Decompression (diving)

Last updated

Divers decompressing in the water at the end of a dive Tech diving decompression stop.jpg
Divers decompressing in the water at the end of a dive
Basic deck decompression chamber Deck decompression chamber PA197922.jpg
Basic deck decompression chamber

The decompression of a diver is the reduction in ambient pressure experienced during ascent from depth. It is also the process of elimination of dissolved inert gases from the diver's body which accumulate during ascent, largely during pauses in the ascent known as decompression stops, and after surfacing, until the gas concentrations reach equilibrium. Divers breathing gas at ambient pressure need to ascend at a rate determined by their exposure to pressure and the breathing gas in use. A diver who only breathes gas at atmospheric pressure when free-diving or snorkelling will not usually need to decompress. Divers using an atmospheric diving suit do not need to decompress as they are never exposed to high ambient pressure.

Contents

When a diver descends in the water, the hydrostatic pressure, and therefore the ambient pressure, rises. Because breathing gas is supplied at ambient pressure, some of this gas dissolves into the diver's blood and is transferred by the blood to other tissues. Inert gas such as nitrogen or helium continues to be taken up until the gas dissolved in the diver is in a state of equilibrium with the breathing gas in the diver's lungs, at which point the diver is saturated for that depth and breathing mixture, or the depth, and therefore the pressure, is changed, or the partial pressures of the gases are changed by modifying the breathing gas mixture. During ascent, the ambient pressure is reduced, and at some stage the inert gases dissolved in any given tissue will be at a higher concentration than the equilibrium state and start to diffuse out again. If the pressure reduction is sufficient, excess gas may form bubbles, which may lead to decompression sickness, a possibly debilitating or life-threatening condition. It is essential that divers manage their decompression to avoid excessive bubble formation and decompression sickness. A mismanaged decompression usually results from reducing the ambient pressure too quickly for the amount of gas in solution to be eliminated safely. These bubbles may block arterial blood supply to tissues or directly cause tissue damage. If the decompression is effective, the asymptomatic venous microbubbles present after most dives are eliminated from the diver's body in the alveolar capillary beds of the lungs. If they are not given enough time, or more bubbles are created than can be eliminated safely, the bubbles grow in size and number causing the symptoms and injuries of decompression sickness. The immediate goal of controlled decompression is to avoid development of symptoms of bubble formation in the tissues of the diver, and the long-term goal is to avoid complications due to sub-clinical decompression injury.

The mechanisms of bubble formation and the damage bubbles cause has been the subject of medical research for a considerable time and several hypotheses have been advanced and tested. Tables and algorithms for predicting the outcome of decompression schedules for specified hyperbaric exposures have been proposed, tested and used, and in many cases, superseded. Although constantly refined and generally considered acceptably reliable, the actual outcome for any individual diver remains slightly unpredictable. Although decompression retains some risk, this is now generally considered acceptable for dives within the well tested range of normal recreational and professional diving. Nevertheless, currently popular decompression procedures advise a 'safety stop' additional to any stops required by the algorithm, usually of about three to five minutes at 3 to 6 metres (10 to 20 ft), particularly 1 on an otherwise continuous no-stop ascent.

Decompression may be continuous or staged. A staged decompression ascent is interrupted by decompression stops at calculated depth intervals, but the entire ascent is actually part of the decompression and the ascent rate is critical to harmless elimination of inert gas. A no-decompression dive, or more accurately, a dive with no-stop decompression, relies on limiting the ascent rate for avoidance of excessive bubble formation in the fastest tissues. The elapsed time at surface pressure immediately after a dive is also an important part of decompression and can be thought of as the last decompression stop of a dive. It can take up to 24 hours for the body to return to its normal atmospheric levels of inert gas saturation after a dive. When time is spent on the surface between dives this is known as the "surface interval" and is considered when calculating decompression requirements for the subsequent dive.

Efficient decompression requires the diver to ascend fast enough to establish as high a decompression gradient, in as many tissues, as safely possible, without provoking the development of symptomatic bubbles. This is facilitated by the highest acceptably safe oxygen partial pressure in the breathing gas, and avoiding gas changes that could cause counterdiffusion bubble formation or growth. The development of schedules that are both safe and efficient has been complicated by the large number of variables and uncertainties, including personal variation in response under varying environmental conditions and workload.

Decompression theory

Recreational decompression tables printed on plastic cards Decompression table bsac nitrox.jpg
Recreational decompression tables printed on plastic cards

Decompression theory is the study and modelling of the transfer of the inert gas component of breathing gases from the gas in the lungs to the tissues of the diver and back during exposure to variations in ambient pressure. In the case of underwater diving and compressed air work, this mostly involves ambient pressures greater than the local surface pressure—but astronauts, high altitude mountaineers, and occupants of unpressurised aircraft, are exposed to ambient pressures less than standard sea level atmospheric pressure. [1] [2] In all cases, the symptoms of decompression sickness occur during or within a relatively short period of hours, or occasionally days, after a significant reduction of ambient pressure. [3]

Physics and physiology of decompression

The absorption of gases in liquids depends on the solubility of the specific gas in the specific liquid, the concentration of gas, customarily expressed as partial pressure, and temperature. The main variable in the study of decompression theory is pressure. [4] [5] [6]

Once dissolved, distribution of the dissolved gas may be by diffusion, where there is no bulk flow of the solvent, or by perfusion where the solvent (in this case blood) is circulated around the diver's body, where gas can diffuse to local regions of lower concentration. [7] Given sufficient time at a specific partial pressure in the breathing gas, the concentration in the tissues stabilises, or saturates, at a rate that depends on solubility, diffusion rate and perfusion, all of which vary in the different tissues of the body. This process is referred to as in-gassing, and is usually modelled as an inverse exponential process. [7]

If the concentration of the inert gas in the breathing gas is reduced below that of any of the tissues, there is a tendency for gas to return from the tissues to the breathing gas. This is known as out-gassing, and occurs during decompression, when the reduction in ambient pressure reduces the partial pressure of the inert gas in the lungs. This process may be complicated by the formation of gas bubbles, and the modelling is more complex and varied. [7]

The combined concentrations of gases in any given tissue depend on the history of pressure and gas composition. Under equilibrium conditions, the total concentration of dissolved gases is less than the ambient pressure—as oxygen is metabolised in the tissues, and the carbon dioxide produced is much more soluble. However, during a reduction in ambient pressure, the rate of pressure reduction may exceed the rate at which gas is eliminated by diffusion and perfusion. If the concentration gets too high, it may reach a stage where bubble formation can occur in the supersaturated tissues. When the pressure of gases in a bubble exceed the combined external pressures of ambient pressure and the surface tension of the bubble-liquid interface, the bubbles grow, and this growth can damage tissue. [7]

If the dissolved inert gases come out of solution within the tissues of the body and form bubbles, they may cause the condition known as decompression sickness, or DCS, also known as divers' disease, the bends or caisson disease. However, not all bubbles result in symptoms, and Doppler bubble detection shows that venous bubbles are present in a significant number of asymptomatic divers after relatively mild hyperbaric exposures. [8] [9]

Since bubbles can form in or migrate to any part of the body, DCS can produce many symptoms, and its effects may vary from joint pain and rashes to paralysis and death. Individual susceptibility can vary from day to day, and different individuals under the same conditions may be affected differently or not at all. The classification of types of DCS by its symptoms has evolved since its original description. [8]

The risk of decompression sickness after diving can be managed through effective decompression procedures and contracting it is now uncommon, though it remains to some degree unpredictable. Its potential severity has driven much research to prevent it and divers almost universally use decompression tables or dive computers to limit or monitor their exposure and to control their ascent speed and decompression procedures. If DCS is contracted, it is usually treated by hyperbaric oxygen therapy in a recompression chamber. If treated early, there is a significantly higher chance of successful recovery. [8] [9]

A diver who only breathes gas at atmospheric pressure when free-diving or snorkelling will not usually need to decompress but it is possible to get decompression sickness, or taravana, from repetitive deep free-diving with short surface intervals. [10]

Decompression models

Actual rates of diffusion and perfusion, and solubility of gases in specific physiological tissues are not generally known, and vary considerably. However mathematical models have been proposed that approximate the real situation to a greater or lesser extent. These models predict whether symptomatic bubble formation is likely to occur for a given dive profile. Algorithms based on these models produce decompression tables. [7] In personal dive computers, they produce a real-time estimate of decompression status and display a recommended ascent profile for the diver, which may include decompression stops. [11]

Two different concepts have been used for decompression modelling. The first assumes that dissolved gas is eliminated while in the dissolved phase, and that bubbles are not formed during asymptomatic decompression. The second, which is supported by experimental observation, assumes that bubbles are formed during most asymptomatic decompressions, and that gas elimination must consider both dissolved and bubble phases. [12]

Early decompression models tended to use the dissolved phase models, and adjusted them by factors derived from experimental observations to reduce the risk of symptomatic bubble formation. [7]

There are two main groups of dissolved phase models: In parallel compartment models , several compartments with varying rates of gas absorption (half time), are considered to exist independently of each other, and the limiting condition is controlled by the compartment that shows the worst case for a specific exposure profile. These compartments represent conceptual tissues and do not represent specific organic tissues. They merely represent the range of possibilities for the organic tissues. The second group uses serial compartments , which assumes that gas diffuses through one compartment before it reaches the next. [7]

More recent models attempt to model bubble dynamics, also usually by simplified models, to facilitate the computation of tables, and later to allow real time predictions during a dive. Models that approximate bubble dynamics are varied. They range from those that are not much more complex than the dissolved phase models, to those that require considerably greater computational power. [12] Bubble models have not been experimentally shown to be more efficient, nor to reduce risk of decompression sickness for dives where the bottom profile and total ascent time are the same as for dissolved gas models. Limited experimental work suggests that for some dive profiles the increased ingassing due to deeper stops may cause greater decompression stress in slower tissues with consequent greater venous bubble loading after dives. [13]

Decompression practice

Divers using the anchor cable as an aid to depth control during a decompression stop Sicherheitsstop an der Ankerkette.jpg
Divers using the anchor cable as an aid to depth control during a decompression stop
Diver deploying a DSMB Diver deploying a DSMB at boiler of Cape Matapan.jpg
Diver deploying a DSMB
Diver with bailout and decompression cylinders Trevor Jackson returns from SS Kyogle.jpg
Diver with bailout and decompression cylinders

The practice of decompression by divers comprises the planning and monitoring of the profile indicated by the algorithms or tables of the chosen decompression model, the equipment available and appropriate to the circumstances of the dive, and the procedures authorised for the equipment and profile to be used. There is a large range of options in all of these aspects. In many cases decompression practice takes place in a framework or "decompression system" which imposes extra constraints on diver behaviour. Such constraints may include: limiting the ascent rate; making stops during the ascent additional to any decompression stops; limiting the number of dives performed in a day; limiting the number of days of diving within a week; avoiding dive profiles that have large numbers of ascents and descents; avoiding heavy work immediately after a dive; not diving prior to flying or ascending to altitude; [14] and organisational requirements.

Procedures

Decompression may be continuous or staged, where the ascent is interrupted by stops at regular depth intervals, but the entire ascent is part of the decompression, and ascent rate can be critical to harmless elimination of inert gas. [15] What is commonly known as no-decompression diving, or more accurately no-stop decompression, relies on limiting ascent rate for avoidance of excessive bubble formation. [16]

The procedures used for decompression depend on the mode of diving, the available equipment, the site and environment and the actual dive profile. Standardised procedures have been developed that provide an acceptable level of risk in appropriate circumstances. Different sets of procedures are used by commercial, military, scientific and recreational divers, though there is considerable overlap where similar equipment is used, and some concepts are common to all decompression procedures.

Normal diving decompression procedures range from continuous ascent for no-stop dives, where the necessary decompression occurs during the ascent, which is kept to a controlled rate for this purpose, [16] through staged decompression in open water or in a bell, [17] [18] or following the decompression ceiling, to decompression from saturation, which generally occurs in a decompression chamber that is part of a saturation system. [19] Decompression may be accelerated by the use of breathing gases that provide an increased concentration differential of the inert gas components of the breathing mixture by maximising the acceptable oxygen content, while avoiding problems caused by inert gas counterdiffusion. [20]

Therapeutic recompression is a medical procedure for treatment of decompression sickness, and is followed by decompression, usually to a relatively conservative schedule. [21]

Equipment

Equipment directly associated with decompression includes:

History of decompression research and development

This painting, An Experiment on a Bird in the Air Pump by Joseph Wright of Derby, 1768, depicts an experiment performed by Robert Boyle in 1660. An Experiment on a Bird in an Air Pump by Joseph Wright of Derby, 1768.jpg
This painting, An Experiment on a Bird in the Air Pump by Joseph Wright of Derby, 1768, depicts an experiment performed by Robert Boyle in 1660.
Dry bell US Navy 010707-N-3093M-003 Diver Transfer Capsule.jpg
Dry bell

The symptoms of decompression sickness are caused by damage from the formation and growth of bubbles of inert gas within the tissues and by blockage of arterial blood supply to tissues by gas bubbles and other emboli consequential to bubble formation and tissue damage. [26] [27]

The precise mechanisms of bubble formation [28] and the damage they cause has been the subject of medical research for a considerable time and several hypotheses have been advanced and tested. Tables and algorithms for predicting the outcome of decompression schedules for specified hyperbaric exposures have been proposed, tested, and used, and usually found to be of some use but not entirely reliable. Decompression remains a procedure with some risk, but this has been reduced and is generally considered acceptable for dives within the well-tested range of commercial, military and recreational diving. [7]

Early developments

The first recorded experimental work related to decompression was conducted by Robert Boyle, who subjected experimental animals to reduced ambient pressure by use of a primitive vacuum pump. In the earliest experiments the subjects died from asphyxiation, but in later experiments signs of what was later to become known as decompression sickness were observed. [29]

Later, when technological advances allowed the use of pressurisation of mines and caissons to exclude water ingress, miners were observed to present symptoms [29] of what would become known as caisson disease, compressed air illness, [30] [31] the bends, [29] and decompression sickness.

Once it was recognised that the symptoms were caused by gas bubbles, [30] and that re-compression could relieve the symptoms, [29] [32] Paul Bert showed in 1878 that decompression sickness is caused by nitrogen bubbles released from tissues and blood during or after decompression, and showed the advantages of breathing oxygen after developing decompression sickness. [33]

Further work showed that it was possible to avoid symptoms by slow decompression, [30] and subsequently various theoretical models have been derived to predict safe decompression profiles and treatment of decompression sickness. [34]

Start of systematic work on decompression models

In 1908 John Scott Haldane prepared the first recognized decompression table for the British Admiralty, based on extensive experiments on goats using an end point of symptomatic DCS. [18] [29]

George D. Stillson of the United States Navy tested and refined Haldane's tables in 1912, [35] and this research led to the first publication of the United States Navy Diving Manual and the establishment of a Navy Diving School in Newport, Rhode Island. At about the same time Leonard Erskine Hill was working on a system of continuous uniform decompression [29] [32]

The Naval School, Diving and Salvage was re-established at the Washington Navy Yard in 1927, and the Navy Experimental Diving Unit (NEDU) was moved to the same venue. In the following years, the Experimental Diving Unit developed the US Navy Air Decompression Tables, which became the accepted world standard for diving with compressed air. [36]

During the 1930s, Hawkins, Schilling and Hansen conducted extensive experimental dives to determine allowable supersaturation ratios for different tissue compartments for Haldanean model, [37] Albert R. Behnke and others experimented with oxygen for re-compression therapy, [29] and the US Navy 1937 tables were published. [37]

In 1941, altitude decompression sickness was first treated with hyperbaric oxygen. [38] and the revised US Navy Decompression Tables were published in 1956.

Beginnings of alternative models

In 1965 LeMessurier and Hills published A thermodynamic approach arising from a study on Torres Strait diving techniques, which suggests that decompression by conventional models forms bubbles that are then eliminated by re-dissolving at the decompression stops—which is slower than elimination while still in solution. This indicates the importance of minimizing bubble phase for efficient gas elimination, [39] [40] Groupe d'Etudes et Recherches Sous-marines published the French Navy MN65 decompression tables, and Goodman and Workman introduced re-compression tables using oxygen to accelerate elimination of inert gas. [41] [42]

The Royal Naval Physiological Laboratory published tables based on Hempleman's tissue slab diffusion model in 1972, [43] isobaric counterdiffusion in subjects who breathed one inert gas mixture while being surrounded by another was first described by Graves, Idicula, Lambertsen, and Quinn in 1973, [44] [45] and the French government published the MT74 Tables du Ministère du Travail in 1974.

From 1976, decompression sickness testing sensitivity was improved by ultrasonic methods that can detect mobile venous bubbles before symptoms of DCS become apparent. [46]

Development of several additional approaches

Paul K Weathersby, Louis D Homer and Edward T Flynn introduced survival analysis into the study of decompression sickness in 1982. [47]

Albert A. Bühlmann published Decompression–Decompression sickness in 1984. [17] Bühlmann recognised the problems associated with altitude diving, and proposed a method that calculated maximum nitrogen loading in the tissues at a particular ambient pressure by modifying Haldane's allowable supersaturation ratios to increase linearly with depth. [48] In 1984 DCIEM (Defence and Civil Institution of Environmental Medicine, Canada) released No-Decompression and Decompression Tables based on the Kidd/Stubbs serial compartment model and extensive ultrasonic testing, [49] and Edward D. Thalmann published the USN E-L algorithm and tables for constant PO2 Nitrox closed circuit rebreather applications, and extended use of the E-L model for constant PO2 Heliox CCR in 1985. The E-L model may be interpreted as a bubble model. The 1986 Swiss Sport Diving Tables were based on the Haldanean Bühlmann model, [50] as were the 1987 SAA Bühlmann tables in the UK. [48]

Bubble models started to become prevalent

D. E. Yount and D. C. Hoffman proposed a bubble model in 1986, and the BSAC'88 tables were based on Hennessy's bubble model. [51]

The 1990 DCIEM sport diving tables were based on fitting experimental data, rather than a physiological model, [49] and the 1990 French Navy Marine Nationale 90 (MN90) decompression tables were a development of the earlier Haldanean model of the MN65 tables. [52]

In 1991 D.E. Yount described a development of his earlier bubble model, the Varied Permeability Model, and the 1992 French civilian Tables du Ministère du Travail (MT92) also have a bubble model interpretation. [53]

NAUI published Trimix and Nitrox tables based on the Wienke reduced gradient bubble model (RGBM) in 1999, [54] followed by recreational air tables based on the RGBM model in 2001. [55]

In 2007, Wayne Gerth and David Doolette published VVal 18 and VVal 18M parameter sets for tables and programs based on the Thalmann E-L algorithm, and produced an internally compatible set of decompression tables for open circuit and CCR on air and Nitrox, including in water air/oxygen decompression and surface decompression on oxygen. [56] In 2008, the US Navy Diving Manual Revision 6 included a version of the 2007 tables developed by Gerth and Doolette.

See also

Related Research Articles

<span class="mw-page-title-main">Decompression sickness</span> Disorder caused by dissolved gases forming bubbles in tissues

Decompression sickness is a medical condition caused by dissolved gases emerging from solution as bubbles inside the body tissues during decompression. DCS most commonly occurs during or soon after a decompression ascent from underwater diving, but can also result from other causes of depressurisation, such as emerging from a caisson, decompression from saturation, flying in an unpressurised aircraft at high altitude, and extravehicular activity from spacecraft. DCS and arterial gas embolism are collectively referred to as decompression illness.

<span class="mw-page-title-main">Deep diving</span> Underwater diving to a depth beyond the norm accepted by the associated community

Deep diving is underwater diving to a depth beyond the norm accepted by the associated community. In some cases this is a prescribed limit established by an authority, while in others it is associated with a level of certification or training, and it may vary depending on whether the diving is recreational, technical or commercial. Nitrogen narcosis becomes a hazard below 30 metres (98 ft) and hypoxic breathing gas is required below 60 metres (200 ft) to lessen the risk of oxygen toxicity.

<span class="mw-page-title-main">Dive computer</span> Instrument to calculate decompression status in real time

A dive computer, personal decompression computer or decompression meter is a device used by an underwater diver to measure the elapsed time and depth during a dive and use this data to calculate and display an ascent profile which, according to the programmed decompression algorithm, will give a low risk of decompression sickness.

Decompression Illness (DCI) comprises two different conditions caused by rapid decompression of the body. These conditions present similar symptoms and require the same initial first aid. Scuba divers are trained to ascend slowly from depth to avoid DCI. Although the incidence is relatively rare, the consequences can be serious and potentially fatal, especially if untreated.

In-water recompression (IWR) or underwater oxygen treatment is the emergency treatment of decompression sickness (DCS) by returning the diver underwater to help the gas bubbles in the tissues, which are causing the symptoms, to resolve. It is a procedure that exposes the diver to significant risk which should be compared with the risk associated with the available options and balanced against the probable benefits. Some authorities recommend that it is only to be used when the time to travel to the nearest recompression chamber is too long to save the victim's life; others take a more pragmatic approach and accept that in some circumstances IWR is the best available option. The risks may not be justified for case of mild symptoms likely to resolve spontaneously, or for cases where the diver is likely to be unsafe in the water, but in-water recompression may be justified in cases where severe outcomes are likely if not recompressed, if conducted by a competent and suitably equipped team.

<span class="mw-page-title-main">Dive profile</span> Divers pressure exposure over the time of a dive

A dive profile is a description of a diver's pressure exposure over time. It may be as simple as just a depth and time pair, as in: "sixty for twenty," or as complex as a second by second graphical representation of depth and time recorded by a personal dive computer. Several common types of dive profile are specifically named, and these may be characteristic of the purpose of the dive. For example, a working dive at a limited location will often follow a constant depth (square) profile, and a recreational dive is likely to follow a multilevel profile, as the divers start deep and work their way up a reef to get the most out of the available breathing gas. The names are usually descriptive of the graphic appearance.

<span class="mw-page-title-main">Edward D. Thalmann</span> American hyperbaric medicine specialist and decompression researcher

Capt. Edward Deforest Thalmann, USN (ret.) was an American hyperbaric medicine specialist who was principally responsible for developing the current United States Navy dive tables for mixed-gas diving, which are based on his eponymous Thalmann Algorithm (VVAL18). At the time of his death, Thalmann was serving as assistant medical director of the Divers Alert Network (DAN) and an assistant clinical professor in anesthesiology at Duke University's Center for Hyperbaric Medicine and Environmental Physiology.

The Thalmann Algorithm is a deterministic decompression model originally designed in 1980 to produce a decompression schedule for divers using the US Navy Mk15 rebreather. It was developed by Capt. Edward D. Thalmann, MD, USN, who did research into decompression theory at the Naval Medical Research Institute, Navy Experimental Diving Unit, State University of New York at Buffalo, and Duke University. The algorithm forms the basis for the current US Navy mixed gas and standard air dive tables. The decompression model is also referred to as the Linear–Exponential model or the Exponential–Linear model.

In physiology, isobaric counterdiffusion (ICD) is the diffusion of different gases into and out of tissues while under a constant ambient pressure, after a change of gas composition, and the physiological effects of this phenomenon. The term inert gas counterdiffusion is sometimes used as a synonym, but can also be applied to situations where the ambient pressure changes. It has relevance in mixed gas diving and anesthesiology.

<span class="mw-page-title-main">Decompression practice</span> Techniques and procedures for safe decompression of divers

To prevent or minimize decompression sickness, divers must properly plan and monitor decompression. Divers follow a decompression model to safely allow the release of excess inert gases dissolved in their body tissues, which accommodated as a result of breathing at ambient pressures greater than surface atmospheric pressure. Decompression models take into account variables such as depth and time of dive, breathing gasses, altitude, and equipment to develop appropriate procedures for safe ascent.

<span class="mw-page-title-main">History of decompression research and development</span> Chronological list of notable events in the history of diving decompression.

Decompression in the context of diving derives from the reduction in ambient pressure experienced by the diver during the ascent at the end of a dive or hyperbaric exposure and refers to both the reduction in pressure and the process of allowing dissolved inert gases to be eliminated from the tissues during this reduction in pressure.

<span class="mw-page-title-main">Decompression theory</span> Theoretical modelling of decompression physiology

Decompression theory is the study and modelling of the transfer of the inert gas component of breathing gases from the gas in the lungs to the tissues and back during exposure to variations in ambient pressure. In the case of underwater diving and compressed air work, this mostly involves ambient pressures greater than the local surface pressure, but astronauts, high altitude mountaineers, and travellers in aircraft which are not pressurised to sea level pressure, are generally exposed to ambient pressures less than standard sea level atmospheric pressure. In all cases, the symptoms caused by decompression occur during or within a relatively short period of hours, or occasionally days, after a significant pressure reduction.

<span class="mw-page-title-main">Haldane's decompression model</span> Decompression model developed by John Scott Haldane

Haldane's decompression model is a mathematical model for decompression to sea level atmospheric pressure of divers breathing compressed air at ambient pressure that was proposed in 1908 by the Scottish physiologist, John Scott Haldane, who was also famous for intrepid self-experimentation.

<span class="mw-page-title-main">Decompression equipment</span> Equipment used by divers to facilitate decompression

There are several categories of decompression equipment used to help divers decompress, which is the process required to allow divers to return to the surface safely after spending time underwater at higher ambient pressures.

<span class="mw-page-title-main">Thermodynamic model of decompression</span> Early model in which decompression is controlled by volume of gas bubbles forming in tissues

The thermodynamic model was one of the first decompression models in which decompression is controlled by the volume of gas bubbles coming out of solution. In this model, pain only DCS is modelled by a single tissue which is diffusion-limited for gas uptake and bubble-formation during decompression causes "phase equilibration" of partial pressures between dissolved and free gases. The driving mechanism for gas elimination in this tissue is inherent unsaturation, also called partial pressure vacancy or the oxygen window, where oxygen metabolised is replaced by more soluble carbon dioxide. This model was used to explain the effectiveness of the Torres Straits Island pearl divers empirically developed decompression schedules, which used deeper decompression stops and less overall decompression time than the current naval decompression schedules. This trend to deeper decompression stops has become a feature of more recent decompression models.

<span class="mw-page-title-main">Physiology of decompression</span> The physiological basis for decompression theory and practice

The physiology of decompression is the aspect of physiology which is affected by exposure to large changes in ambient pressure, and involves a complex interaction of gas solubility, partial pressures and concentration gradients, diffusion, bulk transport and bubble mechanics in living tissues. Gas is breathed at ambient pressure, and some of this gas dissolves into the blood and other fluids. Inert gas continues to be taken up until the gas dissolved in the tissues is in a state of equilibrium with the gas in the lungs,, or the ambient pressure is reduced until the inert gases dissolved in the tissues are at a higher concentration than the equilibrium state, and start diffusing out again.

Human physiology of underwater diving is the physiological influences of the underwater environment on the human diver, and adaptations to operating underwater, both during breath-hold dives and while breathing at ambient pressure from a suitable breathing gas supply. It, therefore, includes the range of physiological effects generally limited to human ambient pressure divers either freediving or using underwater breathing apparatus. Several factors influence the diver, including immersion, exposure to the water, the limitations of breath-hold endurance, variations in ambient pressure, the effects of breathing gases at raised ambient pressure, effects caused by the use of breathing apparatus, and sensory impairment. All of these may affect diver performance and safety.

<span class="mw-page-title-main">Built-in breathing system</span> System for supply of breathing gas on demand within a confined space

A built-in breathing system is a source of breathing gas installed in a confined space where an alternative to the ambient gas may be required for medical treatment, emergency use, or to minimise a hazard. They are found in diving chambers, hyperbaric treatment chambers, and submarines.

Inner ear decompression sickness, (IEDCS) or audiovestibular decompression sickness is a medical condition of the inner ear caused by the formation of gas bubbles in the tissues or blood vessels of the inner ear. Generally referred to as a form of decompression sickness, it can also occur at constant pressure due to inert gas counterdiffusion effects.

The US Navy has used several decompression models from which their published decompression tables and authorized diving computer algorithms have been derived. The original C&R tables used a classic multiple independent parallel compartment model based on the work of J.S.Haldane in England in the early 20th century, using a critical ratio exponential ingassing and outgassing model. Later they were modified by O.D. Yarborough and published in 1937. A version developed by Des Granges was published in 1956. Further developments by M.W. Goodman and Robert D. Workman using a critical supersaturation approach to incorporate M-values, and expressed as an algorithm suitable for programming were published in 1965, and later again a significantly different model, the VVAL 18 exponential/linear model was developed by Edward D. Thalmann, using an exponential ingassing model and a combined exponential and linear outgassing model, which was further developed by Gerth and Doolette and published in Revision 6 of the US Navy Diving Manual as the 2008 tables.

References

  1. Van Liew, HD; Conkin, J (14–16 June 2007). "A start toward micronucleus-based decompression models:Altitude decompression". Bethesda, Maryland: Undersea and Hyperbaric Medical Society, Inc. Archived from the original on 26 November 2015. Retrieved 28 March 2016.{{cite web}}: CS1 maint: unfit URL (link)
  2. Brown, J.R.; Antuñano, Melchor J. "Altitude-induced Decompression Sickness" (PDF). AM-400-95/2 Medical Facts for Pilots. Washington, DC: Federal Aviation Administration . Retrieved 21 February 2012.
  3. US Navy 2008, Vol. 5 Chpt. 20 Sect. 3.1
  4. Young, C. L.; Battino, R.; Clever, H. L. (1982). "The solubility of gases in liquids" (PDF). Retrieved 9 February 2016.
  5. Hill, John W.; Petrucci, Ralph H. (1999). General Chemistry (2nd ed.). Prentice Hall.
  6. P. Cohen, ed. (1989). The ASME handbook on Water Technology for Thermal Power Systems. New York City: The American Society of Mechanical Engineers. p. 442.
  7. 1 2 3 4 5 6 7 8 Huggins 1992, chpt. 1
  8. 1 2 3 Thalmann, Edward D. (April 2004). "Decompression Illness: What is it and what is the treatment?". DAN Medical articles. Durham, North Caroline: Divers Alert Network. Retrieved 13 March 2016.
  9. 1 2 Huggins 1992, Introduction
  10. Wong, R. M. (1999). "Taravana revisited: Decompression illness after breath-hold diving". South Pacific Underwater Medicine Society Journal. 29 (3). Melbourne, Victoria: SPUMS. ISSN   0813-1988. OCLC   16986801. Archived from the original on 21 August 2009. Retrieved 8 April 2008.{{cite journal}}: CS1 maint: unfit URL (link)
  11. Lang, M.A.; Hamilton, R.W. Jr. (1989). Proceedings of the AAUS Dive Computer Workshop. United States: USC Catalina Marine Science Center. p. 231. Archived from the original on 7 July 2012. Retrieved 7 August 2008.{{cite book}}: CS1 maint: unfit URL (link)
  12. 1 2 Møllerløkken, Andreas (24 August 2011). Blogg, S. Lesley; Lang, Michael A.; Møllerløkken, Andreas (eds.). "Proceedings of Validation of Dive Computers Workshop". Gdansk, Poland: European Underwater and Baromedical Society. Archived from the original on 15 April 2013. Retrieved 3 March 2016.{{cite web}}: CS1 maint: unfit URL (link)
  13. Mitchell, Simon J. (2016). Pollock, N.W.; Sellers, S.H.; Godfrey, J.M. (eds.). Decompression Science: Critical Gas Exchange (PDF). Rebreathers and Scientific Diving. Proceedings of NPS/NOAA/DAN/AAUS June 16–19, 2015 Workshop. Wrigley Marine Science Center, Catalina Island, CA. pp. 163–1 74.
  14. Cole, Bob (March 2008). "4. Diver Behaviour". The SAA Buhlmann Deep-Stop System Handbook. Liverpool, UK: Sub-Aqua Association. ISBN   978-0953290482.
  15. US Navy 2008, chpt. 9-3.12
  16. 1 2 Huggins 1992, chpt. 3 page 9
  17. 1 2 Bühlmann Albert A. (1984). Decompression–Decompression Sickness. Berlin and New York: Springer-Verlag. ISBN   978-0-387-13308-9.
  18. 1 2 Boycott, A.E.; Damant, G.C.C.; Haldane, John Scott (1908). "Prevention of compressed air illness". Journal of Hygiene. 8 (3): 342–443. doi:10.1017/S0022172400003399. PMC   2167126 . PMID   20474365. Archived from the original on 24 March 2011. Retrieved 30 May 2010.{{cite journal}}: CS1 maint: unfit URL (link)
  19. US Navy 2008, chpt. 15
  20. Latson, Gary (December 2000). "Accelerated decompression using oxygen for submarine rescue - Summary report and operational guidance". Navy Experimental Diving Unit. Retrieved 3 March 2016.
  21. US Navy 2008, chpt. 15 page 1
  22. Huggins 1992, chpt. 4
  23. 1 2 3 Staff (2015). "BSAC Safe Diving". Ellesmere Port, Cheshire: British Sub-Aqua Club. Archived from the original on 3 April 2012. Retrieved 6 March 2016.
  24. 1 2 US Navy 2008, Vol. 2 Chpt. 9
  25. 1 2 US Navy 2008, Vol. 5 Chpt. 21
  26. Ackles, K.N. (1973). "Blood-Bubble Interaction in Decompression Sickness". Defence R&D Canada (DRDC) Technical Report. DCIEM-73–CP-960. Downsview, Ontario: Defence and Civil Institute of Environmental Medicine. Archived from the original on 21 August 2009. Retrieved 12 March 2016.{{cite journal}}: CS1 maint: unfit URL (link)
  27. Vann, Richard D., ed. (1989). The Physiological Basis of Decompression. 38th Undersea and Hyperbaric Medical Society Workshop. Vol. 75(Phys)6–1–89. Undersea and Hyperbaric Medical Society. p. 437. Archived from the original on 7 October 2008. Retrieved 16 February 2019.{{cite conference}}: CS1 maint: unfit URL (link)
  28. Papadopoulou, Virginie; Eckersley, Robert J.; Balestra, Costantino; Karapantsios, Thodoris D.; Tang, Meng-Xing (May 2013). "A critical review of physiological bubble formation in hyperbaric decompression". Advances in Colloid and Interface Science. 191–192. Amsterdam: Elsevier B.V.: 22–30. doi:10.1016/j.cis.2013.02.002. hdl: 10044/1/31585 . PMID   23523006. S2CID   34264173.
  29. 1 2 3 4 5 6 7 Acott, C. (1999). "A brief history of diving and decompression illness". South Pacific Underwater Medicine Society Journal. 29 (2). Melbourne, Victoria: SPUMS. ISSN   0813-1988. OCLC   16986801. Archived from the original on 27 June 2008. Retrieved 10 January 2012.{{cite journal}}: CS1 maint: unfit URL (link)
  30. 1 2 3 Huggins 1992, chpt. 1 page 8
  31. Butler, W.P. (2004). "Caisson disease during the construction of the Eads and Brooklyn Bridges: A review". Undersea and Hyperbaric Medicine . 31 (4): 445–59. PMID   15686275. Archived from the original on 22 August 2011. Retrieved 10 January 2012.{{cite journal}}: CS1 maint: unfit URL (link)
  32. 1 2 Hill, Leonard Erskine (1912). Caisson sickness, and the physiology of work in compressed air. London, UK: E. Arnold. Retrieved 31 October 2011.
  33. Bert, P. (1878). "Barometric Pressure: researches in experimental physiology". Translated by: Hitchcock MA and Hitchcock FA. College Book Company; 1943.*
  34. Zuntz, N. (1897). "Zur Pathogenese und Therapie der durch rasche Luftdruck-änderungen erzeugten Krankheiten". Fortschritte der Medizin (in German). 15: 532–639.
  35. Stillson, G. D. (1915). "Report in Deep Diving Tests". US Bureau of Construction and Repair, Navy Department. Technical Report. Archived from the original on 7 July 2012. Retrieved 6 August 2008.{{cite journal}}: CS1 maint: unfit URL (link)
  36. Staff, US Navy (15 August 2016). "Diving in the U.S. Navy: A Brief History". Naval History and Heritage Command website. Washington, DC: Naval History and Heritage Command. Retrieved 21 November 2016.
  37. 1 2 Huggins 1992, chpt. 3 page 2
  38. Davis, Jefferson C.; Sheffield, Paul J.; Schuknecht, L.; Heimbach, R. D.; Dunn, J. M.; Douglas, G.; Anderson, G. K. (August 1977). "Altitude decompression sickness: hyperbaric therapy results in 145 cases". Aviation, Space, and Environmental Medicine. 48 (8): 722–30. PMID   889546.
  39. LeMessurier, D. Hugh; Hills, Brian Andrew (1965). "Decompression Sickness. A thermodynamic approach arising from a study on Torres Strait diving techniques". Hvalradets Skrifter (48): 54–84.
  40. Hills, B. A. (1978). "A fundamental approach to the prevention of decompression sickness". South Pacific Underwater Medicine Society Journal. 8 (2). Melbourne, Victoria: SPUMS. Archived from the original on 7 October 2008. Retrieved 10 January 2012.{{cite journal}}: CS1 maint: unfit URL (link)
  41. How, J.; West, D.; Edmonds, C. (June 1976). "Decompression sickness and diving". Singapore Medical Journal. 17 (2). Singapore: Singapore Medical Association: 92–7. PMID   982095.
  42. Goodman, M. W.; Workman, R. D. (1965). "Minimal-recompression, oxygen-breathing approach to treatment of decompression sickness in divers and aviators". United States Navy Experimental Diving Unit Technical Report. NEDU-RR-5-65. Archived from the original on 15 April 2013. Retrieved 10 January 2012.{{cite journal}}: CS1 maint: unfit URL (link)
  43. Huggins 1992, chpt. 4 page 3
  44. Graves, D.J.; Idicula, J.; Lambertsen, C.J.; Quinn, J.A. (9 February 1973). "Bubble formation in physical and biological systems: a manifestation of counterdiffusion in composite media". Science. 179 (4073). Washington, DC: American Association for the Advancement of Science: 582–584. Bibcode:1973Sci...179..582G. doi:10.1126/science.179.4073.582. PMID   4686464. S2CID   46428717.
  45. Graves, D.J.; Idicula, J.; Lambertsen, Christian J.; Quinn, J.A. (March 1973). "Bubble formation resulting from counterdiffusion supersaturation: a possible explanation for isobaric inert gas 'urticaria' and vertigo". Physics in Medicine and Biology. 18 (2). Bristol, UK: IOP Publishing: 256–264. Bibcode:1973PMB....18..256G. CiteSeerX   10.1.1.555.429 . doi:10.1088/0031-9155/18/2/009. PMID   4805115. S2CID   250737144.
  46. Spencer, M.P. (February 1976). "Decompression limits for compressed air determined by ultrasonically detected blood bubbles". Journal of Applied Physiology . 40 (2): 229–35. doi:10.1152/jappl.1976.40.2.229. PMID   1249001.
  47. Weathersby, Paul K.; Homer, Louis D.; Flynn, Edward T. (September 1984). "On the likelihood of decompression sickness". Journal of Applied Physiology. 57 (3): 815–25. doi:10.1152/jappl.1984.57.3.815. PMID   6490468.
  48. 1 2 Powell, Mark (2008). Deco for Divers. Southend-on-Sea: Aquapress. pp. 17–18. ISBN   978-1-905492-07-7.
  49. 1 2 Huggins 1992, chpt. 4 page 6
  50. Huggins 1992, chpt. 4 page 11
  51. Huggins 1992, chpt. 4 page 4
  52. Trucco, Jean-Noël; Biard, Jef; Redureau, Jean-Yves; Fauvel, Yvon (1999). "Table Marine National 90 (MN90), Version du 3 May 1999" (PDF) (in French). F.F.E.S.S.M. Comité interrégional Bretagne & Pays de la Loire; Commission Technique Régionale. Archived from the original (PDF) on 10 May 2013. Retrieved 4 March 2016.
  53. Travaux en Milieu Hyperbare. Mesures particulières de prévention. Fascicule no 1636. Imprimerie du Journal Officiel, 26 rue Desaix, 75732 Paris cedex 15. ISBN   2-11-073322-5.
  54. Wienke, Bruce R.; O'Leary, Timothy R. (2001). "Full Up Phase Model Decompression Tables". Advanced diver magazine. Retrieved 4 March 2016.
  55. "Decompression Diving". Divetable.de. Retrieved 17 July 2012.
  56. Gerth, W. A.; Doolette, D. J. (2007). "VVal-18 and VVal-18M Thalmann Algorithm Air Decompression Tables and Procedures". United States Navy Experimental Diving Unit Technical Report.

Sources

Further reading