Ambient pressure

Last updated
A laboratory studying ambient pressure at Oregon State University APSCL.jpg
A laboratory studying ambient pressure at Oregon State University

The ambient pressure on an object is the pressure of the surrounding medium, such as a gas or liquid, in contact with the object. [1]

Contents

Atmosphere

Within the atmosphere, the ambient pressure decreases as elevation increases. By measuring ambient atmospheric pressure, a pilot may determine altitude (see pitot-static system). Near sea level, a change in ambient pressure of 1 millibar is taken to represent a change in height of 9 metres (30 ft).[ citation needed ]

Underwater

The ambient pressure in water with a free surface is a combination of the hydrostatic pressure due to the weight of the water column and the atmospheric pressure on the free surface. This increases approximately linearly with depth. Since water is much denser than air, much greater changes in ambient pressure can be experienced under water. Each 10 metres (33 ft) of depth adds another bar to the ambient pressure.

Ambient pressure diving is underwater diving exposed to the water pressure at depth, rather than in a pressure-excluding atmospheric diving suit or a submersible.

Other environments

The concept is not limited to environments frequented by people. Almost any place in the universe will have an ambient pressure, from the hard vacuum of deep space to the interior of an exploding supernova. At extremely small scales the concept of pressure becomes irrelevant, and it is undefined at a gravitational singularity.[ citation needed ]

Units of pressure

The SI unit of pressure is the pascal (Pa), which is a very small unit relative to atmospheric pressure on Earth, so kilopascals (kPa) are more commonly used in this context. The ambient atmospheric pressure at sea level is not constant: it varies with the weather, but averages around 100 kPa. In fields such as meteorology and underwater diving, it is common to see ambient pressure expressed in bar or millibar. One bar is 100 kPa or approximately ambient pressure at sea level. Ambient pressure may in other circumstances be measured in pounds per square inch (psi) or in standard atmospheres (atm). The ambient pressure at sea level is approximately one atmosphere, which is equal to 1.01325 bars (14.6959 psi), which is close enough for bar and atm to be used interchangeably in many applications. In underwater diving the industry convention is to measure ambient pressure in terms of water column. The metric unit is the metre sea water which is defined as 1/10 bar.

Examples of ambient pressure in various environments

Pressures are given in terms of the normal ambient pressure experienced by humans — standard atmospheric pressure at sea level on earth.

EnvironmentTypical ambient pressure
in standard atmospheres
Hard vacuum of outer space 0 atm
Surface of Mars, average0.006 atm [2]
Top of Mount Everest 0.333 atm [3]
Pressurized passenger aircraft cabin altitude 8,000 ft (2,400 m)0.76 atm [4]
Sea level atmospheric pressure 1 atm
Surface of Titan 1.45 atm
10m depth in seawater 2 atm
20m depth in seawater3 atm
Recreational diving depth limit (40m) [5] 5 atm
Common technical diving depth limit (100m) [6] [7] 11 atm
Experimental ambient pressure dive maximum
(Maximum ambient pressure a human has survived) [8]
54 atm
Surface of Venus 92 atm [9]
1 km depth in seawater101 atm
Deepest point in the Earth's oceans [10] 1100 atm
Centre of the Earth 3.3 to 3.6 million atm [11]
Centre of Jupiter 30 to 45 million atm [12]
Centre of the sun 244 billion atm [13]

See also

Related Research Articles

<span class="mw-page-title-main">Pressure</span> Force distributed over an area

Pressure is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure is the pressure relative to the ambient pressure.

<span class="mw-page-title-main">Trimix (breathing gas)</span> Breathing gas consisting of oxygen, helium and nitrogen

Trimix is a breathing gas consisting of oxygen, helium and nitrogen and is used in deep commercial diving, during the deep phase of dives carried out using technical diving techniques, and in advanced recreational diving.

Atmospheric pressure, also known as barometric pressure, is the pressure within the atmosphere of Earth. The standard atmosphere is a unit of pressure defined as 101,325 Pa (1,013.25 hPa), which is equivalent to 1013.25 millibars, 760 mm Hg, 29.9212 inches Hg, or 14.696 psi. The atm unit is roughly equivalent to the mean sea-level atmospheric pressure on Earth; that is, the Earth's atmospheric pressure at sea level is approximately 1 atm.

<span class="mw-page-title-main">Deep diving</span> Underwater diving to a depth beyond the norm accepted by the associated community

Deep diving is underwater diving to a depth beyond the norm accepted by the associated community. In some cases this is a prescribed limit established by an authority, while in others it is associated with a level of certification or training, and it may vary depending on whether the diving is recreational, technical or commercial. Nitrogen narcosis becomes a hazard below 30 metres (98 ft) and hypoxic breathing gas is required below 60 metres (200 ft) to lessen the risk of oxygen toxicity.

<span class="mw-page-title-main">Bar (unit)</span> Unit of pressure equal to 100,000 Pa

The bar is a metric unit of pressure, but not part of the International System of Units (SI). It is defined as exactly equal to 100,000 Pa (100 kPa), or slightly less than the current average atmospheric pressure on Earth at sea level. By the barometric formula, 1 bar is roughly the atmospheric pressure on Earth at an altitude of 111 metres at 15 °C.

<span class="mw-page-title-main">Breathing gas</span> Gas used for human respiration

A breathing gas is a mixture of gaseous chemical elements and compounds used for respiration. Air is the most common and only natural breathing gas, but other mixtures of gases, or pure oxygen, are also used in breathing equipment and enclosed habitats such as scuba equipment, surface supplied diving equipment, recompression chambers, high-altitude mountaineering, high-flying aircraft, submarines, space suits, spacecraft, medical life support and first aid equipment, and anaesthetic machines.

<span class="mw-page-title-main">Diving cylinder</span> Cylinder to supply breathing gas for divers

A diving cylinder or diving gas cylinder is a gas cylinder used to store and transport high pressure gas used in diving operations. This may be breathing gas used with a scuba set, in which case the cylinder may also be referred to as a scuba cylinder, scuba tank or diving tank. When used for an emergency gas supply for surface supplied diving or scuba, it may be referred to as a bailout cylinder or bailout bottle. It may also be used for surface-supplied diving or as decompression gas. A diving cylinder may also be used to supply inflation gas for a dry suit or buoyancy compensator. Cylinders provide gas to the diver through the demand valve of a diving regulator or the breathing loop of a diving rebreather.

Diving physics, or the physics of underwater diving is the basic aspects of physics which describe the effects of the underwater environment on the underwater diver and their equipment, and the effects of blending, compressing, and storing breathing gas mixtures, and supplying them for use at ambient pressure. These effects are mostly consequences of immersion in water, the hydrostatic pressure of depth and the effects of pressure and temperature on breathing gases. An understanding of the physics is useful when considering the physiological effects of diving, breathing gas planning and management, diver buoyancy control and trim, and the hazards and risks of diving.

<span class="mw-page-title-main">Saturation diving</span> Diving decompression technique

Saturation diving is diving for periods long enough to bring all tissues into equilibrium with the partial pressures of the inert components of the breathing gas used. It is a diving mode that reduces the number of decompressions divers working at great depths must undergo by only decompressing divers once at the end of the diving operation, which may last days to weeks, having them remain under pressure for the whole period. A diver breathing pressurized gas accumulates dissolved inert gas used in the breathing mixture to dilute the oxygen to a non-toxic level in the tissues, which can cause decompression sickness if permitted to come out of solution within the body tissues; hence, returning to the surface safely requires lengthy decompression so that the inert gases can be eliminated via the lungs. Once the dissolved gases in a diver's tissues reach the saturation point, however, decompression time does not increase with further exposure, as no more inert gas is accumulated.

In underwater diving activities such as saturation diving, technical diving and nitrox diving, the maximum operating depth (MOD) of a breathing gas is the depth below which the partial pressure of oxygen (pO2) of the gas mix exceeds an acceptable limit. This limit is based on risk of central nervous system oxygen toxicity, and is somewhat arbitrary, and varies depending on the diver training agency or Code of Practice, the level of underwater exertion expected and the planned duration of the dive, but is normally in the range of 1.2 to 1.6 bar.

<span class="mw-page-title-main">Gas blending for scuba diving</span> Mixing and filling cylinders with breathing gases for use when scuba diving

Gas blending for scuba diving is the filling of diving cylinders with non-air breathing gases such as nitrox, trimix and heliox. Use of these gases is generally intended to improve overall safety of the planned dive, by reducing the risk of decompression sickness and/or nitrogen narcosis, and may improve ease of breathing.

Hydreliox is an exotic breathing gas mixture of helium, oxygen and hydrogen. For the Hydra VIII mission at 50 atmospheres of ambient pressure, the mixture used was 49% hydrogen, 50.2% helium, and 0.8% oxygen.

Equivalent narcotic depth (END) is used in technical diving as a way of estimating the narcotic effect of a breathing gas mixture, such as heliox and trimix. The method is, for a given mix and depth, to calculate the depth which would produce the same narcotic effect as when breathing air.

<span class="mw-page-title-main">Scuba gas planning</span> Estimation of breathing gas mixtures and quantities required for a planned dive profile

Scuba gas planning is the aspect of dive planning and of gas management which deals with the calculation or estimation of the amounts and mixtures of gases to be used for a planned dive. It may assume that the dive profile, including decompression, is known, but the process may be iterative, involving changes to the dive profile as a consequence of the gas requirement calculation, or changes to the gas mixtures chosen. Use of calculated reserves based on planned dive profile and estimated gas consumption rates rather than an arbitrary pressure is sometimes referred to as rock bottom gas management. The purpose of gas planning is to ensure that for all reasonably foreseeable contingencies, the divers of a team have sufficient breathing gas to safely return to a place where more breathing gas is available. In almost all cases this will be the surface.

<span class="mw-page-title-main">Decompression practice</span> Techniques and procedures for safe decompression of divers

The practice of decompression by divers comprises the planning and monitoring of the profile indicated by the algorithms or tables of the chosen decompression model, to allow asymptomatic and harmless release of excess inert gases dissolved in the tissues as a result of breathing at ambient pressures greater than surface atmospheric pressure, the equipment available and appropriate to the circumstances of the dive, and the procedures authorized for the equipment and profile to be used. There is a large range of options in all of these aspects.

<span class="mw-page-title-main">Haldane's decompression model</span> Decompression model developed by John Scott Haldane

Haldane's decompression model is a mathematical model for decompression to sea level atmospheric pressure of divers breathing compressed air at ambient pressure that was proposed in 1908 by the Scottish physiologist, John Scott Haldane, who was also famous for intrepid self-experimentation.

<span class="mw-page-title-main">Metre sea water</span> Unit of pressure equal to one tenth of a bar

The metresea water (msw) is a metric unit of pressure used in underwater diving. It is defined as one tenth of a bar.

Human physiology of underwater diving is the physiological influences of the underwater environment on the human diver, and adaptations to operating underwater, both during breath-hold dives and while breathing at ambient pressure from a suitable breathing gas supply. It, therefore, includes the range of physiological effects generally limited to human ambient pressure divers either freediving or using underwater breathing apparatus. Several factors influence the diver, including immersion, exposure to the water, the limitations of breath-hold endurance, variations in ambient pressure, the effects of breathing gases at raised ambient pressure, effects caused by the use of breathing apparatus, and sensory impairment. All of these may affect diver performance and safety.

<span class="mw-page-title-main">Built-in breathing system</span> System for supply of breathing gas on demand within a confined space

A built-in breathing system is a source of breathing gas installed in a confined space where an alternative to the ambient gas may be required for medical treatment, emergency use, or to minimise a hazard. They are found in diving chambers, hyperbaric treatment chambers, and submarines.

References

  1. McGraw-Hill Dictionary of Scientific and Technical Terms Copyright © 2003 by McGraw-Hill Companies, Inc. "Sci-Tech Dictionary ambient pressure on Answers.com". McGraw-Hill Companies, Inc.
  2. Bolonkin, Alexander A. (2009). Artificial Environments on Mars. Berlin Heidelberg: Springer. pp. 599–625. ISBN   978-3-642-03629-3.
  3. "Online high altitude oxygen calculator". altitude.org. Archived from the original on 29 July 2012. Retrieved 15 August 2007.
  4. K. Baillie and A. Simpson. "Altitude oxygen calculator" . Retrieved 2013-11-27. - Online interactive altitude oxygen calculator
  5. Brylske, A. (2006). Encyclopedia of Recreational Diving, 3rd edition. United States: PADI. ISBN   1-878663-01-1.
  6. "Trimix Diver - IANTD - World Headquarter". Archived from the original on 2013-09-03. Retrieved 2013-06-16.
  7. "TDI Advanced Trimix Diver".
  8. Comex S.A. HYDRA 8 and HYDRA 10 test projects Archived August 4, 2009, at the Wayback Machine
  9. "Venus: Facts & Figures". NASA. Archived from the original on 2006-09-29. Retrieved 2007-04-12.
  10. "Scientists map Mariana Trench, deepest known section of ocean in the world". The Telegraph. 7 December 2011. Archived from the original on 8 December 2011. Retrieved 24 September 2013.
  11. David. R. Lide, ed. (2006–2007). CRC Handbook of Chemistry and Physics (87th ed.). pp. j14–13. Archived from the original on 2017-07-24. Retrieved 2013-11-27.
  12. Elkins-Tanton, Linda T. (2006). Jupiter and Saturn. New York: Chelsea House. ISBN   0-8160-5196-8.
  13. Williams, David R. (September 1, 2004). "Sun Fact Sheet". NASA. Retrieved 12 January 2015.

Further reading