Hierarchy of hazard controls

Last updated
Hazard control methods at the top of the graphic are potentially more effective and protective than those at the bottom. Following this hierarchy of controls normally leads to the implementation of inherently safer systems, where the risk of illness or injury has been substantially reduced. NIOSH's "Hierarchy of Controls infographic" as SVG.svg
Hazard control methods at the top of the graphic are potentially more effective and protective than those at the bottom. Following this hierarchy of controls normally leads to the implementation of inherently safer systems, where the risk of illness or injury has been substantially reduced.

Hierarchy of hazard control is a system used in industry to prioritize possible interventions to minimize or eliminate exposure to hazards. [lower-alpha 1] It is a widely accepted system promoted by numerous safety organizations. This concept is taught to managers in industry, to be promoted as standard practice in the workplace. It has also been used to inform public policy, in fields such as road safety. [13] Various illustrations are used to depict this system, most commonly a triangle.

Contents

The hazard controls in the hierarchy are, in order of decreasing priority:

The system is not based on evidence about effectiveness but based on If elimination of the hazard is possible, it frees workers of being aware of the hazard and protecting themselves. Substitution has less priority than elimination because the substitute can possibly also come with a hazard. Engineering controls depend on a well-functioning system and human behaviour. Administrative controls and personal protective equipment are always dependent on human behaviour which makes these controls less reliable.

History

The NIOSH TB guide describes an early version of the Hierarchy of Controls (On Wikisource) Niosh tb guidelines.pdf
The NIOSH TB guide describes an early version of the Hierarchy of Controls (On Wikisource)

During the 1990s TB outbreak, resulting from the HIV epidemic in the United States, the hierarchy of controls was described as a way for healthcare workers to mitigate their exposure to TB. Starting from page 10, the hierarchy can be summarized, from most to least preferable, like this: [14]

Today's hierarchy is similar, with a few differences.

Components of the hierarchy

Elimination

Physical removal of the hazard is the most effective hazard control. [5] For example, if employees must work high above the ground, the hazard can be eliminated by moving the piece they are working on to ground level to eliminate the need to work at heights. However, often elimination of the hazard is not possible because the task explicitly involves handling a hazardous agent. For example, construction professionals cannot remove the danger of asbestos when handling the hazardous agent is the core of the task. [3]

Substitution

This pesticide contains DDT; an effective substitution would be to replace it with a green pesticide. DDTDichlordiphenyltrichlorethane7.JPG
This pesticide contains DDT; an effective substitution would be to replace it with a green pesticide.

Substitution, the second most effective hazard control, involves replacing something that produces a hazard with something that does not produce a hazard or produces a lesser hazard. However, to be an effective control, the new product must not produce unintended consequences. For example, if a product can be purchased with a larger particle size, the smaller product may effectively be substituted with the larger product due to airborne dust having the possibility of being hazardous. [5]

Engineering controls

The third most effective means of controlling hazards is engineered controls. These do not eliminate hazards, but rather isolate people from hazards. [3] Capital costs of engineered controls tend to be higher than less effective controls in the hierarchy, however they may reduce future costs. [6] A main part of Engineering controls, "Enclosure and isolation," creates a physical barrier between personnel and hazards, such as using remotely controlled equipment. As an example, Fume hoods can remove airborne contaminants as a means of engineered control. [5]

Administrative controls

This sign warns people that there are explosives in Walker Lake; however, it cannot prevent people from swimming in it. Walker lake munitions warning.JPG
This sign warns people that there are explosives in Walker Lake; however, it cannot prevent people from swimming in it.

Administrative controls are changes to the way people work. Examples of administrative controls include procedure changes, employee training, and installation of signs and warning labels, such as those in the Workplace Hazardous Materials Information System. [3] Administrative controls do not remove hazards, but limit or prevent people's exposure to the hazards, such as completing road construction at night when fewer people are driving. [5]

Personal protective equipment

Personal protective equipment (PPE) includes gloves, Nomex clothing, overalls, Tyvek suits, respirators, hard hats, safety glasses, high-visibility clothing, and safety footwear. PPE is often the most important means of controlling hazards in fields such as health care and asbestos removal. However, considerable efforts are needed to use PPE effectively, such as training in donning and doffing or testing the equipment. [5] Additionally, some PPE, such as respirators, increase physiological effort to complete a task and, therefore, may require medical examinations to ensure workers can use the PPE without risking their health.

Role in Prevention through Design

The hierarchy of controls is a core component of Prevention through Design, the concept of applying methods to minimize occupational hazards early in the design process. Prevention through Design emphasizes addressing hazards at the top of the hierarchy of controls (mainly through elimination and substitution) at the earliest stages of project development. [15]

Variations on the NIOSH Control Hierarchy

While the control hierarchy shown above is traditionally used in the United States and Canada, other countries or entities may use a slightly different structure. In particular, some add isolation above engineering controls instead of combining the two. [16] [17] [18] The variation of the hierarchy used in the ARECC decision-making framework and process for industrial hygiene (IH) includes modification of the material or procedure to reduce hazards or exposures (sometimes considered a subset of the hazard substitution option but explicitly considered there to mean that the efficacy of the modification for the situation at hand must be confirmed by the user). The ARECC version of the hierarchy also includes warnings as a distinct element to clarify the nature of the warning. In other systems, warnings are sometimes considered part of engineering controls and sometimes part of administrative controls.

See also

Notes

Related Research Articles

<span class="mw-page-title-main">Personal protective equipment</span> Equipment designed to help protect an individual from hazards

Personal protective equipment (PPE) is protective clothing, helmets, goggles, or other garments or equipment designed to protect the wearer's body from injury or infection. The hazards addressed by protective equipment include physical, electrical, heat, chemical, biohazards, and airborne particulate matter. Protective equipment may be worn for job-related occupational safety and health purposes, as well as for sports and other recreational activities. Protective clothing is applied to traditional categories of clothing, and protective gear applies to items such as pads, guards, shields, or masks, and others. PPE suits can be similar in appearance to a cleanroom suit.

<span class="mw-page-title-main">National Institute for Occupational Safety and Health</span> US federal government agency

The National Institute for Occupational Safety and Health is the United States federal agency responsible for conducting research and making recommendations for the prevention of work-related injury and illness. NIOSH is part of the Centers for Disease Control and Prevention (CDC) within the U.S. Department of Health and Human Services. Despite its name, it is not part of either the National Institutes of Health nor OSHA. Its current director is John Howard.

Occupational noise is the amount of acoustic energy received by an employee's auditory system when they are working in the industry. Occupational noise, or industrial noise, is often a term used in occupational safety and health, as sustained exposure can cause permanent hearing damage. Occupational noise is considered an occupational hazard traditionally linked to loud industries such as ship-building, mining, railroad work, welding, and construction, but can be present in any workplace where hazardous noise is present.

<span class="mw-page-title-main">Occupational hygiene</span> Management of workplace health hazards

Occupational hygiene is the anticipation, recognition, evaluation, control, and confirmation (ARECC) of protection from risks associated with exposures to hazards in, or arising from, the workplace that may result in injury, illness, impairment, or affect the well-being of workers and members of the community. These hazards or stressors are typically divided into the categories biological, chemical, physical, ergonomic and psychosocial. The risk of a health effect from a given stressor is a function of the hazard multiplied by the exposure to the individual or group. For chemicals, the hazard can be understood by the dose response profile most often based on toxicological studies or models. Occupational hygienists work closely with toxicologists for understanding chemical hazards, physicists for physical hazards, and physicians and microbiologists for biological hazards. Environmental and occupational hygienists are considered experts in exposure science and exposure risk management. Depending on an individual's type of job, a hygienist will apply their exposure science expertise for the protection of workers, consumers and/or communities.

The permissible exposure limit is a legal limit in the United States for exposure of an employee to a chemical substance or physical agent such as high level noise. Permissible exposure limits were established by the Occupational Safety and Health Administration (OSHA). Most of OSHA's PELs were issued shortly after adoption of the Occupational Safety and Health (OSH) Act in 1970.

<span class="mw-page-title-main">Chemical hazard</span> Non-biological hazards of hazardous materials

Chemical hazards are hazards present in hazardous chemicals and hazardous materials. Exposure to certain chemicals can cause acute or long-term adverse health effects. Chemical hazards are usually classified separately from biological hazards (biohazards). Chemical hazards are classified into groups that include asphyxiants, corrosives, irritants, sensitizers, carcinogens, mutagens, teratogens, reactants, and flammables. In the workplace, exposure to chemical hazards is a type of occupational hazard. The use of personal protective equipment may substantially reduce the risk of adverse health effects from contact with hazardous materials.

Workplace health surveillance or occupational health surveillance (U.S.) is the ongoing systematic collection, analysis, and dissemination of exposure and health data on groups of workers. The Joint ILO/WHO Committee on Occupational Health at its 12th Session in 1995 defined an occupational health surveillance system as "a system which includes a functional capacity for data collection, analysis and dissemination linked to occupational health programmes".

Prevention through design (PtD), also called safety by design usually in Europe, is the concept of applying methods to minimize occupational hazards early in the design process, with an emphasis on optimizing employee health and safety throughout the life cycle of materials and processes. It is a concept and movement that encourages construction or product designers to "design out" health and safety risks during design development. The process also encourages the various stakeholders within a construction project to be collaborative and share the responsibilities of workers' safety evenly. The concept supports the view that along with quality, programme and cost; safety is determined during the design stage. It increases the cost-effectiveness of enhancements to occupational safety and health.

<span class="mw-page-title-main">Physical hazard</span> Hazard due to a physical agent

A physical hazard is an agent, factor or circumstance that can cause harm with contact. They can be classified as type of occupational hazard or environmental hazard. Physical hazards include ergonomic hazards, radiation, heat and cold stress, vibration hazards, and noise hazards. Engineering controls are often used to mitigate physical hazards.

Inhalation is a major route of exposure that occurs when an individual breathes in polluted air which enters the respiratory tract. Identification of the pollutant uptake by the respiratory system can determine how the resulting exposure contributes to the dose. In this way, the mechanism of pollutant uptake by the respiratory system can be used to predict potential health impacts within the human population.

<span class="mw-page-title-main">Occupational hearing loss</span> Form of hearing loss

Occupational hearing loss (OHL) is hearing loss that occurs as a result of occupational hazards, such as excessive noise and ototoxic chemicals. Noise is a common workplace hazard, and recognized as the risk factor for noise-induced hearing loss and tinnitus but it is not the only risk factor that can result in a work-related hearing loss. Also, noise-induced hearing loss can result from exposures that are not restricted to the occupational setting.

Engineering controls are strategies designed to protect workers from hazardous conditions by placing a barrier between the worker and the hazard or by removing a hazardous substance through air ventilation. Engineering controls involve a physical change to the workplace itself, rather than relying on workers' behavior or requiring workers to wear protective clothing.

The health and safety hazards of nanomaterials include the potential toxicity of various types of nanomaterials, as well as fire and dust explosion hazards. Because nanotechnology is a recent development, the health and safety effects of exposures to nanomaterials, and what levels of exposure may be acceptable, are subjects of ongoing research. Of the possible hazards, inhalation exposure appears to present the most concern, with animal studies showing pulmonary effects such as inflammation, fibrosis, and carcinogenicity for some nanomaterials. Skin contact and ingestion exposure, and dust explosion hazards, are also a concern.

Hazard elimination is a hazard control strategy based on completely removing a material or process causing a hazard. Elimination is the most effective of the five members of the hierarchy of hazard controls in protecting workers, and where possible should be implemented before all other control methods. Many jurisdictions require that an employer eliminate hazards if it is possible, before considering other types of hazard control.

Hazard substitution is a hazard control strategy in which a material or process is replaced with another that is less hazardous. Substitution is the second most effective of the five members of the hierarchy of hazard controls in protecting workers, after elimination. Substitution and elimination are most effective early in the design process, when they may be inexpensive and simple to implement, while for an existing process they may require major changes in equipment and procedures. The concept of prevention through design emphasizes integrating the more effective control methods such as elimination and substitution early in the design phase.

<span class="mw-page-title-main">Engineering controls for nanomaterials</span>

Engineering controls for nanomaterials are a set of hazard control methods and equipment for workers who interact with nanomaterials. Engineering controls are physical changes to the workplace that isolate workers from hazards, and are considered the most important set of methods for controlling the health and safety hazards of nanomaterials after systems and facilities have been designed.

Anticipate, recognize, evaluate, control, and confirm (ARECC) is a decision-making framework and process used in the field of industrial hygiene (IH) to anticipate and recognize hazards, evaluate exposures, and control and confirm protection from risks. ARECC supports exposure- and population-informed hazard assessment, hazard- and population-informed exposure assessment, hazard- and exposure-informed population assessment, and risk-informed decision making in any endeavor.

<span class="mw-page-title-main">N95 respirator</span> Particulate respirator meeting the N95 standard

An N95 respirator is a disposable filtering facepiece respirator or reusable elastomeric respirator filter that meets the U.S. National Institute for Occupational Safety and Health (NIOSH) N95 standard of air filtration, filtering at least 95% of airborne particles that have a mass median aerodynamic diameter of 0.3 micrometers under 42 CFR 84, effective July 10, 1995. A surgical N95 is also rated against fluids, and is regulated by the US Food and Drug Administration under 21 CFR 878.4040, in addition to NIOSH 42 CFR 84. 42 CFR 84, the federal standard which the N95 is part of, was created to address shortcomings in the prior United States Bureau of Mines respirator testing standards, as well as tuberculosis outbreaks, caused by the HIV/AIDS epidemic in the United States. Since then, N95 respirator has continued to be solidified as a source control measure in various pandemics that have been experienced in the United States and Canada, including the 2009 swine flu and the COVID-19 pandemic.

<span class="mw-page-title-main">Workplace hazard controls for COVID-19</span> Prevention measures for COVID-19

Hazard controls for COVID-19 in workplaces are the application of occupational safety and health methodologies for hazard controls to the prevention of COVID-19. Multiple layers of controls are recommended, including measures such as remote work and flextime, personal protective equipment (PPE) and face coverings, social distancing, and enhanced cleaning programs. Recently, engineering controls have been emphasized, particularly stressing the importance of HVAC systems meeting a minimum of 5 air changes per hour with ventilation or MERV-13 filters, as well as the installation of UVGI systems in public areas.

<span class="mw-page-title-main">Source control (respiratory disease)</span> Strategy for reducing disease transmission

Source control is a strategy for reducing disease transmission by blocking respiratory secretions produced through breathing, speaking, coughing, sneezing or singing. Multiple source control techniques can be used in hospitals, but for the general public wearing personal protective equipment during epidemics or pandemics, respirators provide the greatest source control, followed by surgical masks, with cloth face masks recommended for use by the public only when there are shortages of both respirators and surgical masks.

References

  1. "Hierarchy of Controls". U.S. National Institute for Occupational Safety and Health . Retrieved 2017-01-31.
  2. "Hierarchy of Controls" (PDF). Health and Safety Authority (Ireland). Archived from the original (PDF) on 2012-09-07. Retrieved 2012-04-11.
  3. 1 2 3 4 "Hierarchy of Hazard Controls". New York Committee for Occupational Safety & Health. Archived from the original on 2012-03-05. Retrieved 2012-04-11.
  4. "How the hierarchy of control can help you fulfil your health and safety duties". Occupational Health & Safety Handbook. 2012-01-20. Archived from the original on 2013-01-14. Retrieved 2012-04-11.
  5. 1 2 3 4 5 6 "Hazard Control". Canadian Centre for Occupational Health and Safety. 2006-04-20. Retrieved 2012-04-11.
  6. 1 2 "Engineering Controls". U.S. National Institute for Occupational Safety and Health. Retrieved 2012-04-11.
  7. "Tree Work – Working at height". UK Health and Safety Executive. Retrieved 2012-04-11.
  8. "Hierarchy of control diagram". Safework SA. Archived from the original on 2014-03-27. Retrieved 2012-04-11.
  9. "Hierarchy of Controls". SA Unions. Archived from the original on 2005-06-23. Retrieved 2012-04-11.
  10. MANUAL HANDLING HIERARCHY OF CONTROLS Archived 2012-09-07 at the Wayback Machine
  11. "Manual Handling: Hierarchy of Controls" (PDF). WorkCover New South Wales. Archived from the original (PDF) on 2014-12-22.
  12. "Hazard identification, risk assessment & risk control in the workplace". WorkSafe Victoria. Archived from the original on 2013-10-23. Retrieved 2012-04-11.
  13. McLeod, Sam; Curtis, Carey (2020-12-21). "Integrating urban road safety and sustainable transportation policy through the hierarchy of hazard controls". International Journal of Sustainable Transportation. 16 (2): 166–180. doi:10.1080/15568318.2020.1858376. ISSN   1556-8318. S2CID   234431488.
  14. NIOSH Recommended Guidelines for Personal Respiratory Protection of Workers in Health-care Facilities Potentially Exposed to Tuberculosis. 1992.
  15. "CDC - Hierarchy of Controls - NIOSH Workplace Safety and Health Topic". www.cdc.gov. Retrieved 2017-08-07.
  16. "Hazards and Risk". Health and Safety Authority. Retrieved 2021-11-10.
  17. "The hierarchy of control - WorkSafe". www.worksafe.vic.gov.au. Retrieved 2021-11-10.
  18. "Hierarchy of controls applied to dangerous substances: OSHwiki". oshwiki.eu. Retrieved 2021-11-10.