Buddy breathing

Last updated

Buddy breathing is a rescue technique used in scuba diving "out of gas" emergencies, when two divers share one demand valve, alternately breathing from it. Techniques have been developed for buddy breathing from both twin-hose and single hose regulators, but to a large extent it has been superseded by safer and more reliable techniques using additional equipment, such as the use of a bailout cylinder or breathing through a secondary demand valve on the rescuer's regulator.

Contents

Running out of breathing gas most commonly happens as a result of poor gas management. [1] It can also happen due to unforeseen exertion or breathing equipment failure. Equipment failure resulting in the loss of all gas could be caused by failure of a pressure retaining component such as an O-ring or hose in the regulator or, in cold conditions, a freezing of water in the regulator resulting in a free flow from the demand valve. [2] [3]

Technique

I'm out of air: "Cutting" or "chopping" throat with a flat hand. Dive hand signal Emergency Out of air.png
I'm out of air: "Cutting" or "chopping" throat with a flat hand.
Give me air now (emergency implied): pointing to the mouth with thumb and fingers together, moving hand back and forth a short distance. Dive hand signal Give me air.png
Give me air now (emergency implied): pointing to the mouth with thumb and fingers together, moving hand back and forth a short distance.

Buddy breathing is usually initialised by the diver with the "out of air" emergency signalling this to another diver by a standard hand signal "give me air". This signal is made by holding the fingers and thumb of one hand together, pointing them at the mouth and making repeated movements of the finger tips towards the mouth. [5]

The donor is expected to take a good breath and pass their demand valve (or mouthpiece in the case of a twin-hose regulator) to the recipient, who is expected to take two good breaths and pass it back. In reality the recipient will often take more than two breaths, and the donor should expect this and relax to minimize metabolic rate. The donor should retain a good grip on the demand valve throughout the buddy breathing process, as a panicked recipient may fail to give it back. A reasonably reliable way of keeping control of the demand valve is to grasp the hose firmly in the fist where it connects to the demand valve. This provides good control but allows the recipient to use the purge button if needed. [6] [7]

A pattern of two breaths per diver should be established as soon as possible and then terminate the dive and start the ascent as soon as possible, as air consumption while buddy breathing is usually more than double the normal rate. Most demand valves will only drain correctly if the hose is to the user's right, and in these cases the divers should align themselves to allow convenient movement of the demand valve from donor to recipient and back. When the divers need to ascend or swim horizontally, it requires co-ordination and some skill, which is best practiced in a low hazard environment. [7]

Training

A study by the UCLA Diving Safety Research Project suggests that about 20 successful repetitions of buddy breathing during training of entry level students are needed for a reasonable expectation of success without errors, and retesting after three months without reinforcing practice showed degraded performance and procedural errors. This is a higher level of training than provided by most recreational diver training organisations. For the skill to be reliable in an emergency, periodic reinforcement is necessary, and familiarisation is particularly valuable when buddies are to dive together for the first time. [6]

Hazards

Buddy breathing is one of the few scuba skills in which the incompetence of one diver can threaten the life of another. Poor buddy breathing performance has resulted in the death of both divers on more than one occasion. [8]

History

Buddy breathing originated from military diving following a prohibition on the training and practice of free ascents. [6]

The procedure has been used since the beginnings of recreational diving, and along with the free ascent was one of the ways a diver could respond to running out of air at depth. At this time twin-hose regulators were the norm. and it was reasonably easy for two divers in a face-to-face position to share the regulator mouthpiece. Buddy breathing was an important skill before reserve valves and submersible pressure gauges were generally available, and running out of air was so common that it was not considered an emergency. By the mid-1960s the availability of submersible pressure gauges made reliable air supply monitoring possible and running out of air became less common. [8]

In the late 1960s single-hose regulators started to take over as the standard, and this complicated the buddy breathing procedure. The single hose exhaust valve position at the bottom of most DVs made it necessary to offset the recipient to the right side when face to face, or to the left when side by side. The standard procedure of continuous exhalation during ascent to avoid lung over-pressure injury could leave the diver with insufficient air to clear the regulator, so it was necessary to hold the DV in a way that did not obstruct the recipient from accessing the purge button, as the single hose would not normally free flow when raised above the head. The increasing popularity of the buoyancy compensator was another complication, as it is necessary to periodically vent it during an ascent to avoid a runaway expansion of the contents and an uncontrolled buoyant ascent. This requires the use of one hand. the other is needed to control the regulator and hold on to the other diver, a moderately complex set of simultaneous tasks. [8] It is possible to coordinate these activities, but this requires greater skill than with the original procedure, and therefore more intensive training to perform reliably. Since running out of air was becoming less common, the procedure was practiced less often, and skills generally deteriorated. The use of a secondary (octopus) second stage or a bailout cylinder removes the necessity for this complex and relatively stressful procedure.

In the 1990s there was also growing concern about the transmission of disease by sharing a mouthpiece, particularly as a better option was available at a reasonable cost. Dive Training magazine ran an article by Alex Brylske in November 1993 detailing the hazards of buddy breathing and the advantages of alternative systems, [9] and over the following years the practice was phased out of most recreational diver training programmes in favour of the use of secondary second stages and where applicable, a controlled emergency swimming ascent.

Alternatives

Most recreational and professional diver training organisations would consider relying on buddy breathing from a single regulator as an unacceptable risk, as the use of a secondary demand valve (octopus) or second regulator, either from an alternative scuba cylinder, or from the primary scuba set, is a far more reliable and safe method of supplying emergency air to a diver who is part of a planned team or buddy dive, and a solo diver should carry their own emergency gas supply. There should never be a situation on a well planned and executed dive where two divers need to share a single demand valve, but the technique is still considered useful by some diving schools as it teaches control and hones skills under difficult circumstances. [6]

Buddy breathing is discouraged by many training agencies because other more reliable techniques and equipment exist. The technique needs training and regular practice by both divers if it is to be used successfully in a crisis; panic and task loading being the main reasons for it failing. Especially in situations in which one or both of the participants are not well-trained in the technique, the procedure has been criticised for endangering two people instead of one. [10]

Many divers fit a second demand valve, often called an "octopus", to their diving regulators, for emergency use by another diver. Some go so far as to recognise that the out-of-air diver will want the demand valve they are breathing off at the time, as it is indisputably providing breathing gas, and almost certainly a gas suitable for the current depth. These practice " donating the primary " in recognition of this tendency, and often use an extra-long hose (up to 7 ft long) to facilitate the procedure in tight spaces. These divers often wear the secondary demand valve on a " necklace " which keeps it ready for immediate use under the diver's chin, where it can be retrieved for use without the use of the hands. [6]

Divers doing deep diving, cave or wreck penetration, or decompression stops may routinely carry a complete, independent bailout scuba set for their own or their buddy's emergency use. This is particularly prevalent in professional diving operations where it is often mandatory. [11]

Use of other emergency air sources such as octopus second stage, integrated DV/BC inflator units, bailout cylinders etc. also requires the learning of appropriate skills. These procedures are as complex as buddy breathing up to the point of sharing, and the fundamental difference is that the donor and recipient are not required to alternate breathing with a period when no air is available, which can be a big advantage. These alternatives to buddy breathing also require substantial learning and reinforcement to be reliable in a stressful situation. [6]

Avoidance

In most cases the need for buddy-breathing or other gas related emergency is avoidable. The equipment is highly reliable when in good condition, and though occasionally breakdowns will occur without warning, in most cases user inspection and testing before the dive, combined with a reasonable planned maintenance schedule carried out by a competent person will pick up potential problems before they escalate to an emergency. Realistic gas planning and monitoring of the remaining gas supply in context of the time required to surface safely will prevent almost all out-of gas emergencies. [12] Carrying a fully redundant emergency gas supply allows the diver to bail out independently of outside assistance if in spite of all precautions, an emergency does occur.

Related Research Articles

<span class="mw-page-title-main">Scuba set</span> Self-contained underwater breathing apparatus

A scuba set, originally just scuba, is any breathing apparatus that is entirely carried by an underwater diver and provides the diver with breathing gas at the ambient pressure. Scuba is an anacronym for self-contained underwater breathing apparatus. Although strictly speaking the scuba set is only the diving equipment that is required for providing breathing gas to the diver, general usage includes the harness by which it is carried, and those accessories which are integral parts of the harness and breathing apparatus assembly, such as a jacket or wing style buoyancy compensator and instruments mounted in a combined housing with the pressure gauge, and in the looser sense, it has been used to refer to all the diving equipment used by the scuba diver, though this would more commonly and accurately be termed scuba equipment or scuba gear. Scuba is overwhelmingly the most common underwater breathing system used by recreational divers and is also used in professional diving when it provides advantages, usually of mobility and range, over surface supplied diving systems, and is allowed by the relevant legislation and code of practice.

<span class="mw-page-title-main">Surface-supplied diving</span> Underwater diving breathing gas supplied from the surface

Surface-supplied diving is diving using equipment supplied with breathing gas using a diver's umbilical from the surface, either from the shore or from a diving support vessel, sometimes indirectly via a diving bell. This is different from scuba diving, where the diver's breathing equipment is completely self-contained and there is no link to the surface. The primary advantages of conventional surface supplied diving are lower risk of drowning and considerably larger breathing gas supply than scuba, allowing longer working periods and safer decompression. Disadvantages are the absolute limitation on diver mobility imposed by the length of the umbilical, encumbrance by the umbilical, and high logistical and equipment costs compared with scuba. The disadvantages restrict use of this mode of diving to applications where the diver operates within a small area, which is common in commercial diving work.

<span class="mw-page-title-main">Recreational diving</span> Diving for the purpose of leisure and enjoyment, usually when using scuba equipment

Recreational diving or sport diving is diving for the purpose of leisure and enjoyment, usually when using scuba equipment. The term "recreational diving" may also be used in contradistinction to "technical diving", a more demanding aspect of recreational diving which requires more training and experience to develop the competence to reliably manage more complex equipment in the more hazardous conditions associated with the disciplines. Breath-hold diving for recreation also fits into the broader scope of the term, but this article covers the commonly used meaning of scuba diving for recreational purposes, where the diver is not constrained from making a direct near-vertical ascent to the surface at any point during the dive, and risk is considered low.

<span class="mw-page-title-main">Buddy check</span> Pre-dive safety checks carried out by two-diver dive teams

The buddy check is a procedure carried out by scuba divers using the buddy system where each diver checks that the other's diving equipment is configured and functioning correctly just before the start of the dive. A study of pre-dive equipment checks done by individual divers showed that divers often fail to recognize common equipment faults. By checking each other's equipment as well as their own, it is thought to be more likely that these faults will be identified prior to the start of the dive.

<span class="mw-page-title-main">Scuba diving</span> Swimming underwater, breathing gas carried by the diver

Scuba diving is a mode of underwater diving whereby divers use breathing equipment that is completely independent of a surface air supply. The name "scuba", an acronym for "Self-Contained Underwater Breathing Apparatus", was coined by Christian J. Lambertsen in a patent submitted in 1952. Scuba divers carry their own source of breathing gas, usually compressed air, affording them greater independence and movement than surface-supplied divers, and more time underwater than free divers. Although the use of compressed air is common, a gas blend with a higher oxygen content, known as enriched air or nitrox, has become popular due to the reduced nitrogen intake during long and/or repetitive dives. Also, breathing gas diluted with helium may be used to reduce the likelihood and effects of nitrogen narcosis during deeper dives.

<span class="mw-page-title-main">Solo diving</span> Recreational diving without a dive buddy

Solo diving is the practice of self-sufficient underwater diving without a "dive buddy", particularly with reference to scuba diving, but the term is also applied to freediving. Professionally, solo diving has always been an option which depends on operational requirements and risk assessment. Surface supplied diving and atmospheric suit diving are commonly single diver underwater activities but are accompanied by an on-surface support team dedicated to the safety of the diver, including a stand-by diver, and are not considered solo diving in this sense.

<span class="mw-page-title-main">Sidemount diving</span> Diving using equipment configuration where scuba sets are clipped to the divers sides

Sidemount is a scuba diving equipment configuration which has scuba sets mounted alongside the diver, below the shoulders and along the hips, instead of on the back of the diver. It originated as a configuration for advanced cave diving, as it facilitates penetration of tight sections of cave, allows easy access to cylinder valves, provides easy and reliable gas redundancy, and tanks can be easily removed when necessary. These benefits for operating in confined spaces were also recognized by divers who conducted technical wreck diving penetrations.

<span class="mw-page-title-main">Buddy diving</span> Practice of mutual monitoring and assistance between two divers

Buddy diving is the use of the buddy system by scuba divers. It is a set of safety procedures intended to improve the chances of avoiding or surviving accidents in or under water by having divers dive in a group of two or sometimes three. When using the buddy system, members of the group dive together and co-operate with each other, so that they can help or rescue each other in the event of an emergency. This is most effective if both divers are competent in all relevant skills and sufficiently aware of the situation that they can respond in time, which is a matter of both attitude and competence.

<span class="mw-page-title-main">Pony bottle</span> Small independent scuba cylinder usually carried for emergency gas supply

A pony bottle is a small diving cylinder which is fitted with an independent regulator, and carried by a scuba diver as an extension to the scuba set. In an emergency, such as depletion of the diver's main air supply, it can be used as an alternative air source or bailout bottle to allow a normal ascent in place of a controlled emergency swimming ascent. The key attribute of a pony bottle is that it provides a totally independent and redundant source of breathing gas for the diver. The name pony is due to the smaller size, often of only a few litres capacity.

<span class="mw-page-title-main">Alternative air source</span> Emergency supply of breathing gas for an underwater diver

In underwater diving, an alternative air source, or more generally alternative breathing gas source, is a secondary supply of air or other breathing gas for use by the diver in an emergency. Examples include an auxiliary demand valve, a pony bottle and bailout bottle.

<span class="mw-page-title-main">Bailout bottle</span> Emergency gas supply cylinder carried by a diver

A bailout bottle (BoB) or, more formally, bailout cylinder is a scuba cylinder carried by an underwater diver for use as an emergency supply of breathing gas in the event of a primary gas supply failure. A bailout cylinder may be carried by a scuba diver in addition to the primary scuba set, or by a surface supplied diver using either free-flow or demand systems. The bailout gas is not intended for use during the dive except in an emergency, and would be considered a fully redundant breathing gas supply if used correctly. The term may refer to just the cylinder, or the bailout set or emergency gas supply (EGS), which is the cylinder with the gas delivery system attached. The bailout set or bailout system is the combination of the emergency gas cylinder with the gas delivery system to the diver, which includes a diving regulator with either a demand valve, a bailout block, or a bailout valve (BOV).

<span class="mw-page-title-main">Emergency ascent</span> An ascent to the surface by a diver in an emergency

An emergency ascent is an ascent to the surface by a diver in an emergency. More specifically, it refers to any of several procedures for reaching the surface in the event of an out-of-air emergency, generally while scuba diving.

<span class="mw-page-title-main">Scuba gas management</span> Logistical aspects of scuba breathing gas

Scuba gas management is the aspect of scuba diving which includes the gas planning, blending, filling, analysing, marking, storage, and transportation of gas cylinders for a dive, the monitoring and switching of breathing gases during a dive, efficient and correct use of the gas, and the provision of emergency gas to another member of the dive team. The primary aim is to ensure that everyone has enough to breathe of a gas suitable for the current depth at all times, and is aware of the gas mixture in use and its effect on decompression obligations, nitrogen narcosis, and oxygen toxicity risk. Some of these functions may be delegated to others, such as the filling of cylinders, or transportation to the dive site, but others are the direct responsibility of the diver using the gas.

<span class="mw-page-title-main">Scuba skills</span> The skills required to dive safely using a self-contained underwater breathing apparatus

Scuba skills are skills required to dive safely using self-contained underwater breathing apparatus. Most of these skills are relevant to both open-circuit scuba and rebreather scuba, and many are also relevant to surface-supplied diving. Certain scuba skills, which are critical to divers' safety, may require more practice than is provided during standard recreational training.

Scuba diving fatalities are deaths occurring while scuba diving or as a consequence of scuba diving. The risks of dying during recreational, scientific or commercial diving are small, and on scuba, deaths are usually associated with poor gas management, poor buoyancy control, equipment misuse, entrapment, rough water conditions and pre-existing health problems. Some fatalities are inevitable and caused by unforeseeable situations escalating out of control, though the majority of diving fatalities can be attributed to human error on the part of the victim.

<span class="mw-page-title-main">Surface-supplied diving skills</span> Skills and procedures required for the safe operation and use of surface-supplied diving equipment

Surface supplied diving skills are the skills and procedures required for the safe operation and use of surface-supplied diving equipment. Besides these skills, which may be categorised as standard operating procedures, emergency procedures and rescue procedures, there are the actual working skills required to do the job, and the procedures for safe operation of the work equipment other than diving equipment that may be needed.

Dive leader is the title of an internationally recognised recreational diving certification. The training standard describes the minimum requirements for dive leader training and certification for recreational scuba divers in international standard ISO 24801-3 and the equivalent European Standard EN 14153-3. Various organizations offer training that meets the requirements of the dive leader standard. Some agencies use the title "Dive Leader" for their equivalent certification, but several other titles are also used, "Divemaster" may be the most widespread, but "Dive Supervisor" is also used, and should not be confused with the very different status and responsibilities of a professional diving supervisor. CMAS affiliates certifications which meet the requirements of CMAS 3-star diver should meet the standard by default. The occupation of a dive leader is also known as "dive guide", and is a specialist application of a "tour guide".

<span class="mw-page-title-main">Outline of underwater diving</span> Hierarchical outline list of articles related to underwater diving

The following outline is provided as an overview of and topical guide to underwater diving:

Diving procedures are standardised methods of doing things that are commonly useful while diving that are known to work effectively and acceptably safely. Due to the inherent risks of the environment and the necessity to operate the equipment correctly, both under normal conditions and during incidents where failure to respond appropriately and quickly can have fatal consequences, a set of standard procedures are used in preparation of the equipment, preparation to dive, during the dive if all goes according to plan, after the dive, and in the event of a reasonably foreseeable contingency. Standard procedures are not necessarily the only courses of action that produce a satisfactory outcome, but they are generally those procedures that experiment and experience show to work well and reliably in response to given circumstances. All formal diver training is based on the learning of standard skills and procedures, and in many cases the over-learning of the skills until the procedures can be performed without hesitation even when distracting circumstances exist. Where reasonably practicable, checklists may be used to ensure that preparatory and maintenance procedures are carried out in the correct sequence and that no steps are inadvertently omitted.

References

  1. Denoble, PJ; Marroni, A; Vann, RD (2011). Annual Fatality Rates and Associated Risk Factors for Recreational Scuba Diving In: Vann RD, Lang MA, eds. Recreational Diving Fatalities. Proceedings of the Divers Alert Network 2010 April 8-10 Workshop. Divers Alert Network. ISBN   978-0-615-54812-8.
  2. Watson, Jim (2013). "Regulator freezes". Diving safety: Safety talk: 2013 listing. Ellesmere Port, Cheshire: British Sub-Aqua Club. Retrieved 30 November 2016.
  3. Ward, Mike (9 April 2014). "Scuba Regulator Freezing Chilling Facts & Risks Associated with Cold Water Diving" (PDF). DL-Regulator Freeze Research Study. Panama City Beach, Florida: Dive Lab, Inc. Retrieved 30 November 2016.
  4. "Dive Links". Archived from the original on 2009-04-14. Retrieved 2009-04-14.
  5. 1 2 "Underwater Signals - UKDivers.net". Archived from the original on 2009-04-01. Retrieved 2009-04-14.
  6. 1 2 3 4 5 6 Egstrom, Glen H (1992). "Emergency air sharing". South Pacific Underwater Medicine Society Journal. 22 (4). Archived from the original on December 18, 2013. Retrieved 2013-12-18.{{cite journal}}: CS1 maint: unfit URL (link)
  7. 1 2 Mike Busuttili; Mike Holbrook; Gordon Ridley; Mike Todd, eds. (1985). Sport diving: The British Sub-Aqua Club Diving Manual (Revised ed.). London: Stanley Paul. ISBN   0-09-163831-3.
  8. 1 2 3 Brylske, Alex. "Buddy Breathing: Is it Time for Change?". 25th-anniversary-vintage-articles. dtmag.com. Retrieved 12 January 2017.originally published in Dive Training, November 1993.
  9. Young, Mark. "Buddy Breathing: Is it Time for Change? Editorial comment". 25th-anniversary-vintage-articles. dtmag.com. Retrieved 12 January 2017.
  10. Graver, Dennis (2003). Scuba Diving (3rd ed.). p. 88.
  11. Sheldrake, S; Pedersen, R; Schulze, C; Donohue, S; Humphrey, A (2011). "Use of Tethered Scuba for Scientific Diving". In: Pollock NW, ed. Diving for Science 2011. Proceedings of the American Academy of Underwater Sciences 30th Symposium.
  12. Davis, Andy (7 August 2019). "Don't get gas mugged: A predictable strategy for stress-free air sharing emergencies" . Retrieved 14 January 2020.