NIOSH air filtration rating

Last updated

A filtering facepiece N95 respirator N95mask.jpg
A filtering facepiece N95 respirator
Half-face air-purifying respirator with combination P100 particulate filter (magenta) and organic vapor (black) cartridge P100 ovm respirator.jpg
Half-face air-purifying respirator with combination P100 particulate filter (magenta) and organic vapor (black) cartridge
A firefighter wearing an N95 filtering facepiece respirator. Note that, in this picture, the respirator is being worn incorrectly because the top strap should be above the ears and behind the head. WTC search.jpg
A firefighter wearing an N95 filtering facepiece respirator. Note that, in this picture, the respirator is being worn incorrectly because the top strap should be above the ears and behind the head.

The NIOSH air filtration rating is the U.S. National Institute for Occupational Safety and Health (NIOSH)'s classification of filtering respirators. The ratings describe the ability of the device to protect the wearer from solid and liquid particulates in the air. The certification and approval process for respiratory protective devices is governed by Part 84 of Title 42 of the Code of Federal Regulations (42 CFR 84). [1] Respiratory protective devices so classified include air-purifying respirators (APR) such as filtering facepiece respirators and chemical protective cartridges that have incorporated particulate filter elements.

Contents

The classifications only cover the filtration of particles or aerosols, not the air-purifying respirator's ability to remove chemical gasses and vapors from air, which is regulated under 42 CFR 84 Subpart L. For more information see Cartridge (respirator). The classifications assume that the respirator is properly fitted. [2]

NIOSH classifications

NIOSH has currently established nine classifications of approved particulate filtering respirators based on a combination of the respirator series and efficiency level. The first part of the filter's classification indicates the series using the letters N, R, or P to indicate the filter's resistance to filtration efficiency degradation when exposed to oil-based or oil-like aerosols (e.g., lubricants, cutting fluids, glycerine, etc.). [1] [3] [4] Definitions and intended use for each series is indicated below. [5]

The second value indicates the minimum efficiency level of the filter. When tested according to the protocol established by NIOSH each filter classification must demonstrate the minimum efficiency level indicated below.

NIOSH Particulate Respirator Class Minimum Efficiency Levels [1]
Respirator

Class

Minimum

Efficiency Level

N95, R95, P9595%
N99, R99, P9999%
N100, R100, P100, HE99.97%

HE (high-efficiency) labeled filters are only provided for powered air-purifying respirators. These HE-marked filters are 99.97% efficient against 0.3 micron particles and are oil-proof, and therefore their filter-media material has the exact same specification as a P100 filter. [6] [7] [8]

Since filters are tested against the most penetrating particle size of 0.3 μm, an APR with a P100 classification would be at least 99.97% efficient at removing particles of this size. [4] Particles with a size both less than and greater than 0.3 μm are filtered at an efficiency greater than 99.97%. [9] (That statement does not derive from given reference [10] ). Although it is counter-intuitive that particle sizes of less than 0.3 μm are filtered with a greater efficiency, the forces which have the greatest impact on the effectiveness of filtration (aerosol impaction, interception, and diffusion) are weakest at this size for filters tested by NIOSH. [11] A filter's collection efficiency for particle sizes other than those for which it is least efficient is indicated by the filter's efficiency curve.

Classic collection efficiency curve with filter collection mechanisms Filteration Collection Mechanisms-en.svg
Classic collection efficiency curve with filter collection mechanisms

Similar standards

A few other jurisdictions use standards similar to the NIOSH scheme to classify mechanical filter respirators. They include:

See also

Related Research Articles

<span class="mw-page-title-main">Gas mask</span> Protection from inhaling airborne pollutants and toxic gases

A gas mask is a mask used to protect the wearer from inhaling airborne pollutants and toxic gases. The mask forms a sealed cover over the nose and mouth, but may also cover the eyes and other vulnerable soft tissues of the face. Most gas masks are also respirators, though the word gas mask is often used to refer to military equipment, the scope used in this article. The gas mask only protects the user from digesting, inhaling, and contact through the eyes. Most combined gas mask filters will last around 8 hours in a biological or chemical situation. Filters against specific chemical agents can last up to 20 hours.

<span class="mw-page-title-main">Personal protective equipment</span> Equipment designed to help protect an individual from hazards

Personal protective equipment (PPE) is protective clothing, helmets, goggles, or other garments or equipment designed to protect the wearer's body from injury or infection. The hazards addressed by protective equipment include physical, electrical, heat, chemicals, biohazards, and airborne particulate matter. Protective equipment may be worn for job-related occupational safety and health purposes, as well as for sports and other recreational activities. Protective clothing is applied to traditional categories of clothing, and protective gear applies to items such as pads, guards, shields, or masks, and others. PPE suits can be similar in appearance to a cleanroom suit.

<span class="mw-page-title-main">HEPA</span> Efficiency standard of air filters

HEPA filter, also known as high-efficiency particulate absorbing filter and high-efficiency particulate arrestance filter, is an efficiency standard of air filters.

<span class="mw-page-title-main">Surgical mask</span> Mouth and nose cover against bacterial aerosols

A surgical mask, also known by other names such as a medical face mask or procedure mask, is a personal protective equipment used by healthcare professionals that serves as a mechanical barrier that interferes with direct airflow in and out of respiratory orifices. This helps reduce airborne transmission of pathogens and other aerosolized contaminants between the wearer and nearby people via respiratory droplets ejected when sneezing, coughing, forceful expiration or unintentionally spitting when talking, etc. Surgical masks may be labeled as surgical, isolation, dental or medical procedure masks.

<span class="mw-page-title-main">Respirator</span> Device worn to protect the user from inhaling contaminants

A respirator is a device designed to protect the wearer from inhaling hazardous atmospheres including fumes, vapours, gases and particulate matter such as dusts and airborne pathogens such as viruses. There are two main categories of respirators: the air-purifying respirator, in which respirable air is obtained by filtering a contaminated atmosphere, and the air-supplied respirator, in which an alternate supply of breathable air is delivered. Within each category, different techniques are employed to reduce or eliminate noxious airborne contaminants.

<span class="mw-page-title-main">Air filter</span> Device composed of fibrous or porous materials which removes solid particulates from the air

A particulate air filter is a device composed of fibrous, or porous materials which removes solid particulates such as dust, pollen, mold, and bacteria from the air. Filters containing an adsorbent or catalyst such as charcoal (carbon) may also remove odors and gaseous pollutants such as volatile organic compounds or ozone. Air filters are used in applications where air quality is important, notably in building ventilation systems and in engines.

<span class="mw-page-title-main">Escape respirator</span>

Escape respirators are a portable breathing apparatus or mask that regenerates breathable air to help provide respiratory protection for emergency escape from areas containing harmful gases or IDLH atmospheres. There are two types of escape respirators: air-purifying escape respirators and self-contained escape respirators. Often times, these respirators utilize an easy-to-put-on hood and some sort of supplied air tank or filter attachment that cleans the incoming air for the user. Escape respirators are not to be used for anything other than escaping a contaminated environment. Escape respirators are not to be used for general or everyday respiratory protection. A cross-breed between a gas mask and a respirator, the escape respirator is used extensively in the mining and chemical industries, and by emergency responders. Escape respirators should be certified by a national authority analogous to the United States' National Institute for Occupational Safety and Health for escaping from the atmosphere in which the respirator is manufactured for.

<span class="mw-page-title-main">Respiratory droplet</span> Type of particle formed by breathing

A respiratory droplet is a small aqueous droplet produced by exhalation, consisting of saliva or mucus and other matter derived from respiratory tract surfaces. Respiratory droplets are produced naturally as a result of breathing, speaking, sneezing, coughing, or vomiting, so they are always present in our breath, but speaking and coughing increase their number.

<span class="mw-page-title-main">Respirator fit test</span>

A respirator fit test checks whether a respirator properly fits the face of someone who wears it. The fitting characteristic of a respirator is the ability of the mask to separate a worker's respiratory system from ambient air.

<span class="mw-page-title-main">Chemical cartridge</span> Container that cleans pollution from air inhaled through it

A respirator cartridge or canister is a type of filter that removes gases, volatile organic compounds (VOCs), and other vapors from air through adsorption, absorption, or chemisorption. It is one of two basic types of filters used by air-purifying respirators. The other is a mechanical filter, which removes only particulates. Hybrid filters combine the two.

<span class="mw-page-title-main">Powered air-purifying respirator</span>

A powered air-purifying respirator (PAPR) is a type of respirator used to safeguard workers against contaminated air. PAPRs consist of a headgear-and-fan assembly that takes ambient air contaminated with one or more type of pollutant or pathogen, actively removes (filters) a sufficient proportion of these hazards, and then delivers the clean air to the user's face or mouth and nose. They have a higher assigned protection factor than filtering facepiece respirators such as N95 masks. PAPRs are sometimes called positive-pressure masks, blower units, or just blowers.

<span class="mw-page-title-main">Respirator assigned protection factors</span>

The respiratory protective devices (RPD) can protect workers only if their protective properties are adequate to the conditions in the workplace. Therefore, specialists have developed criteria for the selection of proper, adequate respirators, including the Assigned Protection Factors (APF) - the decrease of the concentration of harmful substances in the inhaled air, which to be provided with timely and proper use of a certified respirator of certain types (design) by taught and trained workers, when the employer performs an effective respiratory protective device programme.

<span class="mw-page-title-main">Workplace respirator testing</span> Testing of respirators in real life conditions

Respirators, also known as respiratory protective equipment (RPE) or respiratory protective devices (RPD), are used in some workplaces to protect workers from air contaminants. Initially, respirator effectiveness was tested in laboratories, but in the late 1960s it was found that these tests gave misleading results regarding the level of protection provided. In the 1970s, workplace-based respirator testing became routine in industrialized countries, leading to a dramatic reduction in the claimed efficacy of many respirator types and new guidelines on how to select the appropriate respirator for a given environment.

The health and safety hazards of nanomaterials include the potential toxicity of various types of nanomaterials, as well as fire and dust explosion hazards. Because nanotechnology is a recent development, the health and safety effects of exposures to nanomaterials, and what levels of exposure may be acceptable, are subjects of ongoing research. Of the possible hazards, inhalation exposure appears to present the most concern, with animal studies showing pulmonary effects such as inflammation, fibrosis, and carcinogenicity for some nanomaterials. Skin contact and ingestion exposure, and dust explosion hazards, are also a concern.

<span class="mw-page-title-main">N95 respirator</span> Particulate respirator meeting the N95 standard

An N95 filtering facepiece respirator, commonly abbreviated N95 respirator, is a particulate-filtering facepiece respirator that meets the U.S. National Institute for Occupational Safety and Health (NIOSH) N95 classification of air filtration, meaning that it filters at least 95% of airborne particles. This standard does not require that the respirator be resistant to oil; another standard, P95, adds that requirement. The N95 type is the most common particulate-filtering facepiece respirator. It is an example of a mechanical filter respirator, which provides protection against particulates but not against gases or vapors. An authentic N95 respirator is marked with the text "NIOSH" or the NIOSH logo, the filter class ("N95"), a "TC" approval number of the form XXX-XXXX, the approval number must be listed on the NIOSH Certified Equipment List (CEL) or the NIOSH Trusted-Source page, and it must have headbands instead of ear loops.

<span class="mw-page-title-main">Cloth face mask</span> Mask made of common textiles worn over the mouth and nose

A cloth face mask is a mask made of common textiles, usually cotton, worn over the mouth and nose. When more effective masks are not available, and when physical distancing is impossible, cloth face masks are recommended by public health agencies for disease "source control" in epidemic situations to protect others from virus laden droplets in infected mask wearers' breath, coughs, and sneezes. Because they are less effective than N95 masks, surgical masks, or physical distancing in protecting the wearer against viruses, they are not considered to be personal protective equipment by public health agencies. They are used by the general public in household and community settings as protection against both infectious diseases and particulate air pollution.

<span class="mw-page-title-main">Mechanical filter (respirator)</span> Air-filtering face masks or mask attachments

Mechanical filters are a class of filter for air-purifying respirators that mechanically stops particulates from reaching the wearer's nose and mouth. They come in multiple physical forms.

<span class="mw-page-title-main">Source control (respiratory disease)</span> Strategy for reducing disease transmission

Source control is a strategy for reducing disease transmission by blocking respiratory secretions produced through speaking, coughing, sneezing or singing. Surgical masks are commonly used for this purpose, with cloth face masks recommended for use by the public only in epidemic situations when there are shortages of surgical masks. In addition, respiratory etiquette such as covering the mouth and nose with a tissue when coughing can be considered source control. In diseases transmitted by droplets or aerosols, understanding air flow, particle and aerosol transport may lead to rational infrastructural source control measures that minimize exposure of susceptible persons.

<span class="mw-page-title-main">Elastomeric respirator</span> Respirator with a rubber face seal

Elastomeric respirators, also called reusable air-purifying respirators, seal to the face with elastomeric material, which may be a natural or synthetic rubber. They are generally reusable. Full-face versions of elastomeric respirators seal better and protect the eyes.

FFP standards refer to the filtering half mask classification by EN 149, a European standard of testing and marking requirements for filtering half masks. FFP standard masks cover the nose, mouth and chin and may have inhalation and/or exhalation valves.

References

  1. 1 2 3 "42 CFR Part 84 - Approval of Respiratory Protective Devices". ecfr.gov. United States Government Publishing Office. 6 February 2020. Retrieved 9 February 2020.
  2. "To Beard or not to Beard? That's a good Question!". NIOSH Science Blog. CDC. 2 November 2017. Retrieved 27 February 2020.
  3. "Respirator Trusted-Source Information Section 1: NIOSH-Approved Respirators". The National Personal Protective Technology Laboratory (NPPTL). Centers for Disease Control and Prevention. 29 January 2018. Retrieved 9 February 2020.
  4. 1 2 "NIOSH Guide to the Selection and Use of Particulate Respirators". The National Institute for Occupational Safety and Health (NIOSH). Centers for Disease Control and Prevention. 6 June 2014 [January 1996]. Retrieved 9 February 2020.
  5. "OSHA Technical Manual Section 8VII: Chapter 2 Respiratory Protection Appendix 2-4". OSHA (TED 01-00-015 ed.). Retrieved 9 February 2020.
  6. "Considerations for Optimizing the Supply of Powered Air-Purifying Respirators (PAPRs)". U.S. Centers for Disease Control and Prevention. 19 April 2020. Retrieved 25 May 2020.
  7. Vanessa, Roberts (Fall 2014). "To PAPR or Not to PAPR?". Canadian Journal of Respiratory Therapy. 50 (3): 87–90. PMC   4456839 . PMID   26078617.
  8. "Understanding Respiratory Protection Against SARS". U.S. National Institute for Occupational Safety and Health. 9 April 2020. Retrieved 26 May 2020.
  9. "NIOSH Guide to the Selection and Use of Particulate Respirators Appendix E: Commonly Asked Questions and Answers About Part 84 Respirators". The National Institute for Occupational Safety and Health (NIOSH). Centers for Disease Control and Prevention. 6 June 2014. Retrieved 9 February 2020.
  10. "CDC - NIOSH Publications and Products - Appendices for 96-101". www.cdc.gov. 16 October 2018. Retrieved 22 June 2020.
  11. Guidance for Filtration and Air-Cleaning Systems to Protect Building Environments from Airborne Chemical, Biological, or Radiological Attacks (PDF). Cincinnati, OH: National Institute for Occupational Safety and Health. April 2003. pp. 8–12. doi:10.26616/NIOSHPUB2003136 . Retrieved 9 February 2020.