Degassing

Last updated

Degassing, also known as degasification, is the removal of dissolved gases from liquids, especially water or aqueous solutions. There are numerous methods for removing gases from liquids.

Contents

Gases are removed for various reasons. Chemists remove gases from solvents when the compounds they are working on are possibly air- or oxygen-sensitive (air-free technique), or when bubble formation at solid-liquid interfaces becomes a problem. The formation of gas bubbles when a liquid is frozen can also be undesirable, necessitating degassing beforehand.

Pressure reduction

The solubility of gas obeys Henry's law, that is, the amount of a dissolved gas in a liquid is proportional to its partial pressure. Therefore, placing a solution under reduced pressure makes the dissolved gas less soluble. Sonication and stirring under reduced pressure can usually enhance the efficiency. This technique is often referred to as vacuum degasification. Specialized vacuum chambers, called vacuum degassers, are used to degas materials through pressure reduction.

Thermal regulation

Generally speaking, an aqueous solvent dissolves less gas at higher temperature, and vice versa for organic solvents (provided the solute and solvent do not react). Consequently, heating an aqueous solution can expel dissolved gas, whereas cooling an organic solution has the same effect. Ultrasonication and stirring during thermal regulation are also effective. This method needs no special apparatus and is easy to conduct. In some cases, however, the solvent and the solute decompose, react with each other, or evaporate at high temperature, and the rate of removal is less reproducible.

Membrane degasification

Gas-liquid separation membranes allow gas but not liquid to pass through. Flowing a solution inside a gas-liquid separation membrane and evacuating outside makes the dissolved gas go out through the membrane. This method has the advantage of being able to prevent redissolution of the gas, so it is used to produce very pure solvents. New applications are in inkjet systems where gas in the ink forms bubbles that degrade print quality, a degassing unit is placed prior to the print head to remove gas and prevent the buildup of bubbles keeping good jetting and print quality.

The above three methods are used to remove all dissolved gases. Below are methods for more selective removal.

Ultrasonic degassing

Ultrasonic liquid processors are a commonly used method for removing dissolved gasses and/or entrained gas bubbles from various of liquids. The advantage of this method is that that ultrasonic degassing can be done in a continuous-flow mode, which makes it suitable for commercial-scale production. [1] [2] [3]

Sparging by inert gas

Bubbling a solution with a high-purity (typically inert) gas can pull out undesired (typically reactive) dissolved gases such as oxygen and carbon dioxide. Nitrogen, argon, helium and other inert gases are commonly used. To maximize this process called sparging, the solution is stirred vigorously and bubbled for a long time. Because helium is not very soluble in most liquids, it is particularly useful to reduce the risk of bubbles in high-performance liquid chromatography (HPLC) systems.

Addition of reductant

If oxygen should be removed, the addition of reductants is sometimes effective. For example, especially in the field of electrochemistry, ammonium sulfite is frequently used as a reductant because it reacts with oxygen to form sulfate ions. Although this method can be applied only to oxygen and involves the risk of reduction of the solute, the dissolved oxygen is almost totally eliminated. The ketyl radical from sodium and benzophenone can also be used for removing both oxygen and water from inert solvents such as hydrocarbons and ethers; the degassed solvent can be separated by distillation. The latter method is particularly useful because a high concentration of ketyl radical generates a deep blue colour, indicating the solvent is fully degassed.

Freeze-pump-thaw cycling

In this laboratory-scale technique, the fluid to be degassed is placed in a Schlenk flask and flash-frozen, usually with liquid nitrogen. Next a vacuum is applied, perhaps to attain a vacuum of 1 mm Hg (for illustrative purposes). The flask is sealed from the vacuum source, and the frozen solvent is allowed to thaw. Often, bubbles appears upon melting. The process is typically repeated a total of three cycles. [4] The degree of degassing is expressed by the equation (1/760)3 for the case of initial pressure being 760 mm Hg, the vacuum being 1 mm Hg, and the total number of cycles being three. [5]

Degassing wine

Yeast uses sugar to produce alcohol and carbon dioxide. In winemaking, carbon dioxide is an undesired by-product for most wines. If the wine is bottled quickly after fermentation, it is important to degas the wine before bottling.

Wineries can skip the degassing process if they age their wines prior to bottling. Storing the wines in steel or oak barrels for months and sometimes years allows gases to be released from the wine and escape into the air through air-locks.

Oil degassing

The most efficient method of industrial oil degassing is vacuum processing, which removes air and water solved in the oil. [6] This can be achieved by:

Under vacuum, an equilibrium between the content of moisture and air (solved gases) in the liquid and gaseous phase is achieved. The equilibrium depends on the temperature and the residual pressure. The lower that pressure, the faster and more efficiently are water and gas removed.

Unintended degassing

Unintended degassing can happen for various reasons, such as accidental release of methane ( CH4 ) from the seabed during human activity such as underwater exploration by the energy industry. Natural processes such as tectonic plate movement can also contribute to methane release from the ocean floor. In both cases, the volume of CH4 released can be a significant contributor to climate change. [7] [8]

See also

Related Research Articles

<span class="mw-page-title-main">Distillation</span> Method of separating mixtures

Distillation, or classical distillation, is the process of separating the components or substances from a liquid mixture by using selective boiling and condensation, usually inside an apparatus known as a still. Dry distillation is the heating of solid materials to produce gaseous products ; this may involve chemical changes such as destructive distillation or cracking. Distillation may result in essentially complete separation, or it may be a partial separation that increases the concentration of selected components; in either case, the process exploits differences in the relative volatility of the mixture's components. In industrial applications, distillation is a unit operation of practically universal importance, but is a physical separation process, not a chemical reaction. An installation used for distillation, especially of distilled beverages, is a distillery. Distillation includes the following applications:

<span class="mw-page-title-main">Solution (chemistry)</span> Homogeneous mixture of a solute and a solvent

In chemistry, a solution is a special type of homogeneous mixture composed of two or more substances. In such a mixture, a solute is a substance dissolved in another substance, known as a solvent. If the attractive forces between the solvent and solute particles are greater than the attractive forces holding the solute particles together, the solvent particles pull the solute particles apart and surround them. These surrounded solute particles then move away from the solid solute and out into the solution. The mixing process of a solution happens at a scale where the effects of chemical polarity are involved, resulting in interactions that are specific to solvation. The solution usually has the state of the solvent when the solvent is the larger fraction of the mixture, as is commonly the case. One important parameter of a solution is the concentration, which is a measure of the amount of solute in a given amount of solution or solvent. The term "aqueous solution" is used when one of the solvents is water.

<span class="mw-page-title-main">Solubility</span> Capacity of a substance to dissolve in a solvent in a homogeneous way

In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution.

In physical chemistry, supersaturation occurs with a solution when the concentration of a solute exceeds the concentration specified by the value of solubility at equilibrium. Most commonly the term is applied to a solution of a solid in a liquid. A supersaturated solution is in a metastable state; it may be brought to equilibrium by forcing the excess of solute to separate from the solution. The term can also be applied to a mixture of gases.

In physical chemistry, Henry's law is a gas law that states that the amount of dissolved gas in a liquid is directly proportional to its partial pressure above the liquid. The proportionality factor is called Henry's law constant. It was formulated by the English chemist William Henry, who studied the topic in the early 19th century.

<span class="mw-page-title-main">Crystallization</span> Process by which a solid with a highly organized atomic or molecular structure forms

Crystallization is the process by which solid forms, where the atoms or molecules are highly organized into a structure known as a crystal. Some ways by which crystals form are precipitating from a solution, freezing, or more rarely deposition directly from a gas. Attributes of the resulting crystal depend largely on factors such as temperature, air pressure, and in the case of liquid crystals, time of fluid evaporation.

<span class="mw-page-title-main">Limnic eruption</span> Type of volcanic eruption

A limnic eruption, also known as a lake overturn, is a very rare type of natural disaster in which dissolved carbon dioxide suddenly erupts from deep lake waters, forming a gas cloud capable of suffocating wildlife, livestock, and humans. A limnic eruption may also cause tsunami or seiche as the rising CO2 displaces water. Scientists believe earthquakes, volcanic activity, and other explosive events can serve as triggers for limnic eruptions. Lakes in which such activity occurs are referred to as limnically active lakes or exploding lakes. Some features of limnically active lakes include:

Liquid–liquid extraction (LLE), also known as solvent extraction and partitioning, is a method to separate compounds or metal complexes, based on their relative solubilities in two different immiscible liquids, usually water (polar) and an organic solvent (non-polar). There is a net transfer of one or more species from one liquid into another liquid phase, generally from aqueous to organic. The transfer is driven by chemical potential, i.e. once the transfer is complete, the overall system of chemical components that make up the solutes and the solvents are in a more stable configuration. The solvent that is enriched in solute(s) is called extract. The feed solution that is depleted in solute(s) is called the raffinate. LLE is a basic technique in chemical laboratories, where it is performed using a variety of apparatus, from separatory funnels to countercurrent distribution equipment called as mixer settlers. This type of process is commonly performed after a chemical reaction as part of the work-up, often including an acidic work-up.

<span class="mw-page-title-main">Schlenk line</span> Glass apparatus used in chemistry

The Schlenk line is a commonly used chemistry apparatus developed by Wilhelm Schlenk. It consists of a dual manifold with several ports. One manifold is connected to a source of purified inert gas, while the other is connected to a vacuum pump. The inert-gas line is vented through an oil bubbler, while solvent vapors and gaseous reaction products are prevented from contaminating the vacuum pump by a liquid-nitrogen or dry-ice/acetone cold trap. Special stopcocks or Teflon taps allow vacuum or inert gas to be selected without the need for placing the sample on a separate line.

<span class="mw-page-title-main">Schlenk flask</span> Reaction vessel used in air-sensitive chemistry

A Schlenk flask, or Schlenk tube, is a reaction vessel typically used in air-sensitive chemistry, invented by Wilhelm Schlenk. It has a side arm fitted with a PTFE or ground glass stopcock, which allows the vessel to be evacuated or filled with gases. These flasks are often connected to Schlenk lines, which allow both operations to be done easily.

In chemistry, sparging, also known as gas flushing in metallurgy, is a technique in which a gas is bubbled through a liquid in order to remove other dissolved gas(es) and/or dissolved volatile liquid(s) from that liquid. It is a method of degassing. According to Henry's law, the concentration of each gas in a liquid is proportional to the partial pressure of that gas in contact with the liquid. Sparging introduces a gas that has little or no partial pressure of the gas(es) to be removed, and increases the area of the gas-liquid interface, which encourages some of the dissolved gas(es) to diffuse into the sparging gas before the sparging gas escapes from the liquid. Many sparging processes, such as solvent removal, use air as the sparging gas. To remove oxygen, or for sensitive solutions or reactive molten metals, a chemically inert gas such as nitrogen, argon, or helium is used.

Air-free techniques refer to a range of manipulations in the chemistry laboratory for the handling of compounds that are air-sensitive. These techniques prevent the compounds from reacting with components of air, usually water and oxygen; less commonly carbon dioxide and nitrogen. A common theme among these techniques is the use of a fine (100–10−3 Torr) or high (10−3–10−6 Torr) vacuum to remove air, and the use of an inert gas: preferably argon, but often nitrogen.

<span class="mw-page-title-main">Cannula transfer</span>

Cannula transfer or cannulation is a set of air-free techniques used with a Schlenk line, in transferring liquid or solution samples between reaction vessels via cannulae, avoiding atmospheric contamination. While the syringes are not the same as cannulae, the techniques remain relevant.

An air separation plant separates atmospheric air into its primary components, typically nitrogen and oxygen, and sometimes also argon and other rare inert gases.

A degasser is a device used in the upstream oil industry to remove dissolved and entrained gases from a liquid. In drilling it is used to remove gasses from drilling fluid which could otherwise form bubbles. In a produced water treatment plant it is part of the process to clean produced water prior to disposal.

<span class="mw-page-title-main">Decompression (diving)</span> Pressure reduction and its effects during ascent from depth

The decompression of a diver is the reduction in ambient pressure experienced during ascent from depth. It is also the process of elimination of dissolved inert gases from the diver's body which accumulate during ascent, largely during pauses in the ascent known as decompression stops, and after surfacing, until the gas concentrations reach equilibrium. Divers breathing gas at ambient pressure need to ascend at a rate determined by their exposure to pressure and the breathing gas in use. A diver who only breathes gas at atmospheric pressure when free-diving or snorkelling will not usually need to decompress, Divers using an atmospheric diving suit do not need to decompress as they are never exposed to high ambient pressure.

<span class="mw-page-title-main">Decompression theory</span> Theoretical modelling of decompression physiology

Decompression theory is the study and modelling of the transfer of the inert gas component of breathing gases from the gas in the lungs to the tissues and back during exposure to variations in ambient pressure. In the case of underwater diving and compressed air work, this mostly involves ambient pressures greater than the local surface pressure, but astronauts, high altitude mountaineers, and travellers in aircraft which are not pressurised to sea level pressure, are generally exposed to ambient pressures less than standard sea level atmospheric pressure. In all cases, the symptoms caused by decompression occur during or within a relatively short period of hours, or occasionally days, after a significant pressure reduction.

<span class="mw-page-title-main">Physiology of decompression</span> The physiological basis for decompression theory and practice

The physiology of decompression is the aspect of physiology which is affected by exposure to large changes in ambient pressure, and involves a complex interaction of gas solubility, partial pressures and concentration gradients, diffusion, bulk transport and bubble mechanics in living tissues. Gas is breathed at ambient pressure, and some of this gas dissolves into the blood and other fluids. Inert gas continues to be taken up until the gas dissolved in the tissues is in a state of equilibrium with the gas in the lungs,, or the ambient pressure is reduced until the inert gases dissolved in the tissues are at a higher concentration than the equilibrium state, and start diffusing out again.

Degas conductivity is used as an indicator of water quality in the water/steam cycle of power stations. Excessive conductivity values often indicate high corrosion potential, especially with certain ions such as chloride and acetate ions. These can be particularly damaging to the blades in the steam turbine. Degas conductivity is measured after the water sample has flowed through a resin and has had carbon dioxide removed by a degassing process. Specific conductivity and Cation conductivity are the other main types of measurement.

<span class="mw-page-title-main">Instant tea</span> Concentrated dry tea beverage mix

Instant tea is a powdered mix in which water is added, in order to reconstitute it into a cup of tea. The earliest form of instant tea was developed in the United Kingdom in 1885. A patent was granted for a paste made of concentrated tea extract, sugar, and evaporated milk, which became tea when hot water was added. However, no notable developments were made until spray drying technology allowed for drying the tea concentrates at a temperature which did not damage the flavors of the product.

References

  1. Degassing of Liquids: https://www.sonomechanics.com/liquid-degassing-deaeration/
  2. "European publication server".
  3. "Degassing electrorheological fluid".
  4. "Freeze-Pump-Thaw Degassing of Liquids" (PDF). University of Washington.
  5. Duward F. Shriver and M. A. Drezdzon "The Manipulation of Air-Sensitive Compounds" 1986, J. Wiley and Sons: New York. ISBN   0-471-86773-X.
  6. D.J. Hucknall (1991). Vacuum Technology and Applications. Oxford: Butterworth-Heinemann Ltd. ISBN   0-7506-1145-6.
  7. Zhang Yong; Zhai Wei-Dong (2015). "Shallow-ocean methane leakage and degassing to the atmosphere: triggered by offshore oil-gas and methane hydrate explorations". Frontiers in Marine Science. 2: 34. doi: 10.3389/fmars.2015.00034 .
  8. Giancarlo Ciotoli; Monia Procesi; Giuseppe Etiope; Umberto Fracassi; Guido Ventura (2020). "Influence of tectonics on global scale distribution of geological methane emissions". Nature Communications . 11 (1): 2305. Bibcode:2020NatCo..11.2305C. doi:10.1038/s41467-020-16229-1. PMC   7210894 . PMID   32385247.