbonaceous asteroid from the central region of the asteroid belt, approximately 140 kilometers in diameter. It was discovered on 3 June 1875, by German–American astronomer Christian Peters at Litchfield Observatory of the Hamilton College in Clinton, New York, United States. Peters named it after Vibilia, the Roman goddess of traveling, because he had recently returned from a journey across the world to observe the transit of Venus. Peters also discovered 145 Adeona on the same night. The official naming citation was published by Paul Herget in The Names of the Minor Planets in 1955.

<span class="mw-page-title-main">Circumstellar habitable zone</span> Orbits where planets may have liquid surface water

In astronomy and astrobiology, the circumstellar habitable zone (CHZ), or simply the habitable zone, is the range of orbits around a star within which a planetary surface can support liquid water given sufficient atmospheric pressure. The bounds of the CHZ are based on Earth's position in the Solar System and the amount of radiant energy it receives from the Sun. Due to the importance of liquid water to Earth's biosphere, the nature of the CHZ and the objects within it may be instrumental in determining the scope and distribution of planets capable of supporting Earth-like extraterrestrial life and intelligence.

A biosignature is any substance – such as an element, isotope, or molecule – or phenomenon that provides scientific evidence of past or present life. Measurable attributes of life include its complex physical or chemical structures and its use of free energy and the production of biomass and wastes. A biosignature can provide evidence for living organisms outside the Earth and can be directly or indirectly detected by searching for their unique byproducts.

Atmospheric escape is the loss of planetary atmospheric gases to outer space. A number of different mechanisms can be responsible for atmospheric escape; these processes can be divided into thermal escape, non-thermal escape, and impact erosion. The relative importance of each loss process depends on the planet's escape velocity, its atmosphere composition, and its distance from its star. Escape occurs when molecular kinetic energy overcomes gravitational energy; in other words, a molecule can escape when it is moving faster than the escape velocity of its planet. Categorizing the rate of atmospheric escape in exoplanets is necessary to determining whether an atmosphere persists, and so the exoplanet's habitability and likelihood of life.

<span class="mw-page-title-main">Runaway greenhouse effect</span> Climatic effect causing a planets atmosphere to trap heat and prevent cooling

A runaway greenhouse effect occurs when a planet's atmosphere contains greenhouse gas in an amount sufficient to block thermal radiation from leaving the planet, preventing the planet from cooling and from having liquid water on its surface. A runaway version of the greenhouse effect can be defined by a limit on a planet's outgoing longwave radiation which is asymptotically reached due to higher surface temperatures evaporating a condensable species into the atmosphere, increasing its optical depth. This positive feedback means the planet cannot cool down through longwave radiation and continues to heat up until it can radiate outside of the absorption bands of the condensable species.

<span class="mw-page-title-main">Origin of water on Earth</span> Hypotheses for the possible sources of the water on Earth

The origin of water on Earth is the subject of a body of research in the fields of planetary science, astronomy, and astrobiology. Earth is unique among the rocky planets in the Solar System in that it is the only planet known to have oceans of liquid water on its surface. Liquid water, which is necessary for life as we know it, continues to exist on the surface of Earth because the planet is at a distance, known as the habitable zone, far enough from the Sun that it does not lose its water, but not so far that low temperatures cause all water on the planet to freeze.

<span class="mw-page-title-main">Atmosphere of Mars</span> Layer of gases surrounding planet Mars

The atmosphere of Mars is the layer of gases surrounding Mars. It is primarily composed of carbon dioxide (95%), molecular nitrogen (2.8%), and argon (2%). It also contains trace levels of water vapor, oxygen, carbon monoxide, hydrogen, and noble gases. The atmosphere of Mars is much thinner than Earth's. The average surface pressure is only about 610 pascals (0.088 psi) which is less than 1% of the Earth's value. The currently thin Martian atmosphere prohibits the existence of liquid water on the surface of Mars, but many studies suggest that the Martian atmosphere was much thicker in the past. The higher density during spring and fall is reduced by 25% during the winter when carbon dioxide partly freezes at the pole caps. The highest atmospheric density on Mars is equal to the density found 35 km (22 mi) above the Earth's surface and is ≈0.020 kg/m3. The atmosphere of Mars has been losing mass to space since the planet's core slowed down, and the leakage of gases still continues today.

The Bond albedo, named after the American astronomer George Phillips Bond (1825–1865), who originally proposed it, is the fraction of power in the total electromagnetic radiation incident on an astronomical body that is scattered back out into space.

<span class="mw-page-title-main">Ocean world</span> Planetary body that includes a significant amount of water or other liquid

An ocean world, ocean planet, panthalassic planet, maritime world, water world or aquaplanet, is a type of planet that contains a substantial amount of water in form of oceans, either beneath the surface, as subsurface oceans, or on the surface with a hydrosphere, potentially submerging all dry land. The term ocean world is also used sometimes for astronomical bodies with an ocean composed of a different fluid or thalassogen, such as lava, ammonia or hydrocarbons like on Titan's surface.

<span class="mw-page-title-main">Jupiter mass</span> Unit of mass equal to the total mass of the planet Jupiter

Jupiter mass, also called Jovian mass, is the unit of mass equal to the total mass of the planet Jupiter. This value may refer to the mass of the planet alone, or the mass of the entire Jovian system to include the moons of Jupiter. Jupiter is by far the most massive planet in the Solar System. It is approximately 2.5 times as massive as all of the other planets in the Solar System combined.

<span class="mw-page-title-main">Atmosphere of Titan</span> Only thick atmosphere of any moon in the Solar System

The atmosphere of Titan is the dense layer of gases surrounding Titan, the largest moon of Saturn. It is the only thick atmosphere of a natural satellite in the Solar System. Titan's lower atmosphere is primarily composed of nitrogen (94.2%), methane (5.65%), and hydrogen (0.099%). There are trace amounts of other hydrocarbons, such as ethane, diacetylene, methylacetylene, acetylene, propane, PAHs and of other gases, such as cyanoacetylene, hydrogen cyanide, carbon dioxide, carbon monoxide, cyanogen, acetonitrile, argon and helium. The isotopic study of nitrogen isotopes ratio also suggest acetonitrile may be present in quantities exceeding hydrogen cyanide and cyanoacetylene. The surface pressure is about 50% higher than on Earth at 1.5 bars which is near the triple point of methane and allows there to be gaseous methane in the atmosphere and liquid methane on the surface. The orange color as seen from space is produced by other more complex chemicals in small quantities, possibly tholins, tar-like organic precipitates.

The planetary equilibrium temperature is a theoretical temperature that a planet would be if it were a black body being heated only by its parent star. In this model, the presence or absence of an atmosphere is irrelevant, as the equilibrium temperature is calculated purely from a balance with incident stellar energy.

<span class="mw-page-title-main">Gas giant</span> Giant planet which mainly consists of light elements such as hydrogen and helium

A gas giant is a giant planet composed mainly of hydrogen and helium. Gas giants are also called failed stars because they contain the same basic elements as a star. Jupiter and Saturn are the gas giants of the Solar System. The term “gas giant” was originally synonymous with “giant planet”, but in the 1990s it became known that Uranus and Neptune are really a distinct class of giant planets, being composed mainly of heavier volatile substances. For this reason, Uranus and Neptune are now often classified in the separate category of ice giants.

Planetary oceanography also called exo-oceanography is the study of oceans on planets and moons other than Earth. Unlike other planetary sciences like astrobiology, astrochemistry and planetary geology, it only began after the discovery of underground oceans in Saturn's moon Titan and Jupiter's moon Europa. This field remains speculative until further missions reach the oceans beneath the rock or ice layer of the moons. There are many theories about oceans or even ocean worlds of celestial bodies in the Solar System, from oceans made of diamond in Neptune to a gigantic ocean of liquid hydrogen that may exist underneath Jupiter's surface.

<span class="mw-page-title-main">Chemical cycling</span>

Chemical cycling describes systems of repeated circulation of chemicals between other compounds, states and materials, and back to their original state, that occurs in space, and on many objects in space including the Earth. Active chemical cycling is known to occur in stars, many planets and natural satellites.

<span class="mw-page-title-main">TRAPPIST-1</span> Ultra-cool red dwarf star in the constellation Aquarius

TRAPPIST-1 is an ultra-cool red dwarf star in the constellation Aquarius with a planetary system of seven known planets. It has a mass about 9% of the Sun's, a radius slightly larger than the planet Jupiter, and a surface temperature of about 2,566 K (2,293 °C). The star is 40.7 light-years (12.5 pc) from the Sun and is estimated to be 7.6 billion years old, making it older than the Solar System.

<span class="mw-page-title-main">Climate of Pluto</span> Types of climate on the dwarf planet Pluto

The dwarf planet Pluto has an unusual set of climate zones, due to its atypical axial configuration. Five climate zones are assigned on the dwarf planet: tropics, arctic, tropical arctic, diurnal, and polar. These climate zones are delineated based on astronomically defined boundaries or sub-solar latitudes, which are not associated with the atmospheric circulations on the dwarf planet. Charon, the largest moon of Pluto, is tidally locked with it, and thus has the same climate zone structure as Pluto itself.

Xenon isotope geochemistry uses the abundance of xenon (Xe) isotopes and total xenon to investigate how Xe has been generated, transported, fractionated, and distributed in planetary systems. Xe has nine stable or very long-lived isotopes. Radiogenic 129Xe and fissiogenic 131,132,134,136Xe isotopes are of special interest in geochemical research. The radiogenic and fissiogenic properties can be used in deciphering the early chronology of Earth. Elemental Xe in the atmosphere is depleted and isotopically enriched in heavier isotopes relative to estimated solar abundances. The depletion and heavy isotopic enrichment can be explained by hydrodynamic escape to space that occurred in Earth's early atmosphere. Differences in the Xe isotope distribution between the deep mantle, shallower Mid-ocean Ridge Basalts (MORBs), and the atmosphere can be used to deduce Earth's history of formation and differentiation of the solid Earth into layers.

References

  1. Irwin, Patrick G. J. (2006). Giant planets of our solar system: an introduction. Birkhäuser. p. 58. ISBN   3-540-31317-6 . Retrieved 22 Dec 2009.
  2. Hunten, Donald M.; Pepin, Robert O.; Walker, James C. G. (1987-03-01). "Mass fractionation in hydrodynamic escape". Icarus. 69 (3): 532–549. Bibcode:1987Icar...69..532H. doi:10.1016/0019-1035(87)90022-4. hdl: 2027.42/26796 . ISSN   0019-1035.
  3. Pater, Imke De; Jack Jonathan Lissauer (2001). Planetary sciences. Cambridge University Press. p. 129. ISBN   0-521-48219-4.
  4. 1 2 Watson, Andrew J.; Donahue, Thomas M.; Walker, James C.G. (November 1981). "The dynamics of a rapidly escaping atmosphere: Applications to the evolution of Earth and Venus" (PDF). Icarus. 48 (2): 150–166. Bibcode:1981Icar...48..150W. doi:10.1016/0019-1035(81)90101-9. hdl: 2027.42/24204 .
  5. Erkaev, N. V.; Kulikov, Yu. N.; Lammer, H.; Selsis, F.; Langmayr, D.; Jaritz, G. F.; Biernat, H. K. (September 2007). "Roche lobe effects on the atmospheric loss from "Hot Jupiters"". Astronomy & Astrophysics. 472 (1): 329–334. arXiv: astro-ph/0612729 . Bibcode:2007A&A...472..329E. doi: 10.1051/0004-6361:20066929 . ISSN   0004-6361.
  6. Lecavelier des Etangs, A. (January 2007). "A diagram to determine the evaporation status of extrasolar planets". Astronomy & Astrophysics. 461 (3): 1185–1193. arXiv: astro-ph/0609744 . Bibcode:2007A&A...461.1185L. doi:10.1051/0004-6361:20065014. ISSN   0004-6361. S2CID   8532526.
  7. Tian, Feng; Güdel, Manuel; Johnstone, Colin P.; Lammer, Helmut; Luger, Rodrigo; Odert, Petra (April 2018). "Water Loss from Young Planets". Space Science Reviews. 214 (3): 65. Bibcode:2018SSRv..214...65T. doi:10.1007/s11214-018-0490-9. ISSN   0038-6308. S2CID   126177273.
  8. Owen, James E. (2019-05-30). "Atmospheric Escape and the Evolution of Close-In Exoplanets". Annual Review of Earth and Planetary Sciences. 47 (1): 67–90. arXiv: 1807.07609 . Bibcode:2019AREPS..47...67O. doi:10.1146/annurev-earth-053018-060246. ISSN   0084-6597. S2CID   119333247.
  9. Pepin, Robert O. (1991-07-01). "On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles". Icarus. 92 (1): 2–79. Bibcode:1991Icar...92....2P. doi:10.1016/0019-1035(91)90036-S. ISSN   0019-1035.
  10. Hunten, Donald M.; Pepin, Robert O.; Walker, James C. G. (1987-03-01). "Mass fractionation in hydrodynamic escape". Icarus. 69 (3): 532–549. Bibcode:1987Icar...69..532H. doi:10.1016/0019-1035(87)90022-4. hdl: 2027.42/26796 . ISSN   0019-1035.
  11. Tian, Feng; Toon, Owen B.; Pavlov, Alexander A.; de Sterck, H. (March 10, 2005). "Transonic Hydrodynamic Escape of Hydrogen from Extrasolar Planetary Atmospheres". The Astrophysical Journal. 621 (2): 1049–1060. Bibcode:2005ApJ...621.1049T. CiteSeerX   10.1.1.122.9085 . doi:10.1086/427204. S2CID   6475341.
  12. Swift, Damian C.; Eggert, Jon; Hicks, Damien G.; Hamel, Sebastien; Caspersen, Kyle; Schwegler, Eric; Collins, Gilbert W. (2012). "Mass-radius relationships for exoplanets". The Astrophysical Journal. 744 (1): 59. arXiv: 1001.4851 . Bibcode:2012ApJ...744...59S. doi:10.1088/0004-637X/744/1/59. S2CID   119219137.
  13. Vidal-Madjar, A.; Désert, J. -M.; Lecavelier des Etangs, A.; Hébrard, G.; Ballester, G. E.; Ehrenreich, D.; Ferlet, R.; McConnell, J. C.; Mayor, M.; Parkinson, C. D. (2004). "Vidal-Madjar et al., Oxygen and Carbon in HD 209458b". arXiv: astro-ph/0401457 . doi: 10.1086/383347 .{{cite journal}}: Cite journal requires |journal= (help)
  14. Gillmann, Cédric; Chassefière, Eric; Lognonné, Philippe (2009-09-15). "A consistent picture of early hydrodynamic escape of Venus atmosphere explaining present Ne and Ar isotopic ratios and low oxygen atmospheric content". Earth and Planetary Science Letters. 286 (3): 503–513. Bibcode:2009E&PSL.286..503G. doi:10.1016/j.epsl.2009.07.016. ISSN   0012-821X.