The Frenzel Maneuver is named after Hermann Frenzel (German ear, nose and throat physician and Luftwaffe commander). The maneuver was developed in 1938 and originally was taught to dive bomber pilots during World War II. The maneuver is used to equalize pressure in the middle ear. Today, the maneuver is also performed by scuba divers, free divers and by passengers on aircraft as they descend. [1] [2] [3]
The trapped air inside the mouth and nasal cavities is compressed by the movement of the tongue or larynx while doing Frenzel maneuver. The air is forced into the nasal cavity by the pressure and tries to exit by the nose, but the nostrils are squeezed shut. Because the glottis is closed, air cannot return to the lungs. The tongue creates an airtight seal against the upper teeth or in the rear of the mouth, preventing air from escaping. Because there is nowhere else for the air to go, it enters the eustachian tubes and the middle ear, equalizing the pressure. [4]
The Frenzel Maneuver is performed as follows: [2] [3]
By performing this technique, the compressed air is forced into Eustachian tubes, and thus into the middle ear. In situations where the ambient pressure rises (typical causes are decreasing altitude in the case of an airplane or increasing depth in the case of a diver submerging), the maneuver results in the equalization of the pressure on both sides of the eardrum. [2] [3]
Compared with the Valsalva maneuver, the Frenzel maneuver carries a significantly lower risk of over-pressurizing the middle or inner ear; given e.g. a nose-clip, it also allows hands-free equalisation. The maneuver can be done at any time during the respiratory cycle and it does not inhibit venous return to the heart. [5] Effort to perform the maneuver is minimal, and it can be repeated many times quickly.
Because it is a more regulated procedure that does not employ the diaphragm, the Frenzel equalisation technique is clearly more appealing to freedivers than the Valsalva technique, especially for freedivers who frequently need to descend at speed. It is far more targeted, effective, and ultimately safer (the increased pressure exerted by the Valsalva technique can actually harm your ears).This procedure is easier to do and does not require as much oxygen as the valsalva maneuver. It is effective in depths of up to -80 meters and can be performed multiple times quickly underwater.
While the Frenzel maneuver is ideal for deeper dives, pulmonary barotrauma — damage and injuries to over-pressured lungs – is becoming more common in the diving world. This is frequently due to unskilled divers trying these new equalization methods to go deeper and faster. While they have mastered equalization procedures, their bodies have not yet adapted to larger depths, which can lead to catastrophic harm. Always keep in mind that just because you can utilize the Frenzel doesn't mean your body is ready to withstand the extra pressure that comes with a deep dive. [6]
Different from Valsalva maneuver, Frenzel maneuver can be used in all depth[ inconsistent ] while only depths of up to -30 meters are suitable for Valsalva. There just isn't enough air left in the lungs to equalize the pressure in the ears and sinuses at larger depths. Valsalva maneuver also generates lung muscular contractions, which burns up a lot of oxygen. [7]
The nose, mouth, and throat, as well as how they work together and the strategies that impact them, are all part of the Frenzel maneuver's physiological process. All three are interconnected, and all three effectively go to the lungs. When employing the Frenzel, all three come into action.
First, there's the mouth, which houses the tongue and the epiglottis at the back. The tongue and epiglottis can both trap air in the lungs and push it down the Eustachian tubes (more on that in a minute!). The trachea and oesophagus are the main 'tubes' that lead down from the neck into the body; the trachea leads to the lungs, while the oesophagus leads to the stomach. The epiglottis opens and closes both, although the trachea usually stays open (for breathing purposes) while the epiglottis is usually closed until we swallow (when it opens to allow food and drink into the stomach).
Meanwhile, the soft palate, located in the back of the mouth, has three positions for controlling airflow: raised, neutral, and lowered. When it's raised, air may flow through the mouth to the lungs; when it's dropped, air can only flow through the nose. The soft palate in its neutral posture allows air to flow freely through both the nose and mouth.
Finally, the Eustachian tubes' apertures are located slightly above the soft palate and in the nasal cavity. These small tubes connect the upper pharynx (also known as the nasopharynx) to the middle ear and are essential for equalization. [8]
The Frenzel Maneuver was developed by Herman Frenzel, a Luftwaffe officer who trained dive-bomber pilots this maneuver during WWII. The goal is to lock off your vocal chords as if you were going to lift a heavyweight. The nostrils are pinched closed and an attempt is made to produce a 'k' or 'guh' sound. This will elevate the 'Adam's Apple' by raising the back of the tongue. This converts the tongue into a piston, which forces air upward. [10]
In articulatory phonetics, the place of articulation of a consonant is an approximate location along the vocal tract where its production occurs. It is a point where a constriction is made between an active and a passive articulator. Active articulators are organs capable of voluntary movement which create the constriction, while passive articulators are so called because they are normally fixed and are the parts with which an active articulator makes contact. Along with the manner of articulation and phonation, the place of articulation gives the consonant its distinctive sound.
The middle ear is the portion of the ear medial to the eardrum, and distal to the oval window of the cochlea.
The field of articulatory phonetics is a subfield of phonetics that studies articulation and ways that humans produce speech. Articulatory phoneticians explain how humans produce speech sounds via the interaction of different physiological structures. Generally, articulatory phonetics is concerned with the transformation of aerodynamic energy into acoustic energy. Aerodynamic energy refers to the airflow through the vocal tract. Its potential form is air pressure; its kinetic form is the actual dynamic airflow. Acoustic energy is variation in the air pressure that can be represented as sound waves, which are then perceived by the human auditory system as sound.
In vertebrate anatomy, the throat is the front part of the neck, internally positioned in front of the vertebrae. It contains the pharynx and larynx. An important section of it is the epiglottis, separating the esophagus from the trachea (windpipe), preventing food and drinks being inhaled into the lungs. The throat contains various blood vessels, pharyngeal muscles, the nasopharyngeal tonsil, the tonsils, the palatine uvula, the trachea, the esophagus, and the vocal cords. Mammal throats consist of two bones, the hyoid bone and the clavicle. The "throat" is sometimes thought to be synonymous for the fauces.
In the anatomy of humans and various other tetrapods, the eardrum, also called the tympanic membrane or myringa, is a thin, cone-shaped membrane that separates the external ear from the middle ear. Its function is to transmit changes in pressure of sound from the air to the ossicles inside the middle ear, and thence to the oval window in the fluid-filled cochlea. The ear thereby converts and amplifies vibration in the air to vibration in cochlear fluid. The malleus bone bridges the gap between the eardrum and the other ossicles.
The Eustachian tube, also called the auditory tube or pharyngotympanic tube, is a tube that links the nasopharynx to the middle ear, of which it is also a part. In adult humans, the Eustachian tube is approximately 35 mm (1.4 in) long and 3 mm (0.12 in) in diameter. It is named after the sixteenth-century Italian anatomist Bartolomeo Eustachi.
The Valsalva maneuver is performed by a forceful attempt of exhalation against a closed airway, usually done by closing one's mouth and pinching one's nose shut while expelling air, as if blowing up a balloon. Variations of the maneuver can be used either in medical examination as a test of cardiac function and autonomic nervous control of the heart, or to clear the ears and sinuses when ambient pressure changes, as in scuba diving, hyperbaric oxygen therapy, or air travel.
Barotrauma is physical damage to body tissues caused by a difference in pressure between a gas space inside, or in contact with, the body and the surrounding gas or liquid. The initial damage is usually due to over-stretching the tissues in tension or shear, either directly by an expansion of the gas in the closed space or by pressure difference hydrostatically transmitted through the tissue. Tissue rupture may be complicated by the introduction of gas into the local tissue or circulation through the initial trauma site, which can cause blockage of circulation at distant sites or interfere with the normal function of an organ by its presence. The term is usually applied when the gas volume involved already exists prior to decompression. Barotrauma can occur during both compression and decompression events.
In phonetics, the airstream mechanism is the method by which airflow is created in the vocal tract. Along with phonation and articulation, it is one of three main components of speech production. The airstream mechanism is mandatory for most sound production and constitutes the first part of this process, which is called initiation.
Antonio Maria Valsalva, was an Italian anatomist born in Imola. His research focused on the anatomy of the ears. He coined the term Eustachian tube and he described the aortic sinuses of Valsalva in his writings, published posthumously in 1740. His name is associated with the Valsalva antrum of the ear and the Valsalva maneuver, which is used as a test of circulatory function. Anatomical structures bearing his name are Valsalva’s muscle and taeniae Valsalvae. He observed that when weakness of one side of the body is caused by a lesion in the brain, the culprit lesion tends to be on the side opposite (contralateral) to the weak side; this finding is named the "Valsalva doctrine" in his honor.
Conductive hearing loss (CHL) occurs when there is a problem transferring sound waves anywhere along the pathway through the outer ear, tympanic membrane (eardrum), or middle ear (ossicles). If a conductive hearing loss occurs in conjunction with a sensorineural hearing loss, it is referred to as a mixed hearing loss. Depending upon the severity and nature of the conductive loss, this type of hearing impairment can often be treated with surgical intervention or pharmaceuticals to partially or, in some cases, fully restore hearing acuity to within normal range. However, cases of permanent or chronic conductive hearing loss may require other treatment modalities such as hearing aid devices to improve detection of sound and speech perception.
The tensor veli palatini muscle is a thin, triangular muscle of the head that tenses the soft palate and opens the Eustachian tube to equalise pressure in the middle ear.
Ear clearing, clearing the ears or equalization is any of various maneuvers to equalize the pressure in the middle ear with the outside pressure, by letting air enter along the Eustachian tubes, as this does not always happen automatically when the pressure in the middle ear is lower than the outside pressure. This need can arise in scuba diving, freediving/spearfishing, skydiving, fast descent in an aircraft, fast descent in a mine cage, and being put into pressure in a caisson or similar internally pressurised enclosure, or sometimes even simply travelling at fast speeds in an automobile.
The respiratory system of the horse is the biological system by which a horse circulates air for the purpose of gaseous exchange.
A rhinoscope is a thin, tube-like instrument used to examine the inside of the nose. A rhinoscope has a light and a lens for viewing and may have a tool to remove tissue.
The pharynx is the part of the throat behind the mouth and nasal cavity, and above the esophagus and trachea. It is found in vertebrates and invertebrates, though its structure varies across species. The pharynx carries food to the esophagus and air to the larynx. The flap of cartilage called the epiglottis stops food from entering the larynx.
Hypernasal speech is a disorder that causes abnormal resonance in a human's voice due to increased airflow through the nose during speech. It is caused by an open nasal cavity resulting from an incomplete closure of the soft palate and/or velopharyngeal sphincter. In normal speech, nasality is referred to as nasalization and is a linguistic category that can apply to vowels or consonants in a specific language. The primary underlying physical variable determining the degree of nasality in normal speech is the opening and closing of a velopharyngeal passageway between the oral vocal tract and the nasal vocal tract. In the normal vocal tract anatomy, this opening is controlled by lowering and raising the velum or soft palate, to open or close, respectively, the velopharyngeal passageway.
Eustachian tube dysfunction (ETD) is a disorder where pressure abnormalities in the middle ear result in symptoms.
Oral skills are speech enhancers that are used to produce clear sentences that are intelligible to an audience. Oral skills are used to enhance the clarity of speech for effective communication. Communication is the transmission of messages and the correct interpretation of information between people. The production speech is insisted by the respiration of air from the lungs that initiates the vibrations in the vocal cords. The cartilages in the larynx adjust the shape, position and tension of the vocal cords. Speech enhancers are used to improve the clarity and pronunciation of speech for correct interpretation of speech. The articulation of voice enhances the resonance of speech and enables people to speak intelligibly. Speaking at a moderate pace and using clear pronunciation improves the phonation of sounds. The term "phonation" means the process to produce intelligible sounds for the correct interpretation of speech. Speaking in a moderate tone enables the audience to process the information word for word.
Middle ear barotrauma (MEBT), also known to underwater divers as ear squeeze and reverse ear squeeze, is an injury caused by a difference in pressure between the external ear canal and the middle ear. It is common in underwater divers and usually occurs when the diver does not equalise sufficiently during descent or, less commonly, on ascent. Failure to equalise may be due to inexperience or eustachian tube dysfunction, which can have many possible causes. Unequalised ambient pressure increase during descent causes a pressure imbalance between the middle ear air space and the external auditory canal over the eardrum, referred to by divers as ear squeeze, causing inward stretching, serous effusion and haemorrhage, and eventual rupture. During ascent internal over-pressure is normally passively released through the eustachian tube, but if this does not happen the volume expansion of middle ear gas will cause outward bulging, stretching and eventual rupture of the eardrum known to divers as reverse ear squeeze. This damage causes local pain and hearing loss. Tympanic rupture during a dive can allow water into the middle ear, which can cause severe vertigo from caloric stimulation. This may cause nausea and vomiting underwater, which has a high risk of aspiration of vomit or water, with possibly fatal consequences.
{{cite journal}}
: CS1 maint: unfit URL (link)