In diving and decompression, the oxygen window is the difference between the partial pressure of oxygen (PO2) in arterial blood and the PO2 in body tissues. It is caused by metabolic consumption of oxygen. [1]
The term "oxygen window" was first used by Albert R. Behnke in 1967. [2] Behnke refers to early work by Momsen on "partial pressure vacancy" (PPV) where he used partial pressures of oxygen and helium as high as 2–3 ATA to create a maximal PPV. [3] [4] Behnke then goes on to describe "isobaric inert gas transport" or "inherent unsaturation" as termed by LeMessurier and Hills and separately by Hills, [5] [6] [7] [8] who made their independent observations at the same time. Van Liew et al. also made a similar observation that they did not name at the time. [9] The clinical significance of their work was later shown by Sass. [10]
The oxygen window effect in decompression is described in diving medical texts and the limits reviewed by Van Liew et al. in 1993. [1] [11]
When living animals are in steady state, the sum of the partial pressures of dissolved gases in the tissues is usually less than atmospheric pressure, a phenomenon known as the "oxygen window", "partial pressure vacancy" or "inherent unsaturation". [2] [7] [10] [12] This is because metabolism lowers partial pressure of O2 in tissue below the value in arterial blood and the binding of O2 by hemoglobin causes a relatively large PO2 difference between tissues and arterial blood. Production of CO2 is usually about the same as consumption of O2 on a mole-for-mole basis, but there is little rise of PCO2 because of its high effective solubility. Levels of O2 and CO2 in tissue can influence blood flow and thereby influence washout of dissolved inert gas, but the magnitude of the oxygen window has no direct effect on inert-gas washout. The oxygen window provides a tendency for absorption of the gas quantities in the body such as pneumothoraces or decompression sickness (DCS) bubbles. [9] With DCS bubbles, the window is a major factor in the rate of bubble shrinkage when the subject is in a steady state, modifies bubble dynamics when inert gas is being taken up or given off by the tissues, and may sometimes prevent the transformation of bubble nuclei into stable bubbles. [13]
— This passage is quoted from Van Liew's technical note: [11]
Van Liew et al. describe the measurements important to evaluating the oxygen window as well as simplify the "assumptions available for the existing complex anatomical and physiological situation to provide calculations, over a wide range of exposures, of the oxygen window". [11]
Oxygen is used to decrease the time needed for safe decompression in diving, but the practical consequences and benefits need further research. Decompression is still far from being an exact science, and divers when diving deep must make many decisions based on personal experience rather than scientific knowledge.
In technical diving, applying the oxygen window effect by using decompression gases with high PO2 increases decompression efficiency and allows shorter decompression stops. Reducing decompression time can be important to reduce time spent at shallow depths in open water (avoiding dangers such as water currents and boat traffic), and to reduce the physical stress imposed on the diver.
The oxygen window does not increase the rate of offgassing for a given concentration gradient of inert gas, but it reduces the risk of bubble formation and growth which depends on the total dissolved gas tension. Increased rate of offgassing is achieved by providing a larger gradient. The lower risk of bubble formation at a given gradient allows the increase of gradient without excessive risk of bubble formation. In other words, the larger oxygen window due to a higher oxygen partial pressure can allow the diver to decompress faster at a shallower stop at the same risk, or at the same rate at the same depth at a lower risk, or at an intermediate rate at an intermediate depth at an intermediate risk. [14]
Use of 100% oxygen is limited by oxygen toxicity at deeper depths. Convulsions are more likely when the PO2 exceeds 1.6 bar (160 kPa). Technical divers use gas mixes with high PO2 in some sectors of the decompression schedule. As an example, a popular decompression gas is 50% nitrox on decompression stops starting at 21 metres (69 ft).
Where to add the high PO2 gas in the schedule depends on what limits of PO2 are accepted as safe, and on the diver's opinion on the level of added efficiency. Many technical divers have chosen to lengthen the decompression stops where PO2 is high and to push gradient at the shallower decompression stops.[ citation needed ]
Nevertheless, much is still unknown about how long this extension should be and the level of decompression efficiency gained. At least four variables of decompression are relevant in discussing how long high PO2 decompression stops should be:
Trimix is a breathing gas consisting of oxygen, helium and nitrogen and is used in deep commercial diving, during the deep phase of dives carried out using technical diving techniques, and in advanced recreational diving.
Decompression sickness is a medical condition caused by dissolved gases emerging from solution as bubbles inside the body tissues during decompression. DCS most commonly occurs during or soon after a decompression ascent from underwater diving, but can also result from other causes of depressurisation, such as emerging from a caisson, decompression from saturation, flying in an unpressurised aircraft at high altitude, and extravehicular activity from spacecraft. DCS and arterial gas embolism are collectively referred to as decompression illness.
A breathing gas is a mixture of gaseous chemical elements and compounds used for respiration. Air is the most common and only natural breathing gas, but other mixtures of gases, or pure oxygen, are also used in breathing equipment and enclosed habitats. Oxygen is the essential component for any breathing gas. Breathing gases for hyperbaric use have been developed to improve on the performance of ordinary air by reducing the risk of decompression sickness, reducing the duration of decompression, reducing nitrogen narcosis or allowing safer deep diving
Decompression Illness (DCI) comprises two different conditions caused by rapid decompression of the body. These conditions present similar symptoms and require the same initial first aid. Scuba divers are trained to ascend slowly from depth to avoid DCI. Although the incidence is relatively rare, the consequences can be serious and potentially fatal, especially if untreated.
The Varying Permeability Model, Variable Permeability Model or VPM is an algorithm that is used to calculate the decompression stops needed for ambient pressure dive profiles using specified breathing gases. It was developed by D.E. Yount and others for use in professional diving and recreational diving. It was developed to model laboratory observations of bubble formation and growth in both inanimate and in vivo systems exposed to pressure. In 1986, this model was applied by researchers at the University of Hawaii to calculate diving decompression tables.
Capt. Edward Deforest Thalmann, USN (ret.) was an American hyperbaric medicine specialist who was principally responsible for developing the current United States Navy dive tables for mixed-gas diving, which are based on his eponymous Thalmann Algorithm (VVAL18). At the time of his death, Thalmann was serving as assistant medical director of the Divers Alert Network (DAN) and an assistant clinical professor in anesthesiology at Duke University's Center for Hyperbaric Medicine and Environmental Physiology.
The Thalmann Algorithm is a deterministic decompression model originally designed in 1980 to produce a decompression schedule for divers using the US Navy Mk15 rebreather. It was developed by Capt. Edward D. Thalmann, MD, USN, who did research into decompression theory at the Naval Medical Research Institute, Navy Experimental Diving Unit, State University of New York at Buffalo, and Duke University. The algorithm forms the basis for the current US Navy mixed gas and standard air dive tables. The decompression model is also referred to as the Linear–Exponential model or the Exponential–Linear model.
In physiology, isobaric counterdiffusion (ICD) is the diffusion of different gases into and out of tissues while under a constant ambient pressure, after a change of gas composition, and the physiological effects of this phenomenon. The term inert gas counterdiffusion is sometimes used as a synonym, but can also be applied to situations where the ambient pressure changes. It has relevance in mixed gas diving and anesthesiology.
Captain Albert Richard Behnke Jr. USN (ret.) was an American physician, who was principally responsible for developing the U.S. Naval Medical Research Institute. Behnke separated the symptoms of Arterial Gas Embolism (AGE) from those of decompression sickness and suggested the use of oxygen in recompression therapy.
The decompression of a diver is the reduction in ambient pressure experienced during ascent from depth. It is also the process of elimination of dissolved inert gases from the diver's body which accumulate during ascent, largely during pauses in the ascent known as decompression stops, and after surfacing, until the gas concentrations reach equilibrium. Divers breathing gas at ambient pressure need to ascend at a rate determined by their exposure to pressure and the breathing gas in use. A diver who only breathes gas at atmospheric pressure when free-diving or snorkelling will not usually need to decompress, Divers using an atmospheric diving suit do not need to decompress as they are never exposed to high ambient pressure.
To prevent or minimize decompression sickness, divers must properly plan and monitor decompression. Divers follow a decompression model to safely allow the release of excess inert gases dissolved in their body tissues, which accommodated as a result of breathing at ambient pressures greater than surface atmospheric pressure. Decompression models take into account variables such as depth and time of dive, breathing gasses, altitude, and equipment to develop appropriate procedures for safe ascent.
Decompression in the context of diving derives from the reduction in ambient pressure experienced by the diver during the ascent at the end of a dive or hyperbaric exposure and refers to both the reduction in pressure and the process of allowing dissolved inert gases to be eliminated from the tissues during this reduction in pressure.
Decompression theory is the study and modelling of the transfer of the inert gas component of breathing gases from the gas in the lungs to the tissues and back during exposure to variations in ambient pressure. In the case of underwater diving and compressed air work, this mostly involves ambient pressures greater than the local surface pressure, but astronauts, high altitude mountaineers, and travellers in aircraft which are not pressurised to sea level pressure, are generally exposed to ambient pressures less than standard sea level atmospheric pressure. In all cases, the symptoms caused by decompression occur during or within a relatively short period of hours, or occasionally days, after a significant pressure reduction.
There are several categories of decompression equipment used to help divers decompress, which is the process required to allow divers to return to the surface safely after spending time underwater at higher ambient pressures.
Brian Andrew Hills, born 19 March 1934 in Cardiff, Wales, died 13 January 2006 in Brisbane, Queensland, was a physiologist who worked on decompression theory.
The thermodynamic model was one of the first decompression models in which decompression is controlled by the volume of gas bubbles coming out of solution. In this model, pain only DCS is modelled by a single tissue which is diffusion-limited for gas uptake and bubble-formation during decompression causes "phase equilibration" of partial pressures between dissolved and free gases. The driving mechanism for gas elimination in this tissue is inherent unsaturation, also called partial pressure vacancy or the oxygen window, where oxygen metabolised is replaced by more soluble carbon dioxide. This model was used to explain the effectiveness of the Torres Straits Island pearl divers empirically developed decompression schedules, which used deeper decompression stops and less overall decompression time than the current naval decompression schedules. This trend to deeper decompression stops has become a feature of more recent decompression models.
The physiology of decompression is the aspect of physiology which is affected by exposure to large changes in ambient pressure, and involves a complex interaction of gas solubility, partial pressures and concentration gradients, diffusion, bulk transport and bubble mechanics in living tissues. Gas is breathed at ambient pressure, and some of this gas dissolves into the blood and other fluids. Inert gas continues to be taken up until the gas dissolved in the tissues is in a state of equilibrium with the gas in the lungs,, or the ambient pressure is reduced until the inert gases dissolved in the tissues are at a higher concentration than the equilibrium state, and start diffusing out again.
Inner ear decompression sickness, (IEDCS) or audiovestibular decompression sickness is a medical condition of the inner ear caused by the formation of gas bubbles in the tissues or blood vessels of the inner ear. Generally referred to as a form of decompression sickness, it can also occur at constant pressure due to inert gas counterdiffusion effects.
{{cite conference}}
: CS1 maint: unfit URL (link){{cite journal}}
: CS1 maint: unfit URL (link){{cite journal}}
: CS1 maint: unfit URL (link){{cite journal}}
: CS1 maint: unfit URL (link){{cite journal}}
: CS1 maint: unfit URL (link){{cite journal}}
: CS1 maint: unfit URL (link)