Swimming-induced pulmonary edema

Last updated
Swimming-induced pulmonary edema
Other namesSwimming-induced pulmonary oedema, [1] pulmonary oedema of immersion
Specialty Pulmonology

Swimming induced pulmonary edema (SIPE), also known as immersion pulmonary edema, is a life threatening condition that occurs when fluids from the blood leak abnormally from the small vessels of the lung (pulmonary capillaries) into the airspaces (alveoli). [2] [3]

Contents

SIPE usually occurs during exertion in conditions of water immersion, such as swimming and diving. With the recent surge in popularity of triathlons and swimming in open water events there has been an increasing incidence of SIPE. It has been reported in scuba divers, [4] [5] apnea (breath hold) free-diving competitors, [6] combat swimmers, and triathletes. [2] [7] The causes are incompletely understood as of 2010. [2] [8] [9] Some authors believe that SIPE may be the leading cause of death among recreational scuba divers, but there is insufficient evidence at present. [3]

Signs and symptoms

As with other forms of pulmonary edema, the hallmark of SIPE is a cough which may lead to frothy or blood-tinged sputum. Symptoms include:

Risk factors

It has been described in scuba divers, long-distance swimmers, and breath-hold divers. [11] [7]

Mechanism

Immersion causes increased external hydrostatic pressure, leading to redistribution of blood from the periphery to the chest, which increases cardiac filling pressures and stroke volume, and also reduces total lung capacity. There is a movement of fluid from the alveolar capillaries into the alveoli and extravascular lung tissues, which increases with time, and is normal in healthy humans when immersed. [2] [4] [5] [6] [8] [9] [3] This is normally counteracted by the release of BNP which causes sodium and water excretion through the kidneys. This natriuresis is slow, so lung water increase is to some extent normal, but in susceptible people a higher rate of accumulation produces symptoms of SIPE [3]

The alveoli of the lungs fill with edema fluid, causing dyspnoea, cough and frothy or bloodstained sputum. Gas exchange is affected, and as hypoxia increases there may be a loss of consciousness. Oxygenation in divers may be affected by breathing gas mix and partial pressure reduction due to ascent. In severe cases hypoxia may cause cardiac arrest and death. Research continues into the various factors causing IPO. [3]

Possible aggravating factors include:

SIPE is believed to arise from some combinations of these factors, which overwhelms the ability of the body to compensate, and leads to alveolar flooding. [2] [8] [9]

Diagnosis

Acute onset of breathing problems caused by fluid accumulation in lung extravascular spaces induced by immersion, usually in cold water, often with intense physical exertion. Symptoms reported developed during physical activity and usually include dyspnoea/shortness of breath and a cough, often haemoptysis, occasionally chest tightness, chest pain or confusion. Auscultation shows crackles or wheezing. Oxygen saturation usually shows hypoxemia. In most cases chest radiological examination shows signs of pulmonary edema, but a significant minority have a normal initial chest X-Ray. [3]

Rapid resolution of initial signs and symptoms within 48 hours is typical. Symptoms usually resolve spontaneously after the physiologic environment has been normalised by removal from immersion to a warm environment, with supportive treatment. [3]

Prevention

Management

Management has generally been reported to be conservative, though deaths have been reported. [5] [7]

Prognosis

The majority of cases rapidly resolve symptoms within 48 hours. [16] There is a significant risk of further episodes under similar conditions. Investigation for other cardiac problems is indicated. [3] In some cases a medical condition predisposing to SIPE can be corrected, and in some other cases divers who have had SIPE have resumed diving against medical advice. [3]

Epidemiology

SIPE is estimated to occur in 1-2% of competitive open-water swimmers, with 1.4% of triathletes, [2] 1.8% of combat swimmers and 1.1% of divers and swimmers [4] reported in the literature. Fatal cases can be mistaken for drowning because in both SIPE and drowning the lungs are heavy and filled with fluid, so post mortem findings may be similar. Consequently, most information about this condition comes from survivors and the true incidence is uncertain and likely to be underreported. [3]

Research

Most of the medical literature on the topic comes from case series in military populations and divers, [4] and an epidemiological study in triathletes. [2] A recent experimental study showed increased pulmonary artery pressure with cold water immersion, but this was done in normal subjects rather than in people with a history of SIPE. [17] A study in SIPE-susceptible individuals during submersion in cold water showed that pulmonary artery and pulmonary artery wedge pressures were higher than in non-susceptible people. These pressures were reduced by Sildenafil. [15] SIPE may also be a cause of death during triathlons. [18]

Related Research Articles

<span class="mw-page-title-main">Hypoxia (medicine)</span> Medical condition of lack of oxygen in the tissues

Hypoxia is a condition in which the body or a region of the body is deprived of adequate oxygen supply at the tissue level. Hypoxia may be classified as either generalized, affecting the whole body, or local, affecting a region of the body. Although hypoxia is often a pathological condition, variations in arterial oxygen concentrations can be part of the normal physiology, for example, during strenuous physical exercise.

<span class="mw-page-title-main">Drowning</span> Respiratory impairment resulting from being in or underneath a liquid

Drowning is a type of suffocation induced by the submersion of the mouth and nose in a liquid. Most instances of fatal drowning occur alone or in situations where others present are either unaware of the victim's situation or unable to offer assistance. After successful resuscitation, drowning victims may experience breathing problems, vomiting, confusion, or unconsciousness. Occasionally, victims may not begin experiencing these symptoms until several hours after they are rescued. An incident of drowning can also cause further complications for victims due to low body temperature, aspiration of vomit, or acute respiratory distress syndrome.

<span class="mw-page-title-main">Pulmonary edema</span> Fluid accumulation in the tissue and air spaces of the lungs

Pulmonary edema, also known as pulmonary congestion, is excessive fluid accumulation in the tissue or air spaces of the lungs. This leads to impaired gas exchange, most often leading to dyspnea which can progress to hypoxemia and respiratory failure. Pulmonary edema has multiple causes and is traditionally classified as cardiogenic or noncardiogenic.

<span class="mw-page-title-main">Diving reflex</span> The physiological responses to immersion of air-breathing vertebrates

The diving reflex, also known as the diving response and mammalian diving reflex, is a set of physiological responses to immersion that overrides the basic homeostatic reflexes, and is found in all air-breathing vertebrates studied to date. It optimizes respiration by preferentially distributing oxygen stores to the heart and brain, enabling submersion for an extended time.

<span class="mw-page-title-main">Air embolism</span> Vascular blockage by air bubbles

An air embolism, also known as a gas embolism, is a blood vessel blockage caused by one or more bubbles of air or other gas in the circulatory system. Air can be introduced into the circulation during surgical procedures, lung over-expansion injury, decompression, and a few other causes. In flora, air embolisms may also occur in the xylem of vascular plants, especially when suffering from water stress.

<span class="mw-page-title-main">Barotrauma</span> Injury caused by pressure

Barotrauma is physical damage to body tissues caused by a difference in pressure between a gas space inside, or in contact with, the body and the surrounding gas or liquid. The initial damage is usually due to over-stretching the tissues in tension or shear, either directly by an expansion of the gas in the closed space or by pressure difference hydrostatically transmitted through the tissue. Tissue rupture may be complicated by the introduction of gas into the local tissue or circulation through the initial trauma site, which can cause blockage of circulation at distant sites or interfere with the normal function of an organ by its presence. The term is usually applied when the gas volume involved already exists prior to decompression. Barotrama can occur during both compression and decompression events.

Salt water aspiration syndrome is a rare diving disorder suffered by scuba divers who inhale a mist of seawater, usually from a faulty demand valve, causing irritation of the lungs. It is not the same thing as aspiration of salt water as a bulk liquid, i.e. drowning. It can usually be treated by rest for several hours. If severe, medical assessment is required. First described by Carl Edmonds.

<span class="mw-page-title-main">Hypercapnia</span> Abnormally high tissue carbon dioxide levels

Hypercapnia (from the Greek hyper = "above" or "too much" and kapnos = "smoke"), also known as hypercarbia and CO2 retention, is a condition of abnormally elevated carbon dioxide (CO2) levels in the blood. Carbon dioxide is a gaseous product of the body's metabolism and is normally expelled through the lungs. Carbon dioxide may accumulate in any condition that causes hypoventilation, a reduction of alveolar ventilation (the clearance of air from the small sacs of the lung where gas exchange takes place) as well as resulting from inhalation of CO2. Inability of the lungs to clear carbon dioxide, or inhalation of elevated levels of CO2, leads to respiratory acidosis. Eventually the body compensates for the raised acidity by retaining alkali in the kidneys, a process known as "metabolic compensation".

<span class="mw-page-title-main">High-altitude pulmonary edema</span> Human disease

High-altitude pulmonary edema (HAPE) is a life-threatening form of non-cardiogenic pulmonary edema that occurs in otherwise healthy people at altitudes typically above 2,500 meters (8,200 ft). However, cases have also been reported between 1,500–2,500 metres or 4,900–8,200 feet in more vulnerable subjects.

Hyperoxia occurs when cells, tissues and organs are exposed to an excess supply of oxygen (O2) or higher than normal partial pressure of oxygen.

Diving disorders, or diving related medical conditions, are conditions associated with underwater diving, and include both conditions unique to underwater diving, and those that also occur during other activities. This second group further divides into conditions caused by exposure to ambient pressures significantly different from surface atmospheric pressure, and a range of conditions caused by general environment and equipment associated with diving activities.

<span class="mw-page-title-main">Hypoxemia</span> Abnormally low level of oxygen in the blood

Hypoxemia is an abnormally low level of oxygen in the blood. More specifically, it is oxygen deficiency in arterial blood. Hypoxemia has many causes, and often causes hypoxia as the blood is not supplying enough oxygen to the tissues of the body.

Cardiac asthma is the medical condition of intermittent wheezing, coughing, and shortness of breath that is associated with underlying congestive heart failure (CHF). Symptoms of cardiac asthma are related to the heart's inability to effectively and efficiently pump blood in a CHF patient. This can lead to accumulation of fluid in and around the lungs, disrupting the lung's ability to oxygenate blood.

<span class="mw-page-title-main">Pneumomediastinum</span> Abnormal presence of gas in the thorax

Pneumomediastinum is pneumatosis in the mediastinum, the central part of the chest cavity. First described in 1819 by René Laennec, the condition can result from physical trauma or other situations that lead to air escaping from the lungs, airways, or bowel into the chest cavity. In underwater divers it is usually the result of pulmonary barotrauma.

Freediving blackout, breath-hold blackout, or apnea blackout is a class of hypoxic blackout, a loss of consciousness caused by cerebral hypoxia towards the end of a breath-hold dive, when the swimmer does not necessarily experience an urgent need to breathe and has no other obvious medical condition that might have caused it. It can be provoked by hyperventilating just before a dive, or as a consequence of the pressure reduction on ascent, or a combination of these. Victims are often established practitioners of breath-hold diving, are fit, strong swimmers and have not experienced problems before. Blackout may also be referred to as a syncope or fainting.

<span class="mw-page-title-main">Right ventricular hypertrophy</span> Medical condition

Right ventricular hypertrophy (RVH) is a condition defined by an abnormal enlargement of the cardiac muscle surrounding the right ventricle. The right ventricle is one of the four chambers of the heart. It is located towards the lower-end of the heart and it receives blood from the right atrium and pumps blood into the lungs.

Work of breathing (WOB) is the energy expended to inhale and exhale a breathing gas. It is usually expressed as work per unit volume, for example, joules/litre, or as a work rate (power), such as joules/min or equivalent units, as it is not particularly useful without a reference to volume or time. It can be calculated in terms of the pulmonary pressure multiplied by the change in pulmonary volume, or in terms of the oxygen consumption attributable to breathing.

<span class="mw-page-title-main">Physiology of decompression</span> The physiological basis for decompression theory and practice

The physiology of decompression is the aspect of physiology which is affected by exposure to large changes in ambient pressure, and involves a complex interaction of gas solubility, partial pressures and concentration gradients, diffusion, bulk transport and bubble mechanics in living tissues. Gas is breathed at ambient pressure, and some of this gas dissolves into the blood and other fluids. Inert gas continues to be taken up until the gas dissolved in the tissues is in a state of equilibrium with the gas in the lungs,, or the ambient pressure is reduced until the inert gases dissolved in the tissues are at a higher concentration than the equilibrium state, and start diffusing out again.

Human physiology of underwater diving is the physiological influences of the underwater environment on the human diver, and adaptations to operating underwater, both during breath-hold dives and while breathing at ambient pressure from a suitable breathing gas supply. It, therefore, includes the range of physiological effects generally limited to human ambient pressure divers either freediving or using underwater breathing apparatus. Several factors influence the diver, including immersion, exposure to the water, the limitations of breath-hold endurance, variations in ambient pressure, the effects of breathing gases at raised ambient pressure, effects caused by the use of breathing apparatus, and sensory impairment. All of these may affect diver performance and safety.

<span class="mw-page-title-main">Pathophysiology of heart failure</span>

The main pathophysiology of heart failure is a reduction in the efficiency of the heart muscle, through damage or overloading. As such, it can be caused by a wide number of conditions, including myocardial infarction, hypertension and cardiac amyloidosis. Over time these increases in workload will produce changes to the heart itself:

References

  1. 'Oedema' is the standard form defined in the Concise Oxford English Dictionary (2011), with the precision that the spelling in the United States is 'edema'.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Miller III, Charles C.; Calder-Becker, Katherine; Modave, Francois (2010). "Swimming-induced pulmonary edema in triathletes". The American Journal of Emergency Medicine. 28 (8): 941–6. doi:10.1016/j.ajem.2009.08.004. PMID   20887912.
  3. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 "Immersion Pulmonary Oedema". www.ukdmc.org. UK Diving Medical Committee. Retrieved 6 June 2022.
  4. 1 2 3 4 5 6 Pons, M; Blickenstorfer, D; Oechslin, E; Hold, G; Greminger, P; Franzeck, UK; Russi, EW (1995). "Pulmonary oedema in healthy persons during scuba-diving and swimming". The European Respiratory Journal. 8 (5): 762–7. doi: 10.1183/09031936.95.08050762 . PMID   7656948. S2CID   35365328.[ unreliable medical source? ]
  5. 1 2 3 4 5 6 Henckes, A; Lion, F; Cochard, G; Arvieux, J; Arvieux, C (2008). "L'œdème pulmonaire en plongée sous-marine autonome : fréquence et gravité à propos d'une série de 19 cas" [Pulmonary oedema in scuba-diving: frequency and seriousness about a series of 19 cases]. Annales Françaises d'Anesthésie et de Réanimation (in French). 27 (9): 694–9. doi:10.1016/j.annfar.2008.05.011. PMID   18674877.
  6. 1 2 3 4 Liner, M. H.; Andersson, J. P. A. (2008). "Pulmonary edema after competitive breath-hold diving". Journal of Applied Physiology. 104 (4): 986–90. CiteSeerX   10.1.1.528.4523 . doi:10.1152/japplphysiol.00641.2007. PMID   18218906.[ unreliable medical source? ]
  7. 1 2 3 4 5 6 7 8 Kumar, Manish; Thompson, Paul D. (2019-04-03). "A literature review of immersion pulmonary edema". The Physician and Sportsmedicine. 47 (2): 148–151. doi:10.1080/00913847.2018.1546104. ISSN   0091-3847. PMID   30403902. S2CID   53209012.
  8. 1 2 3 4 5 6 7 8 9 10 11 Koehle, Michael S; Lepawsky, Michael; McKenzie, Donald C (2005). "Pulmonary Oedema of Immersion". Sports Medicine (review). 35 (3): 183–90. doi:10.2165/00007256-200535030-00001. PMID   15730335. S2CID   2738792.
  9. 1 2 3 4 5 6 7 8 9 10 Yoder, JA; Viera, AJ (2004). "Management of swimming-induced pulmonary edema". American Family Physician. 69 (5): 1046, 1048–9. PMID   15023003.
  10. 1 2 3 Watson, Jim; Peddie, Ben, eds. (October 2021). "BSAC Annual Diving Incident Report 2020" (PDF). www.bsac.com. British Sub-Aqua Club.
  11. Koehle, MS; Lepawsky, M; McKenzie, DC (2005). "Pulmonary oedema of immersion". Sports Medicine. 35 (3): 183–90. doi:10.2165/00007256-200535030-00001. PMID   15730335. S2CID   2738792.
  12. Pollock, Neal W. (2016). Pollock, NW; Sellers, SH; Godfrey, JM (eds.). Factors in Decompression Stress (PDF). Rebreathers and Scientific Diving. Proceedings of NPS/NOAA/DAN/AAUS June 16–19, 2015 Workshop. Wrigley Marine Science Center, Catalina Island, CA. pp. 145–162.
  13. Little, W (2001). "Hypertensive pulmonary oedema is due to diastolic dysfunction". European Heart Journal. 22 (21): 1961–4. doi: 10.1053/euhj.2001.2665 . PMID   11603900.
  14. Almuntaser, Ibrahim; Mahmud, Azra; Brown, Angie; Murphy, Ross; King, Gerard; Crean, Peter; Feely, John (2009). "Blood Pressure Control Determines Improvement in Diastolic Dysfunction in Early Hypertension". American Journal of Hypertension. 22 (11): 1227–31. doi: 10.1038/ajh.2009.173 . PMID   19763121.
  15. 1 2 Moon, Richard E.; Martina, Stefanie D.; Peacher, Dionne F.; Potter, Jennifer F.; Wester, Tracy E.; Cherry, Anne D.; Natoli, Michael J.; Otteni, Claire E.; Kernagis, Dawn N. (2016-03-08). "Swimming-Induced Pulmonary EdemaCLINICAL PERSPECTIVES". Circulation. 133 (10): 988–996. doi:10.1161/CIRCULATIONAHA.115.019464. ISSN   0009-7322. PMC   5127690 . PMID   26882910.
  16. Grünig, Hannes; Nikolaidis, Pantelis T.; Moon, Richard E.; Knechtle, Beat (31 August 2017). "Diagnosis of Swimming Induced Pulmonary Edema—A Review". Frontiers in Physiology. 8: 652. doi: 10.3389/fphys.2017.00652 . PMC   5583207 . PMID   28912730.
  17. Wester, T. E.; Cherry, A. D.; Pollock, N. W.; Freiberger, J. J.; Natoli, M. J.; Schinazi, E. A.; Doar, P. O.; Boso, A. E.; Alford, E. L. (2008). "Effects of head and body cooling on hemodynamics during immersed prone exercise at 1 ATA". Journal of Applied Physiology. 106 (2): 691–700. doi:10.1152/japplphysiol.91237.2008. PMID   19023017. S2CID   13339293.
  18. Moon, Richard E.; Martina, Stefanie D.; Peacher, Dionne F.; Kraus, William E. (2016-08-01). "Deaths in triathletes: immersion pulmonary oedema as a possible cause". BMJ Open Sport & Exercise Medicine. 2 (1): e000146. doi:10.1136/bmjsem-2016-000146. ISSN   2055-7647. PMC   5117085 . PMID   27900191. Open Access logo PLoS transparent.svg