Hypercapnia

Last updated
Hypercapnia
Other namesHypercarbia, CO2 retention, carbon dioxide poisoning
Main symptoms of carbon dioxide toxicity.svg
Main symptoms of carbon dioxide toxicity, by increasing volume percent in air. [1] [2]
Specialty Pulmonology, critical care medicine

Hypercapnia (from the Greek hyper = "above" or "too much" and kapnos = "smoke"), also known as hypercarbia and CO2 retention, is a condition of abnormally elevated carbon dioxide (CO2) levels in the blood. Carbon dioxide is a gaseous product of the body's metabolism and is normally expelled through the lungs. Carbon dioxide may accumulate in any condition that causes hypoventilation, a reduction of alveolar ventilation (the clearance of air from the small sacs of the lung where gas exchange takes place) as well as resulting from inhalation of CO2. Inability of the lungs to clear carbon dioxide, or inhalation of elevated levels of CO2, leads to respiratory acidosis. Eventually the body compensates for the raised acidity by retaining alkali in the kidneys, a process known as "metabolic compensation".

Contents

Acute hypercapnia is called acute hypercapnic respiratory failure (AHRF) and is a medical emergency as it generally occurs in the context of acute illness. Chronic hypercapnia, where metabolic compensation is usually present, may cause symptoms but is not generally an emergency. Depending on the scenario both forms of hypercapnia may be treated with medication, with mask-based non-invasive ventilation or with mechanical ventilation.

Hypercapnia is a hazard of underwater diving associated with breath-hold diving, scuba diving, particularly on rebreathers, and deep diving where it is associated with increased breathing gas density due to the high ambient pressure. [3] [4] [5]

Signs and symptoms

Hypercapnia may happen in the context of an underlying health condition, and symptoms may relate to this condition or directly to the hypercapnia. Specific symptoms attributable to early hypercapnia are dyspnea (breathlessness), headache, confusion and lethargy. Clinical signs include flushed skin, full pulse (bounding pulse), rapid breathing, premature heart beats, muscle twitches, and hand flaps (asterixis). The risk of dangerous irregularities of the heart beat is increased. [6] [7] Hypercapnia also occurs when the breathing gas is contaminated with carbon dioxide, or respiratory gas exchange cannot keep up with the metabolic production of carbon dioxide, which can occur when gas density limits ventilation at high ambient pressures. [3]

In severe hypercapnia (generally greater than 10 kPa or 75 mmHg), symptomatology progresses to disorientation, panic, hyperventilation, convulsions, unconsciousness, and eventually death. [8] [9]

Causes

Carbon dioxide is a normal metabolic product but it accumulates in the body if it is produced faster than it is cleared. During strenuous exercise the production rate of carbon dioxide can increase more than tenfold over the production rate during rest. Carbon dioxide is dissolved in the blood and elimination is by gas exchange in the lungs during breathing. [10] Hypercapnia is generally caused by hypoventilation, lung disease, or diminished consciousness. It may also be caused by exposure to environments containing abnormally high concentrations of carbon dioxide, such as from volcanic or geothermal activity, or by rebreathing exhaled carbon dioxide. In this situation the hypercapnia can also be accompanied by respiratory acidosis. [11]

Acute hypercapnic respiratory failure may occur in acute illness caused by chronic obstructive pulmonary disease (COPD), chest wall deformity, some forms of neuromuscular disease (such as myasthenia gravis, and obesity hypoventilation syndrome. [12] AHRF may also develop in any form of respiratory failure where the breathing muscles become exhausted, such as severe pneumonia and acute severe asthma. It can also be a consequence of profound suppression of consciousness such as opioid overdose.[ citation needed ]

During diving

Normal respiration in divers results in alveolar hypoventilation resulting in inadequate CO2 elimination or hypercapnia. Lanphier's work at the US Navy Experimental Diving Unit answered the question, "Why don't divers breathe enough?": [13]

A variety of reasons exist for carbon dioxide not being expelled completely when the diver exhales:

Skip breathing

Skip breathing is a controversial technique to conserve breathing gas when using open-circuit scuba, which consists of briefly holding one's breath between inhalation and exhalation (i.e., "skipping" a breath). It can lead to CO2 not being exhaled efficiently. [19] The risk of burst lung (pulmonary barotrauma of ascent) is increased if the breath is held while ascending. It is particularly counterproductive with a rebreather, where the act of breathing pumps the gas around the "loop", pushing carbon dioxide through the scrubber and mixing freshly injected oxygen. [5]

In closed-circuit rebreather diving, exhaled carbon dioxide must be removed from the breathing system, usually by a scrubber containing a solid chemical compound with a high affinity for CO2, such as soda lime. If not removed from the system, it may be reinhaled, causing an increase in the inhaled concentration. [20]

Under hyperbaric conditions, hypercapnia contributes to nitrogen narcosis and oxygen toxicity by causing cerebral vasodilation which increases the dosage of oxygen to the brain. [18]

Mechanism

Hypercapnia normally triggers a reflex which increases breathing and access to oxygen (O2), such as arousal and turning the head during sleep. A failure of this reflex can be fatal, for example as a contributory factor in sudden infant death syndrome. [21]

Hypercapnia can induce increased cardiac output, an elevation in arterial blood pressure (higher levels of carbon dioxide stimulate aortic and carotid chemoreceptors with afferents -CN IX and X- to medulla oblongata with following chrono- and ino-tropic effects),[ clarification needed ] and a propensity toward cardiac arrhythmias. Hypercapnia may increase pulmonary capillary resistance.[ citation needed ]

Physiological effects

A high arterial partial pressure of carbon dioxide () causes changes in brain activity that adversely affect both fine muscular control and reasoning. EEG changes denoting minor narcotic effects can be detected for expired gas end tidal partial pressure of carbon dioxide () increase from 40 torrs (0.053 atm) to approximately 50 torrs (0.066 atm). The diver does not necessarily notice these effects. [10]

Higher levels of have a stronger narcotic effect: Confusion and irrational behaviour may occur around 72 torrs (0.095 atm), and loss of consciousness around 90 torrs (0.12 atm). High triggers the fight or flight response, affects hormone levels and can cause anxiety, irritability and inappropriate or panic responses, which can be beyond the control of the subject, sometimes with little or no warning. Vasodilation is another effect, notably in the skin, where feelings of unpleasant heat are reported, and in the brain, where blood flow can increase by 50% at a of 50 torrs (0.066 atm), Intracranial pressure may rise, with a throbbing headache. If associated with a high the high delivery of oxygen to the brain may increase the risk of CNS oxygen toxicity at partial pressures usually considered acceptable. [10]

In many people a high causes a feeling of shortness of breath, but the lack of this symptom is no guarantee that the other effects are not occurring. A significant percentage of rebreather deaths have been associated with CO2 retention. The effects of high can take several minutes to hours to resolve once the cause has been removed. [10]

Diagnosis

Blood gas tests may be performed, typically by radial artery puncture, in the setting of acute breathing problems or other acute medical illness. Hypercapnia is generally defined as an arterial blood carbon dioxide level over 45 mmHg (6 kPa). Since carbon dioxide is in equilibrium with carbonic acid in the blood, hypercapnia drives serum pH down, resulting in respiratory acidosis. Clinically, the effect of hypercapnia on pH is estimated using the ratio of the arterial pressure of carbon dioxide to the concentration of bicarbonate ion, .[ citation needed ]

Tolerance

Tolerance to increased atmospheric CO2 concentration [8]
%CO2 in
inspired air
Expected tolerance for useful activity on continued exposure to elevated CO2
DurationMajor limitation
0.03lifetimeatmosphere, year 1780 [22]
0.04lifetimecurrent atmosphere
0.5lifetimeno detectable limitations (Note: refer to modern research in Carbon dioxide#Below 1% which shows measurable effects below 1%.)
1.0lifetime
1.5> 1 monthmild respiratory stimulation
2.0> 1 month
2.5> 1 month
3.0> 1 monthmoderate respiratory stimulation
3.5> 1 week
4.0> 1 weekmoderate respiratory stimulation, exaggerated respiratory response to exercise
4.5> 8 hours
5.0> 4 hoursprominent respiratory stimulus, exaggerated respiratory response to exercise
5.5> 1 hours
6.0> 0.5 hoursprominent respiratory stimulus, exaggerated respiratory response to exercise, beginnings of mental confusion
6.5> 0.25 hours
7.0> 0.1 hourslimitation by dyspnea and mental confusion

CO2 toxicity in animal models

Tests performed on mongrel dogs showed the physiological effect of carbon dioxide on the body of the animal: after inhalation of a 50% CO2 and 50% air mixture, respiratory movement increased for about 2 minutes, and then, it decreased for 30 to 90 minutes. Hill and Flack showed that CO2 concentrations up to 35% have an exciting effect upon both circulation and respiration, but those beyond 35% are depressant upon them.[ citation needed ] The blood pressure (BP) decreased transiently during the increased respiratory movement and then rose again and maintained the original level for a while. The heart rate slowed slightly just after the gas mixture inhalation. It is believed that the initial BP depression with the decreased heart rate is due to the direct depressant effect of CO2 upon the heart and that the return of blood pressure to its original level was due to the rapid rise of . After 30–90 min, the respiratory center was depressed, and hypotension occurred gradually or suddenly from reduced cardiac output, leading to an apnea and eventually to circulatory arrest.

At higher concentrations of CO2, unconsciousness occurred almost instantaneously and respiratory movement ceased in 1 minute. After a few minutes of apnea, circulatory arrest was seen. These findings imply that the cause of death in breathing high concentrations of CO2 is not the hypoxia but the intoxication of carbon dioxide. [23]

Treatment

The treatment for acute hypercapnic respiratory failure depends on the underlying cause, but may include medications and mechanical respiratory support. In those without contraindications, non-invasive ventilation (NIV) is often used in preference to invasive mechanical ventilation. [12] In the past, the drug doxapram (a respiratory stimulant), was used for hypercapnia in acute exacerbation of chronic obstructive pulmonary disease but there is little evidence to support its use compared to NIV, [24] and it does not feature in recent professional guidelines. [12]

Very severe respiratory failure, in which hypercapnia may also be present, is often treated with extracorporeal membrane oxygenation (ECMO), in which oxygen is added to and carbon dioxide removed directly from the blood. [25]

A relatively novel modality is extracorporeal carbon dioxide removal (ECCO2R). This technique removes CO2 from the bloodstream and may reduce the time mechanical ventilation is required for those with AHRF; it requires smaller volumes of blood flow compared to ECMO. [25] [26]

Terminology

Hypercapnia is the opposite of hypocapnia, the state of having abnormally reduced levels of carbon dioxide in the blood.

See also

Related Research Articles

<span class="mw-page-title-main">Respiratory failure</span> Inadequate gas exchange by the respiratory system

Respiratory failure results from inadequate gas exchange by the respiratory system, meaning that the arterial oxygen, carbon dioxide, or both cannot be kept at normal levels. A drop in the oxygen carried in the blood is known as hypoxemia; a rise in arterial carbon dioxide levels is called hypercapnia. Respiratory failure is classified as either Type 1 or Type 2, based on whether there is a high carbon dioxide level, and can be acute or chronic. In clinical trials, the definition of respiratory failure usually includes increased respiratory rate, abnormal blood gases, and evidence of increased work of breathing. Respiratory failure causes an altered mental status due to ischemia in the brain.

Dead space is the volume of air that is inhaled that does not take part in the gas exchange, because it either remains in the conducting airways or reaches alveoli that are not perfused or poorly perfused. It means that not all the air in each breath is available for the exchange of oxygen and carbon dioxide. Mammals breathe in and out of their lungs, wasting that part of the inhalation which remains in the conducting airways where no gas exchange can occur.

<span class="mw-page-title-main">Rebreather</span> Portable apparatus to recycle breathing gas

A rebreather is a breathing apparatus that absorbs the carbon dioxide of a user's exhaled breath to permit the rebreathing (recycling) of the substantially unused oxygen content, and unused inert content when present, of each breath. Oxygen is added to replenish the amount metabolised by the user. This differs from open-circuit breathing apparatus, where the exhaled gas is discharged directly into the environment. The purpose is to extend the breathing endurance of a limited gas supply, and, for covert military use by frogmen or observation of underwater life, eliminating the bubbles produced by an open circuit system and in turn not scaring wildlife being filmed. A rebreather is generally understood to be a portable unit carried by the user. The same technology on a vehicle or non-mobile installation is more likely to be referred to as a life-support system.

<span class="mw-page-title-main">Breathing gas</span> Gas used for human respiration

A breathing gas is a mixture of gaseous chemical elements and compounds used for respiration. Air is the most common and only natural breathing gas, but other mixtures of gases, or pure oxygen, are also used in breathing equipment and enclosed habitats such as scuba equipment, surface supplied diving equipment, recompression chambers, high-altitude mountaineering, high-flying aircraft, submarines, space suits, spacecraft, medical life support and first aid equipment, and anaesthetic machines.

In physiology, respiration is the movement of oxygen from the outside environment to the cells within tissues, and the removal of carbon dioxide in the opposite direction that's to the environment.

<span class="mw-page-title-main">Hypocapnia</span> State of reduced carbon dioxide in the blood

Hypocapnia, also known as hypocarbia, sometimes incorrectly called acapnia, is a state of reduced carbon dioxide in the blood.Hypocapnia usually results from deep or rapid breathing, known as hyperventilation.

<span class="mw-page-title-main">Breathing apparatus</span> Equipment allowing or assisting the user to breath in a hostile environment

A breathing apparatus or breathing set is equipment which allows a person to breathe in a hostile environment where breathing would otherwise be impossible, difficult, harmful, or hazardous, or assists a person to breathe. A respirator, medical ventilator, or resuscitator may also be considered to be breathing apparatus. Equipment that supplies or recycles breathing gas other than ambient air in a space used by several people is usually referred to as being part of a life-support system, and a life-support system for one person may include breathing apparatus, when the breathing gas is specifically supplied to the user rather than to the enclosure in which the user is the occupant.

<span class="mw-page-title-main">Respiratory acidosis</span> Medical condition

Respiratory acidosis is a state in which decreased ventilation (hypoventilation) increases the concentration of carbon dioxide in the blood and decreases the blood's pH.

Diving disorders, or diving related medical conditions, are conditions associated with underwater diving, and include both conditions unique to underwater diving, and those that also occur during other activities. This second group further divides into conditions caused by exposure to ambient pressures significantly different from surface atmospheric pressure, and a range of conditions caused by general environment and equipment associated with diving activities.

<span class="mw-page-title-main">Hypoxemia</span> Abnormally low level of oxygen in the blood

Hypoxemia is an abnormally low level of oxygen in the blood. More specifically, it is oxygen deficiency in arterial blood. Hypoxemia has many causes, and often causes hypoxia as the blood is not supplying enough oxygen to the tissues of the body.

Freediving blackout, breath-hold blackout, or apnea blackout is a class of hypoxic blackout, a loss of consciousness caused by cerebral hypoxia towards the end of a breath-hold dive, when the swimmer does not necessarily experience an urgent need to breathe and has no other obvious medical condition that might have caused it. It can be provoked by hyperventilating just before a dive, or as a consequence of the pressure reduction on ascent, or a combination of these. Victims are often established practitioners of breath-hold diving, are fit, strong swimmers and have not experienced problems before. Blackout may also be referred to as a syncope or fainting.

<span class="mw-page-title-main">Breathing performance of regulators</span> Measurement and requirements of function of breathing regulators

The breathing performance of regulators is a measure of the ability of a breathing gas regulator to meet the demands placed on it at varying ambient pressures and temperatures, and under varying breathing loads, for the range of breathing gases it may be expected to deliver. Performance is an important factor in design and selection of breathing regulators for any application, but particularly for underwater diving, as the range of ambient operating pressures and temperatures, and variety of breathing gases is broader in this application. A diving regulator is a device that reduces the high pressure in a diving cylinder or surface supply hose to the same pressure as the diver's surroundings. It is desirable that breathing from a regulator requires low effort even when supplying large amounts of breathing gas as this is commonly the limiting factor for underwater exertion, and can be critical during diving emergencies. It is also preferable that the gas is delivered smoothly without any sudden changes in resistance while inhaling or exhaling, and that the regulator does not lock up and either fail to supply gas or free-flow. Although these factors may be judged subjectively, it is convenient to have standards by which the many different types and manufactures of regulators may be objectively compared.

Equivalent narcotic depth (END) (historically also equivalent nitrogen depth) is used in technical diving as a way of estimating the narcotic effect of a breathing gas mixture, such as nitrox, heliox or trimix. The method is used, for a given breathing gas mix and dive depth, to calculate the equivalent depth which would produce about the same narcotic effect when breathing air.

<span class="mw-page-title-main">Rebreather diving</span> Underwater diving using self contained breathing gas recycling apparatus

Rebreather diving is underwater diving using diving rebreathers, a class of underwater breathing apparatus which recirculate the breathing gas exhaled by the diver after replacing the oxygen used and removing the carbon dioxide metabolic product. Rebreather diving is practiced by recreational, military and scientific divers in applications where it has advantages over open circuit scuba, and surface supply of breathing gas is impracticable. The main advantages of rebreather diving are extended gas endurance, low noise levels, and lack of bubbles.

<span class="mw-page-title-main">Interspiro DCSC</span> Military semi-closed circuit passive addition diving rebreather

The Interspiro DCSC is a semi-closed circuit nitrox rebreather manufactured by Interspiro of Sweden for military applications. Interspiro was formerly a division of AGA and has been manufacturing self-contained breathing apparatus for diving, firefighting and rescue applications since the 1950s.

The Halcyon RB80 is a non-depth-compensated passive addition semi-closed circuit rebreather of similar external dimensions to a standard AL80 scuba cylinder. It was originally developed by Reinhard Buchaly (RB) in 1996 for the cave exploration dives conducted by the European Karst Plain Project (EKPP).

Work of breathing (WOB) is the energy expended to inhale and exhale a breathing gas. It is usually expressed as work per unit volume, for example, joules/litre, or as a work rate (power), such as joules/min or equivalent units, as it is not particularly useful without a reference to volume or time. It can be calculated in terms of the pulmonary pressure multiplied by the change in pulmonary volume, or in terms of the oxygen consumption attributable to breathing.

Human physiology of underwater diving is the physiological influences of the underwater environment on the human diver, and adaptations to operating underwater, both during breath-hold dives and while breathing at ambient pressure from a suitable breathing gas supply. It, therefore, includes the range of physiological effects generally limited to human ambient pressure divers either freediving or using underwater breathing apparatus. Several factors influence the diver, including immersion, exposure to the water, the limitations of breath-hold endurance, variations in ambient pressure, the effects of breathing gases at raised ambient pressure, effects caused by the use of breathing apparatus, and sensory impairment. All of these may affect diver performance and safety.

<span class="mw-page-title-main">Diving rebreather</span> Closed or semi-closed circuit scuba

A Diving rebreather is an underwater breathing apparatus that absorbs the carbon dioxide of a diver's exhaled breath to permit the rebreathing (recycling) of the substantially unused oxygen content, and unused inert content when present, of each breath. Oxygen is added to replenish the amount metabolised by the diver. This differs from open-circuit breathing apparatus, where the exhaled gas is discharged directly into the environment. The purpose is to extend the breathing endurance of a limited gas supply, and, for covert military use by frogmen or observation of underwater life, to eliminate the bubbles produced by an open circuit system. A diving rebreather is generally understood to be a portable unit carried by the user, and is therefore a type of self-contained underwater breathing apparatus (scuba). A semi-closed rebreather carried by the diver may also be known as a gas extender. The same technology on a submersible or surface installation is more likely to be referred to as a life-support system.

<span class="mw-page-title-main">Glossary of breathing apparatus terminology</span> Definitions of technical terms used in connection with breathing apparatus

A breathing apparatus or breathing set is equipment which allows a person to breathe in a hostile environment where breathing would otherwise be impossible, difficult, harmful, or hazardous, or assists a person to breathe. A respirator, medical ventilator, or resuscitator may also be considered to be breathing apparatus. Equipment that supplies or recycles breathing gas other than ambient air in a space used by several people is usually referred to as being part of a life-support system, and a life-support system for one person may include breathing apparatus, when the breathing gas is specifically supplied to the user rather than to the enclosure in which the user is the occupant.

References

  1. Toxicity of Carbon Dioxide Gas Exposure, CO2 Poisoning Symptoms, Carbon Dioxide Exposure Limits, and Links to Toxic Gas Testing Procedures By Daniel Friedman – InspectAPedia
  2. Davidson, Clive. 7 February 2003. "Marine Notice: Carbon Dioxide: Health Hazard". Australian Maritime Safety Authority.
  3. 1 2 3 4 5 Anthony, Gavin; Mitchell, Simon J. (2016). Pollock, NW; Sellers, SH; Godfrey, JM (eds.). Respiratory Physiology of Rebreather Diving (PDF). Rebreathers and Scientific Diving. Proceedings of NPS/NOAA/DAN/AAUS June 16–19, 2015 Workshop. Wrigley Marine Science Center, Catalina Island, CA. pp. 66–79.
  4. 1 2 3 4 5 6 Lanphier EH (1956). "Nitrogen-Oxygen Mixture Physiology. Phase 5. Added Respiratory Dead Space (Value in Personnel Selection tests) (Physiological Effects Under Diving Conditions)". US Navy Experimental Diving Unit Technical Report. AD0725851.
  5. 1 2 3 4 Mitchell, Simon (August 2008). "Four: Carbon Dioxide Retention". In Mount, Tom; Dituri, Joseph (eds.). Exploration and Mixed Gas Diving Encyclopedia (1st ed.). Miami Shores, Florida: International Association of Nitrox Divers. pp. 279–286. ISBN   978-0-915539-10-9.
  6. Stapczynski J. S, "Chapter 62. Respiratory Distress" (Chapter). Tintinalli JE, Kelen GD, Stapczynski JS, Ma OJ, Cline DM: Tintinalli's Emergency Medicine: A Comprehensive Study Guide, 6th Edition: "PageError". Archived from the original on 2011-07-07. Retrieved 2009-05-26..
  7. Morgan GE Jr., Mikhail MS, Murray MJ, "Chapter 3. Breathing Systems" (Chapter). Morgan GE Jr., Mikhail MS, Murray MJ: Clinical Anesthesiology, 4th Edition: "AccessMedicine - Lange Anesthesiology: Key Concepts". Archived from the original on 2008-04-14. Retrieved 2009-05-26..
  8. 1 2 Lambertsen, Christian J. (1971). "Carbon Dioxide Tolerance and Toxicity". Environmental Biomedical Stress Data Center, Institute for Environmental Medicine, University of Pennsylvania Medical Center. IFEM Report No. 2–71.
  9. Glatte Jr H. A.; Motsay G. J.; Welch B.E. (1967). "Carbon Dioxide Tolerance Studies". Brooks AFB, TX School of Aerospace Medicine Technical Report. SAM-TR-67-77.
  10. 1 2 3 4 Shykoff, Barbara; Warkander, Dan (28 February 2018). "What's All the Fuss about CO2 in Breathing Gas?". Shearwater.com.
  11. Dement, Roth, Kryger, 'Principles & Practices of Sleep Medicine' 3rd edition, 2000, p. 887. [ dead link ]
  12. 1 2 3 Davidson, A Craig; Banham, Stephen; Elliott, Mark; Kennedy, Daniel; Gelder, Colin; Glossop, Alastair; Church, Alistair Colin; Creagh-Brown, Ben; Dodd, James William; Felton, Tim; Foëx, Bernard; Mansfield, Leigh; McDonnell, Lynn; Parker, Robert; Patterson, Caroline Marie; Sovani, Milind; Thomas, Lynn (14 March 2016). "BTS/ICS guideline for the ventilatory management of acute hypercapnic respiratory failure in adults". Thorax. 71 (Suppl 2): ii1–ii35. doi: 10.1136/thoraxjnl-2015-208209 . PMID   26976648.
  13. 1 2 US Navy Diving Manual, 6th revision. United States: US Naval Sea Systems Command. 2006. Archived from the original on 2008-05-02. Retrieved 2008-06-10.
  14. ETCO2 is defined as the level of carbon dioxide released at end of expiration
  15. 1 2 3 Lanphier, EH (1955). "Nitrogen-Oxygen Mixture Physiology, Phases 1 and 2". US Navy Experimental Diving Unit Technical Report. AD0784151.
  16. 1 2 3 Lanphier EH, Lambertsen CJ, Funderburk LR (1956). "Nitrogen-Oxygen Mixture Physiology – Phase 3. End-Tidal Gas Sampling System. Carbon Dioxide Regulation in Divers. Carbon Dioxide Sensitivity Tests". US Navy Experimental Diving Unit Technical Report. AD0728247.
  17. 1 2 3 Lanphier EH (1958). "Nitrogen-oxygen mixture physiology. Phase 4. Carbon Dioxide sensitivity as a potential means of personnel selection. Phase 6. Carbon Dioxide regulation under diving conditions". US Navy Experimental Diving Unit Technical Report. AD0206734.
  18. 1 2 3 Mitchell, Simon. "Respiratory failure in technical diving". DAN Southern Africa. Archived from the original on 2021-11-13. Retrieved 6 October 2021 via YouTube.
  19. Cheshire, William P; Ott, Michael C (2001). "Headache in Divers". Headache: The Journal of Head and Face Pain. 41 (3): 235–247. doi:10.1046/j.1526-4610.2001.111006235.x. PMID   11264683. S2CID   36318428. Carbon dioxide can accumulate insidiously in the diver who intentionally holds the breath intermittently (skip breathing) in a mistaken attempt to conserve air
  20. Richardson, Drew; Menduno, Michael; Shreeves, Karl, eds. (1996). "Proceedings of Rebreather Forum 2.0". Diving Science and Technology Workshop.: 286.
  21. Kinney, Hannah C; Thach, Bradley T (2009). "The sudden infant death syndrome". The New England Journal of Medicine . 361 (8): 795–805. doi:10.1056/NEJMra0803836. PMC   3268262 . PMID   19692691.
  22. "Current & Historical Carbon Dioxide (CO2) Levels Graph". Co2levels.org. Retrieved 11 June 2022.
  23. Permentier, Kris; Vercammen, Steven; Soetaert, Sylvia; Schellemans, Christian (4 April 2017). "Carbon dioxide poisoning: a literature review of an often forgotten cause of intoxication in the emergency department". International Journal of Emergency Medicine. 10 (1): 14. doi: 10.1186/s12245-017-0142-y . ISSN   1865-1372. PMC   5380556 . PMID   28378268.
  24. Greenstone, M.; Lasserson, T.J. (2003). "Doxapram for ventilatory failure due to exacerbations of chronic obstructive pulmonary disease". The Cochrane Database of Systematic Reviews (1): CD000223. doi:10.1002/14651858.CD000223. PMID   12535393.
  25. 1 2 Pisani, Lara; Polastri, Massimiliano; Pacilli, Angela Maria Grazia; Nava, Stefano (2018). "Extracorporeal Lung Support for Hypercapnic Ventilatory Failure". Respiratory Care. 63 (9): 1174–1179. doi: 10.4187/respcare.06277 . PMID   30166412.
  26. Morales-Quinteros, Luis; Del Sorbo, Lorenzo; Artigas, Antonio (2019). "Extracorporeal carbon dioxide removal for acute hypercapnic respiratory failure". Annals of Intensive Care. 9 (1): 79. doi: 10.1186/s13613-019-0551-6 . PMC   6606679 . PMID   31267300.