Limnic eruption

Last updated
Lake Nyos, the site of a limnic eruption in 1986 Nyos Lake.jpg
Lake Nyos, the site of a limnic eruption in 1986

A limnic eruption, also known as a lake overturn, is a very rare type of natural disaster in which dissolved carbon dioxide (CO2) suddenly erupts from deep lake waters, forming a gas cloud capable of asphyxiating wildlife, livestock, and humans. A limnic eruption may also cause tsunamis or seiches [ citation needed ] as the rising CO2 displaces water. Scientists believe earthquakes, volcanic activity, and other explosive events can serve as triggers for limnic eruptions. Lakes in which such activity occurs are referred to as limnically active lakes or exploding lakes. Some features of limnically active lakes include:

Contents

Investigations of the Lake Monoun and Lake Nyos casualties led scientists to classify limnic eruptions as a distinct type of disaster event, even though they can be indirectly linked to volcanic eruptions. [1]

Historical occurrences

Cameroon adm location map.svg
Red pog.svg
Lake Monoun
Red pog.svg
Lake Nyos
Locations of the two recorded limnic eruptions in modern history, Cameroon

Due to the largely invisible nature of the underlying cause (CO2 gas) behind limnic eruptions, it is difficult to determine to what extent eruptions have occurred in the past. The Roman historian Plutarch reports that in 406 BC, Lake Albano surged over the surrounding hills, despite there being no rain nor tributaries flowing into the lake to account for the rise in water level. [2] The ensuing flood destroyed fields and vineyards before eventually pouring into the sea. This event is thought to have been caused by volcanic gases, trapped in sediment at the bottom of the lake and gradually building up until suddenly releasing, causing the water to overflow. [3]

In recent history, this phenomenon has been observed twice. [4] The first recorded limnic eruption occurred in Cameroon at Lake Monoun in 1984, causing asphyxiation and death of 37 people living nearby. [5] A second, deadlier eruption happened at neighboring Lake Nyos in 1986, releasing over 80 million m3 of CO2, killing around 1,700 people and 3,000 livestock, again by asphyxiation. [6]

A third lake, the much larger Lake Kivu, rests on the border between the Democratic Republic of the Congo and Rwanda, and contains massive amounts of dissolved CO2. Sediment samples taken from the lake showed an event caused living creatures in the lake to go extinct around every 1,000 years, and caused nearby vegetation to be swept back into the lake. Limnic eruptions can be detected and quantified on a CO2 concentration scale by taking air samples of the affected region. [7]

Lake Monoun situated in the West Region of Cameroon Monoun.jpg
Lake Monoun situated in the West Region of Cameroon

The Messel pit fossil deposits of Messel, Germany, show evidence of a limnic eruption there in the early Eocene. Among the victims are perfectly preserved insects, frogs, turtles, crocodiles, birds, anteaters, insectivores, early primates, and paleotheres.

Causes

Diagram describing the occurrence of limnic eruption Limnic eruption diagram.svg
Diagram describing the occurrence of limnic eruption

For a lake to undergo a limnic eruption, the water must be nearly saturated with gas. CO2 was the primary component in the two observed cases (Lake Nyos and Lake Monoun). In Lake Kivu, scientists including lake physicist Alfred Johny Wüest are also concerned about the concentrations of methane gas. [8] [9] CO2 may originate from volcanic gas emitted from under the lake or from decomposition of organic material. Before a lake is saturated, it behaves like an unopened carbonated beverage (e.g., a soft drink): the CO2 is dissolved in the water. In both the lake and the soft drink, CO2 dissolves much more readily at higher pressure (Henry's law). This is why bubbles in a can of soda form only after the can is opened; when the pressure is released, the CO2 comes out of solution. In the case of lakes, the bottom is at a much higher pressure; the deeper it is, the higher the pressure is at the bottom. Therefore, huge amounts of CO2 can be dissolved in large, deep lakes. CO2 also dissolves more readily in cooler water, such as that found at a lake bottom. A small rise in water temperature can lead to the release of a large amount of CO2.

Once a lake is saturated with said compound, it is very unstable and it gives off a smell of rotten eggs and gun powder, [10] but a trigger is needed to set off an eruption. In the case of the 1986 Lake Nyos eruption, landslides were the suspected triggers, but a volcanic eruption, an earthquake, or even wind and rain storms could be potential triggers. Another possible cause of a limnic eruption is gradual gas saturation at specific depths which can trigger spontaneous gas development. [11] For any of these cases, the trigger pushes some of the gas-saturated water higher in the lake, where pressure is insufficient to keep CO2 in solution. As bubbles start forming the water is lifted even higher in the lake (buoyancy), where yet more CO2 comes out of solution. This process forms a column of gas, at which point the water at the bottom of this column is pulled up by suction, and it, too, loses CO2 in a runaway process. This eruption discharges CO2 into the air and can displace enough water to form a tsunami.

Limnic eruptions are exceptionally rare for several reasons. First, a CO2 source must exist (regions with volcanic activity are most at risk). Second, the vast majority of lakes are holomictic (i.e., their layers mix regularly), preventing a buildup of dissolved gases. Only meromictic lakes do not mix and remain stratified, allowing CO2 to remain dissolved. It is estimated only one meromictic lake exists for every 1,000 holomictic lakes. [12] Finally, a lake must be deep enough to have sufficient pressure to dissolve large amounts of CO2.

Consequences

Bovine killed by the 1986 limnic eruption at Lake Nyos Cow killed by Lake Nyos gasses.jpg
Bovine killed by the 1986 limnic eruption at Lake Nyos

Once an eruption occurs, a large CO2 cloud forms above the lake and expands to the surrounding region. Because CO2 is denser than air, it has a tendency to sink to the ground, simultaneously displacing breathable air, resulting in asphyxia. CO2 can make human bodily fluids highly acidic and potentially cause CO2 poisoning. As victims gasp for air, they actually accelerate asphyxia by inhaling CO2.

At Lake Nyos, the gas cloud descended into a nearby village where it settled, killing nearly everyone; casualties as far as 25 km (16 mi) were reported.[ citation needed ] A change in skin color on some bodies led scientists to hypothesize the gas cloud may have contained dissolved acid such as hydrogen chloride, though this hypothesis is disputed. [13] Many victims were found with blisters on their skin, thought to have been caused by pressure ulcers, which were likely caused by low blood oxygen levels in those asphyxiated by carbon dioxide. [14] Nearby vegetation was largely unaffected, except any growing immediately adjacent to the lake. There, vegetation was damaged or destroyed by a 24 m (79 ft) high tsunami caused by the violent eruption. [15]

Degassing

Efforts are underway to develop a solution for removing the gas from these lakes and to prevent a build-up which could lead to another catastrophe. A team led by French scientist Michel Halbwachs began experimenting at Lake Monoun and Lake Nyos in 1990 using siphons to degas the waters of these lakes in a controlled manner. [16] The team positioned a pipe vertically in the lake with its upper end above the water surface. Water saturated with CO2 enters the bottom of the pipe and rises to the top. The lower pressure at the surface allows the gas to come out of solution. Only a small amount of water must be mechanically pumped initially through the pipe to start the flow. As saturated water rises, the CO2 comes out of solution and forms bubbles. The natural buoyancy of the bubbles draws the water up the pipe at high velocity resulting in a fountain at the surface. The degassifying water acts like a pump, drawing more water into the bottom of the pipe, and creating a self-sustaining flow. This is the same process which leads to a natural eruption, but in this case it is controlled by the size of the pipe.

Each pipe has a limited pumping capacity and several would be required for both Lake Monoun and Lake Nyos to degas a significant fraction of the deep lake water and render the lakes safe. The deep lake waters are slightly acidic due to the dissolved CO2 which causes corrosion to the pipes and electronics, necessitating ongoing maintenance. There is some concern that CO2 from the pipes could settle on the surface of the lake forming a thin layer of unbreathable air and thus potentially causing problems for wildlife.

In January 2001, a single pipe was installed by the French-Cameroonian team on Lake Nyos, and two more pipes were installed in 2011 with funding support from the United Nations Development Programme. [17] [18] A pipe was installed at Lake Monoun in 2003 and two more were added in 2006. [17] [18] These three pipes are thought to be sufficient to prevent an increase in CO2 levels, removing approximately the same amount of gas that naturally enters at the lake bed.[ citation needed ] In January 2003, an 18-month project was approved to fully degas Lake Monoun, [19] and the lake has since been rendered safe. [17]

There is some evidence that Lake Michigan in the United States spontaneously degasses on a much smaller scale each fall. [20]

Lake Kivu risks

Satellite image of Lake Kivu in 2003 LakeKivu satellite.jpg
Satellite image of Lake Kivu in 2003

Lake Kivu is not only about 1,700 times larger than Lake Nyos, but is also located in a far more densely populated area, with over two million people living along its shores. The part within the Democratic Republic of the Congo is a site of active armed conflict and low state capacity for the DRC government, which impedes both studies and any subsequent mitigating actions. Lake Kivu has not reached a high level of CO2 saturation yet; if the water were to become heavily saturated, a limnic eruption would pose a great risk to human and animal life, potentially killing millions. [21]

Two significant changes in Lake Kivu's physical state have brought attention to a possible limnic eruption: the high rates of methane dissociation and a rising surface temperature. [22] Research investigating historical and present-day temperatures show Lake Kivu's surface temperature is increasing by about 0.12 °C per decade. [22] Lake Kivu is in close proximity to potential triggers: Mount Nyiragongo (an active volcano which erupted in January 2002 and May 2021), an active earthquake zone, and other active volcanoes. [23]

While the lake could be degassed in a manner similar to Lake Monoun and Lake Nyos, due to the size of Lake Kivu and the volume of gas it contains, such an operation would be expensive, running into the millions of dollars.[ citation needed ] A scheme initiated in 2010 to use methane trapped in the lake as a fuel source to generate electricity in Rwanda has led to a degree of CO2 degassing. [24] During the procedure for extracting the flammable methane gas used to fuel power stations on the shore, some CO2 is removed in a process known as catalyst scrubbing. It is unclear whether enough gas will be removed to eliminate the danger of a limnic eruption at Lake Kivu.

See also

Related Research Articles

<span class="mw-page-title-main">Stratovolcano</span> Type of conical volcano composed of layers of lava and tephra

A stratovolcano, also known as a composite volcano, is a conical volcano built up by many layers (strata) of hardened lava and tephra. Unlike shield volcanoes, stratovolcanoes are characterized by a steep profile with a summit crater and periodic intervals of explosive eruptions and effusive eruptions, although some have collapsed summit craters called calderas. The lava flowing from stratovolcanoes typically cools and hardens before spreading far, due to high viscosity. The magma forming this lava is often felsic, having high to intermediate levels of silica, with lesser amounts of less viscous mafic magma. Extensive felsic lava flows are uncommon, but have traveled as far as 15 km (9 mi).

<span class="mw-page-title-main">Lake Nyos</span> Crater lake in the Northwest Region of Cameroon

Lake Nyos is a crater lake in the Northwest Region of Cameroon, located about 315 km (196 mi) northwest of Yaoundé, the capital. Nyos is a deep lake high on the flank of an inactive volcano in the Oku volcanic plain along the Cameroon line of volcanic activity. A volcanic dam impounds the lake waters.

<span class="mw-page-title-main">Lake Kivu</span> Meromictic lake in the East African Rift valley

Lake Kivu is one of the African Great Lakes. It lies on the border between the Democratic Republic of the Congo and Rwanda, and is in the Albertine Rift, the western branch of the East African Rift. Lake Kivu empties into the Ruzizi River, which flows southwards into Lake Tanganyika.

<span class="mw-page-title-main">Mount Nyiragongo</span> Active volcano in the Democratic Republic of the Congo

Mount Nyiragongo is an active stratovolcano with an elevation of 3,470 m (11,385 ft) in the Virunga Mountains associated with the Albertine Rift. It is located inside Virunga National Park, in the Democratic Republic of the Congo, about 12 km (7.5 mi) north of the town of Goma and Lake Kivu and just west of the border with Rwanda. The main crater is about two kilometres (1 mi) wide and usually contains a lava lake. The crater presently has two distinct cooled lava benches within the crater walls – one at about 3,175 m (10,417 ft) and a lower one at about 2,975 m (9,760 ft).

<span class="mw-page-title-main">Meromictic lake</span> Permanently stratified lake with layers of water that do not intermix

A meromictic lake is a lake which has layers of water that do not intermix. In ordinary, holomictic lakes, at least once each year, there is a physical mixing of the surface and the deep waters.

<span class="mw-page-title-main">Goma</span> Provincial capital and city in North Kivu, DR Congo

Goma is the capital of North Kivu province in the eastern Democratic Republic of the Congo. It is located on the northern shore of Lake Kivu, next to the Rwandan city of Gisenyi. The lake and the two cities are in the Albertine Rift, the western branch of the East African Rift system. Goma lies only 13–18 km (8.1–11.2 mi) south of the active Nyiragongo Volcano. The recent history of Goma has been dominated by the volcano and the Rwandan genocide of 1994, which in turn fueled the First and Second Congo Wars. The aftermath of these events was still having effects on the city and its surroundings in 2010. The city was captured by rebels of the March 23 Movement during the M23 rebellion in late 2012, but it has since been retaken by government forces.

<span class="mw-page-title-main">Haraldur Sigurðsson</span> Icelandic volcanologist and geochemist (born 1939)

Haraldur Sigurðsson or Haraldur Sigurdsson is an Icelandic volcanologist and geochemist.

Degassing, also known as degasification, is the removal of dissolved gases from liquids, especially water or aqueous solutions. There are numerous methods for removing gases from liquids.

<span class="mw-page-title-main">Lake Monoun</span> Lake in West Province, Cameroon

Lake Monoun is a crater lake (maar) in West Province, Cameroon, that lies in the Oku Volcanic Field. On August 15, 1984, a limnic eruption occurred at the lake, which resulted in the release of a large amount of carbon dioxide that killed 37 people. At first, the deaths remained unexplained, and causes such as terrorism were suspected. Further investigation and a similar event two years later at Lake Nyos led to the currently accepted explanation.

<span class="mw-page-title-main">Effusive eruption</span> Type of volcanic eruption characterized by steady lava flow

An effusive eruption is a type of volcanic eruption in which lava steadily flows out of a volcano onto the ground.

<span class="mw-page-title-main">Volcanic gas</span> Gases given off by active volcanoes

Volcanic gases are gases given off by active volcanoes. These include gases trapped in cavities (vesicles) in volcanic rocks, dissolved or dissociated gases in magma and lava, or gases emanating from lava, from volcanic craters or vents. Volcanic gases can also be emitted through groundwater heated by volcanic action.

In geology, a mazuku (Swahili for "evil wind") is a pocket of carbon dioxide-rich air that can be lethal to any human or animal life inside. Mazuku are created when carbon dioxide accumulates in pockets low to the ground. CO2 is denser than air, which causes it to flow downhill, hugging the ground like a low fog, and is also undetectable by human olfactory or visual senses in most conditions.

<span class="mw-page-title-main">Lac Pavin</span> Meromictic, volcanic crater lake in Puy-de-Dôme, France

Lac Pavin or Lake Pavin is a meromictic crater lake, located in the Dore mountains, in Auvergne, in the territory of the commune of Besse-et-Saint-Anastaise, Puy-de-Dôme department of France, between Besse-en-Chandesse and Super-Besse. Formed by phreatomagmatism 6,900 years ago, this crater lake is the youngest volcano in mainland France

A tsunami is a series of water waves caused by the displacement of a large volume within a body of water, often caused by earthquakes, or similar events. This may occur in lakes as well as oceans, presenting threats to both fishermen and shoreside inhabitants. Because they are generated by a near field source region, tsunamis generated in lakes and reservoirs result in a decreased amount of warning time.

<span class="mw-page-title-main">Oku Volcanic Field</span>

The Oku Volcanic Field or Oku Massif is a group of volcanoes based on a swell in the Cameroon Volcanic Line, located in the Oku region of the Western High Plateau of Cameroon. The Mount Oku stratovolcano rises to 3,011 m above sea level.

Tectonic–climatic interaction is the interrelationship between tectonic processes and the climate system. The tectonic processes in question include orogenesis, volcanism, and erosion, while relevant climatic processes include atmospheric circulation, orographic lift, monsoon circulation and the rain shadow effect. As the geological record of past climate changes over millions of years is sparse and poorly resolved, many questions remain unresolved regarding the nature of tectonic-climate interaction, although it is an area of active research by geologists and palaeoclimatologists.

<span class="mw-page-title-main">Lake Nyos disaster</span> 1986 limnic eruption in Cameroon

On 21 August 1986, a limnic eruption at Lake Nyos in northwestern Cameroon killed 1,746 people and 3,500 livestock.

<span class="mw-page-title-main">Multi-component gas analyzer system</span>

A multi-component gas analyzer system (Multi-GAS) is an instrument package used to take real-time high-resolution measurements of volcanic gases. A Multi-GAS package includes an infrared spectrometer for CO2, two electrochemical sensors for SO2 and H2S, and pressure–temperature–humidity sensors, all in a weatherproof box. The system can be used for individual surveys or set up as permanent stations connected to radio transmitters for transmission of data from remote locations. The instrument package is portable, and its operation and data analysis are simple enough to be conducted by non-specialists.

<span class="mw-page-title-main">Volcanic crater lake</span> Lake formed within a volcanic crater

A volcanic crater lake is a lake in a crater that was formed by explosive activity or a collapse during a volcanic eruption.

<span class="mw-page-title-main">Volcanic tsunami</span> Natural hazard

A volcanic tsunami, also called a volcanogenic tsunami, is a tsunami produced by volcanic phenomena. About 20–25% of all fatalities at volcanoes during the past 250 years have been caused by volcanic tsunamis. The most devastating volcanic tsunami in recorded history was that produced by the 1883 eruption of Krakatoa. The waves reached heights of 40 m (130 ft) and killed 36,000 people.

References

  1. Volcanic Lakes and Gas Releases Archived 2013-12-24 at the Wayback Machine USGS/Cascades Volcano Observatory Archived 2007-01-07 at the Wayback Machine , Vancouver, Washington.
  2. Plutarch, Life of Camillus, Internet Classics Archive (MIT), archived from the original on 18 February 2014, retrieved 4 February 2014
  3. Woodward, Jamie (7 May 2009), The Physical Geography of the Mediterranean, Oxford University Press (Oxford), ISBN   9780191608414, archived from the original on 22 September 2023, retrieved 23 October 2015
  4. Ohba, Takeshi, et al. “A Depression Containing CO2-Enriched Water at the Bottom of Lake Monoun, Cameroon, and Implications for the 1984 Limnic Eruption.” Frontiers in Earth Science, vol. 10, May 2022, p. 766791. DOI.org (Crossref), https://doi.org/10.3389/feart.2022.766791.
  5. Sigurdsson, H.; Devine, J.D.; Tchua, F.M.; Presser, F.M.; Pringle, M.K.W.; Evans, W.C. (1987). "Origin of the lethal gas burst from Lake Monoun, Cameroun". Journal of Volcanology and Geothermal Research. 31 (1–2): 1–16. Bibcode:1987JVGR...31....1S. doi:10.1016/0377-0273(87)90002-3.
  6. Kling, George W.; Clark, Michael A.; Wagner, Glen N.; Compton, Harry R.; Humphrey, Alan M.; Devine, Joseph D.; Evans, William C.; Lockwood, John P.; et al. (1987). "The 1986 Lake Nyos Gas Disaster in Cameroon, West Africa". Science. 236 (4798): 169–75. Bibcode:1987Sci...236..169K. doi:10.1126/science.236.4798.169. PMID   17789781. S2CID   40896330. Archived from the original on 2022-06-05. Retrieved 2019-07-03.
  7. Wenz, John (2020). "The danger lurking in an African lake". Knowable Magazine. doi: 10.1146/knowable-100720-1 . S2CID   225118318.
  8. Jones, Nicola (September 23, 2021). "How Dangerous is Africa's Explosive Lake Kivu?". Nature. Archived from the original on March 21, 2023. Retrieved January 23, 2023.
  9. Rosen, Jonathon W. (April 16, 2015). "Lake Kivu's Great Gas Gamble". MIT Technology Review. Archived from the original on January 23, 2023. Retrieved January 23, 2023.
  10. "The Power Plant That Could Prevent Disaster". 24 May 2016. Archived from the original on 28 July 2021. Retrieved 28 July 2021.
  11. Tassi, Franco (2014). "An overview of the structure, hazards, and methods of investigation of Nyos-type lakes from the geochemical perspective". Journal of Limnology. 73 (1). doi: 10.4081/jlimnol.2014.836 .
  12. Hakala, Anu (2005). Paleoenvironmental and paleoclimatic studies on the sediments of Lake Vähä-Pitkusta and observations of meromixis (Doctoral Thesis). Yliopistopaino. Archived from the original on 2021-06-06. Retrieved 2021-06-06.
  13. Freeth, SJ (1989). "Lake Nyos disaster". BMJ. 299 (6697): 513. doi:10.1136/bmj.299.6697.513-a. PMC   1837334 . PMID   2507040.
  14. "BBC Horizon programme "Killer Lakes"". Archived from the original on 2020-02-05. Retrieved 2007-02-14.
  15. Gusiakov, V.K. (2014). "Tsunami impact on the African continent: historical cases and hazard evaluation". In Ismail-Zadeh, A.; Urrutia Fucugauchi, J.; Kijko, A.; Takeuchi, K.; Zaliapin, I. (eds.). Extreme Natural Hazards, Disaster Risks and Societal Implications. Cambridge: Cambridge University Press. p. 230. ISBN   978-1-107-03386-3.
  16. "BBC Cameroons "killer lake" degassed". Archived from the original on 2013-09-21. Retrieved 2013-09-20.
  17. 1 2 3 Jones, Nicola (2010). "Battle to degas deadly lakes continues". Nature. 466 (7310): 1033. doi: 10.1038/4661033a . PMID   20739980.
  18. 1 2 Nasr, Susan (24 March 2009). "How did Lake Nyos suddenly kill 1,700 people?". HowStuffWorks.com. Archived from the original on 21 September 2013. Retrieved 18 April 2013.
  19. Nicola Jones (1 February 2003). "Lake to lose its silent killer". newscientist. Archived from the original on 2011-09-17. Retrieved 2009-08-20.
  20. Otto, Laura (28 April 2017). "When Lake Michigan burps". UWMResearch. Milwaukee, Wisconsin. Archived from the original on 8 November 2019. Retrieved 28 February 2020.
  21. Jones, Nicola. "How dangerous is Africa's explosive Lake Kivu?". Nature. Springer Nature Limited. Archived from the original on 11 October 2022. Retrieved 11 October 2022.
  22. 1 2 Katsev, Sergei (2014). "Recent Warming of Lake Kivu". PLOS ONE. 9 (10): e109084. Bibcode:2014PLoSO...9j9084K. doi: 10.1371/journal.pone.0109084 . PMC   4189960 . PMID   25295730.
  23. Schmid, Martin; Tietze, Klaus; Halbwachs, Michel; Lorke, Andreas; McGinnis, Daniel; Wüest, Alfred (2002). "The volcanic risk - How hazardous is the gas accumulation in Lake Kivu? Arguments for a risk assesment in light of the Nyiragongo Volcano eruption of 2002" (PDF). Acta Vulcanologica. 14 (1–2): 15–122. doi:10.1400/19084. Archived (PDF) from the original on 2022-10-11. Retrieved 2022-10-11.
  24. Rice, Xan (16 August 2010). "Rwanda harnesses volcanic gases from depths of Lake Kivu". The Guardian. London. Archived from the original on 11 June 2016. Retrieved 12 December 2016.