Hyperbaric nursing

Last updated • 4 min readFrom Wikipedia, The Free Encyclopedia

Hyperbaric nursing is a nursing specialty involved in the care of patients receiving hyperbaric oxygen therapy. The National Board of Diving and Hyperbaric Medical Technology offers certification in hyperbaric nursing as a Certified Hyperbaric Registered Nurse (CHRN). [1] The professional nursing organization for hyperbaric nursing is the Baromedical Nurses Association. [2] [3]

Contents

Hyperbaric nurses are responsible for administering hyperbaric oxygen therapy to patientss and supervising them throughout the treatment. These nurses must work under a supervising physician trained in hyperbaric medicine who is available during the treatment in case of emergency. Hyperbaric nurses either join the patient inside the multiplace hyperbaric oxygen therapy chamber or operate the equipment from outside of the monoplace hyperbaric oxygen therapy chamber, monitoring for adverse reactions to the treatment. [4] Patients can experience adverse reactions to the hyperbaric oxygen therapy such as oxygen toxicity, hypoglycemia,[ clarification needed ] anxiety, barotrauma, or pneumothorax. [4] [5] [6] The nurse must know how to handle each adverse event appropriately. [5] The most common adverse effect is middle ear barotrauma, injury to the middle ear due to pressure not being equalised during compression. [4] Since hyperbaric oxygen therapy is usually administered daily for a set number of treatments, adverse effects must be prevented for the patient to receive all scheduled treatments. [4] The hyperbaric nurse will collaborate with the patient's physician to determine if hyperbaric oxygen therapy is appropriate. The nurse must know all approved indications that warrant hyperbaric oxygen therapy treatments, along with contraindications to the treatment. [4]

History

Hyperbaric medicine developed from the treatment of divers to include treatment of other conditions not related to diving, that were found to respond to similar treatment. [7] Hyperbaric nursing began in the 1950s in Europe, [8] and the original process of learning on the job developed into formal training programs by the 1960s. [7]

Role

The role of the hyperbaric nurse can vary depending on the needs and activity of the facility, and may include. [8]

Training and registration

The Baromedical Nurses Association Certification Board was established in 1995 and the first hyperbaric nursing certification issued in the same year. As of September 2024 there are over 900 hyperbaric nurses certified by BNACB. Three levels are recognised: Certified Hyperbaric Registered Nurse (CHRN), Advanced Certified Hyperbaric Registered Nurse (ACHRN), and Certified Hyperbaric Registered Nurse Clinician (CHRNC). [7]

In South Africa, CHRNs are registered with the Southern African Underwater and Hyperbaric Medical Association (SAUHMA).

Physics

It is important for hyperbaric nurses to understand the physics of gases under pressure, and the effects of pressure changes on the volume, temperature, partial pressures of gases in a mixture, the effects of pressure on solubility of gases in body tissues, and the fire hazards associated with high oxygen partial pressures.

Physiology of hyperbaric medicine

Hyperbaric oxygen therapy (HBOT) involves breathing high concentrations of oxygen at increased ambient pressure, typically 100% oxygen at 1.9 bar and 2.8 bar. [9] For some conditions, even higher pressures may be needed. It is necessary to know the approved conditions for hyperbaric medical therapy because HBOT has a wide range of accepted medical uses, which vary depending on the country. These conditions range from decompression sickness and carbon monoxide poisoning to thermal burns and necrotizing fasciitis.

HBOT works in several ways to provide therapeutic effects:

Occupational hazards

The hyperbaric environment exposes people to specific hazards, with their associated risks of adverse consequences. The hyperbaric nurse must understand these hazards, and know how to minimise the risks and mitigate the consequences, both for themself, other clinical staff, and the patient. This includes risks for healthy people and the contraindications for hyperbaric medicine.

References

[17]

  1. Josefsen, L; Woodward, C; Lewis, D; Hodge, J; Camporesi, EM (1997). "The nursing role in hyperbaric medicine". Undersea and Hyperbaric Medicine (Annual Meeting Abstract).
  2. Greenberg, DA (1985). "Baromedical nursing specialization". Undersea and Hyperbaric Medicine (Annual Meeting Abstract).
  3. "Baromedical Nurses Association Certification". Baromedical Nurses Association. Archived from the original on 2014-05-15. Retrieved 2011-01-14.
  4. 1 2 3 4 5 Howell, Raelina S.; Criscitelli, Theresa; Woods, Jon S.; Gillette, Brian M.; Gorenstein, Scott (2018). "Hyperbaric Oxygen Therapy: Indications, Contraindications, and Use at a Tertiary Care Center". AORN Journal. 107 (4): 442–453. doi:10.1002/aorn.12097. ISSN   1878-0369. PMID   29595909. S2CID   4386746.
  5. 1 2 Stevens, Sarah (October 2016). "Implementing a Nurse-Driven Protocol to Manage Diabetic Patients in Hyperbarics". Western Journal of Nursing Research. 38 (10): 1383–1384. doi:10.1177/0193945916658193. ISSN   0193-9459. PMID   27655088. S2CID   11627987.
  6. "Psychological Nursing Of Hyperbaric Oxygen Therapy". oxygen-ark.com. 2023-08-17. Retrieved 2023-09-14.
  7. 1 2 3 "Certified Hyperbaric Registered Nurse Training and Certification". nbdhmt.org. National Board of Diving & Hyperbaric Medical Technology. 12 September 2024. Retrieved 29 November 2024.
  8. 1 2 3 Christopher, Dan (2023). "The Role of the RN in Hyperbaric Medicine". www.uhms.org. Undersea and Hyperbaric Medical Society. Retrieved 29 November 2024.
  9. Berghage, T.E.; Vorosmarti, J. Jr.; Barnard, E.E.P. (1978). "Recompression treatment tables used throughout the world by government and industry". US Naval Medical Research Center Technical Report. NMRI-78-16.
  10. Jørgensen, T.B.; Sørensen, A.M.; Jansen, E.C. (April 2008). "Iatrogenic systemic air embolism treated with hyperbaric oxygen therapy". Acta Anaesthesiologica Scandinavica. 52 (4): 566–68. doi:10.1111/j.1399-6576.2008.01598.x. PMID   18339163. S2CID   11470093.
  11. 1 2 U.S. Navy Supervisor of Diving (Apr 2008). "20" (PDF). U.S. Navy Diving Manual. SS521-AG-PRO-010, revision 6. Vol. 5. U.S. Naval Sea Systems Command. Archived (PDF) from the original on March 31, 2014. Retrieved 2009-06-29.
  12. Behnke, Albert R (1967). "The isobaric (oxygen window) principle of decompression". Trans. Third Marine Technology Society Conference, San Diego. The New Thrust Seaward. Washington DC: Marine Technology Society.
  13. Van Liew, H.D.; Conkin, J.; Burkard, M.E. (September 1993). "The oxygen window and decompression bubbles: estimates and significance". Aviation, Space, and Environmental Medicine. 64 (9 Pt 1): 859–65. PMID   8216150.
  14. Özyurt, Anıl (2022). "Does hyperbaric oxygen therapy pressure reduce mechanical stability of implants?". Journal of Materials Science: Materials in Medicine. 33 (7). doi:10.1007/s10856-022-06680-5. ISSN   1573-4838. PMC   9287222 . PMID   35838809.
  15. "The Role of the RN in Hyperbaric Medicine - Undersea & Hyperbaric Medical Society". www.uhms.org. Retrieved 2024-09-04.
  16. "Hyperbaric Medicine Practice: Hyperbaric Nursing - Wound Care Education Partners". woundeducationpartners.com. Retrieved 2024-09-04.
  17. Jones, M. W.; Brett, K.; Han, N.; Cooper, J. S.; Wyatt, H. A. (2024). "Hyperbaric Physics". National Library of Medicine. StatPearls. PMID   28846268 . Retrieved April 28, 2024.