Indium lung

Last updated
Indium lung
Specialty Pulmonology

Indium lung is a rare occupational lung disease caused by exposure to respirable indium in the form of indium tin oxide. It is classified as an interstitial lung disease (diffuse parenchymal lung disease). [1]

Contents

Signs and symptoms

The major signs of indium lung are pulmonary alveolar proteinosis and pulmonary fibrosis. Symptoms include dyspnea (shortness of breath), cough, and increased sputum production. Hemoptysis has also been seen in people with indium lung. [1] Other symptoms seen in some but not all cases include digital clubbing, low DLCO (capacity to move oxygen from the alveoli into the blood), and lowered forced expiratory volume. Emphysema has been associated with indium lung, but may not be part of the syndrome. [2]

Complications

Lung cancer may be related to indium lung disease, though indium is not a known carcinogen. [1]

Causes

Indium lung is caused by exposure to indium tin oxide in a variety of occupational contexts, including reclamation and production. [1] Exposure to indium tin oxide as it reacts can lead to exposure to indium metal, indium hydroxide, and indium oxide.

Mechanism

The exact mechanism of pathogenesis is unknown, but it is hypothesized that indium may exacerbate existing autoimmune disorders or that phagocytosis of indium by alveolar macrophages may cause dysfunction in the macrophages. [2]

Diagnosis

CT scanning and radiography can be used to aid in the diagnosis of indium lung. CT abnormalities include ground-glass opacities, interlobular septal thickening, honeycombing, and bronchiectasis. [1] [2]

Laboratory findings

Multiple abnormal laboratory findings have been noted in indium lung. High levels of serum indium have been found in all cases of indium lung. Other abnormal laboratory values that have been found include elevated alanine aminotransferase, elevated aspartate aminotransferase, elevated C-reactive protein, elevated interstitial lung disease markers, and elevated GM-CSF autoantibodies. [2]

Prevention

The National Institute of Occupational Safety and Health, Japan (JNIOSH) set limits for acceptable exposure at 0.0003 mg/m3 after the discovery of indium lung. [2] [3] Methods for reducing indium exposure are thought to be the best mode of protection. Medical surveillance of indium workers is also a method of prevention. [2]

Treatment

There is no standardized treatment for indium lung disease. Treatment options include pulmonary lavage and corticosteroid therapy. [1] [2]

Prognosis

Prognostic factors were a matter of research as of 2012, but preliminary evidence suggests that duration of employment and reported use of respiratory protection are not prognostic factors, but the serum level of indium may be a prognostic factor - higher levels of serum indium have been associated with worse prognoses. Indium lung disease has been fatal in several cases. [2]

History

It was first described by a group of Japanese researchers in 2003. [1] [4]

Epidemiology

Cases have been reported in Japan, the United States, and China. [1] [2] [5] The indium industry is mainly based in Japan, where the bulk of cases have occurred; indium industry is also present in the US, China, Taiwan, and South Korea. [4] As of 2010, 10 cases had been described, though more than 100 indium workers had documented respiratory abnormalities. [1]

Related Research Articles

<span class="mw-page-title-main">Berylliosis</span> Medical condition

Berylliosis, or chronic beryllium disease (CBD), is a chronic allergic-type lung response and chronic lung disease caused by exposure to beryllium and its compounds, a form of beryllium poisoning. It is distinct from acute beryllium poisoning, which became rare following occupational exposure limits established around 1950. Berylliosis is an occupational lung disease.

Indium tin oxide (ITO) is a ternary composition of indium, tin and oxygen in varying proportions. Depending on the oxygen content, it can be described as either a ceramic or an alloy. Indium tin oxide is typically encountered as an oxygen-saturated composition with a formulation of 74% In, 8% Sn, and 18% O by weight. Oxygen-saturated compositions are so typical that unsaturated compositions are termed oxygen-deficient ITO. It is transparent and colorless in thin layers, while in bulk form it is yellowish to gray. In the infrared region of the spectrum it acts as a metal-like mirror.

<span class="mw-page-title-main">Pneumoconiosis</span> Class of interstitial lung diseases

Pneumoconiosis is the general term for a class of interstitial lung disease where inhalation of dust has caused interstitial fibrosis. The three most common types are asbestosis, silicosis, and coal miner's lung. Pneumoconiosis often causes restrictive impairment, although diagnosable pneumoconiosis can occur without measurable impairment of lung function. Depending on extent and severity, it may cause death within months or years, or it may never produce symptoms. It is usually an occupational lung disease, typically from years of dust exposure during work in mining; textile milling; shipbuilding, ship repairing, and/or shipbreaking; sandblasting; industrial tasks; rock drilling ; or agriculture. It is one of the most common occupational diseases in the world.

<span class="mw-page-title-main">Asbestosis</span> Pneumoconiosis caused by inhalation and retention of asbestos fibers

Asbestosis is long-term inflammation and scarring of the lungs due to asbestos fibers. Symptoms may include shortness of breath, cough, wheezing, and chest tightness. Complications may include lung cancer, mesothelioma, and pulmonary heart disease.

<span class="mw-page-title-main">Silicosis</span> Pneumoconiosis caused by inhalation of silica, quartz or slate particles

Silicosis is a form of occupational lung disease caused by inhalation of crystalline silica dust. It is marked by inflammation and scarring in the form of nodular lesions in the upper lobes of the lungs. It is a type of pneumoconiosis. Silicosis is characterized by shortness of breath, cough, fever, and cyanosis. It may often be misdiagnosed as pulmonary edema, pneumonia, or tuberculosis. Using workplace controls, silicosis is almost always a preventable disease.

<span class="mw-page-title-main">Pulmonary alveolar proteinosis</span> Medical condition

Pulmonary alveolar proteinosis (PAP) is a rare lung disorder characterized by an abnormal accumulation of surfactant-derived lipoprotein compounds within the alveoli of the lung. The accumulated substances interfere with the normal gas exchange and expansion of the lungs, ultimately leading to difficulty breathing and a predisposition to developing lung infections. The causes of PAP may be grouped into primary, secondary, and congenital causes, although the most common cause is a primary autoimmune condition in an individual.

<span class="mw-page-title-main">Interstitial lung disease</span> Group of diseases

Interstitial lung disease (ILD), or diffuse parenchymal lung disease (DPLD), is a group of respiratory diseases affecting the interstitium and space around the alveoli of the lungs. It concerns alveolar epithelium, pulmonary capillary endothelium, basement membrane, and perivascular and perilymphatic tissues. It may occur when an injury to the lungs triggers an abnormal healing response. Ordinarily, the body generates just the right amount of tissue to repair damage, but in interstitial lung disease, the repair process is disrupted, and the tissue around the air sacs (alveoli) becomes scarred and thickened. This makes it more difficult for oxygen to pass into the bloodstream. The disease presents itself with the following symptoms: shortness of breath, nonproductive coughing, fatigue, and weight loss, which tend to develop slowly, over several months. The average rate of survival for someone with this disease is between three and five years. The term ILD is used to distinguish these diseases from obstructive airways diseases.

<span class="mw-page-title-main">Pulmonary fibrosis</span> Disease that causes scarring of the lungs

Pulmonary fibrosis is a condition in which the lungs become scarred over time. Symptoms include shortness of breath, a dry cough, feeling tired, weight loss, and nail clubbing. Complications may include pulmonary hypertension, respiratory failure, pneumothorax, and lung cancer.

<span class="mw-page-title-main">Hypersensitivity pneumonitis</span> Medical condition

Hypersensitivity pneumonitis (HP) or extrinsic allergic alveolitis (EAA) is a syndrome caused by the repetitive inhalation of antigens from the environment in susceptible or sensitized people. Common antigens include molds, bacteria, bird droppings, bird feathers, agricultural dusts, bioaerosols and chemicals from paints or plastics. People affected by this type of lung inflammation (pneumonitis) are commonly exposed to the antigens by their occupations, hobbies, the environment and animals. The inhaled antigens produce a hypersensitivity immune reaction causing inflammation of the airspaces (alveoli) and small airways (bronchioles) within the lung. Hypersensitivity pneumonitis may eventually lead to interstitial lung disease.

<span class="mw-page-title-main">Cryptogenic organizing pneumonia</span> Medical condition

Cryptogenic organizing pneumonia (COP), formerly known as bronchiolitis obliterans organizing pneumonia (BOOP), is an inflammation of the bronchioles (bronchiolitis) and surrounding tissue in the lungs. It is a form of idiopathic interstitial pneumonia.

Bronchoalveolar lavage (BAL) is a diagnostic method of the lower respiratory system in which a bronchoscope is passed through the mouth or nose into an appropriate airway in the lungs, with a measured amount of fluid introduced and then collected for examination. This method is typically performed to diagnose pathogenic infections of the lower respiratory airways, though it also has been shown to have utility in diagnosing interstitial lung disease. Bronchoalveolar lavage can be a more sensitive method of detection than nasal swabs in respiratory molecular diagnostics, as has been the case with SARS-CoV-2 where bronchoalveolar lavage samples detect copies of viral RNA after negative nasal swab testing.

<span class="mw-page-title-main">Alveolar lung disease</span> Medical condition

Alveolar lung diseases, are a group of diseases that mainly affect the alveoli of the lungs.

Occupational lung diseases are work-related, lung conditions that have been caused or made worse by the materials a person is exposed to within the workplace. It includes a broad group of diseases, including occupational asthma, industrial bronchitis, chronic obstructive pulmonary disease (COPD), bronchiolitis obliterans, inhalation injury, interstitial lung diseases, infections, lung cancer and mesothelioma. These diseases can be caused directly or due to immunological response to an exposure to a variety of dusts, chemicals, proteins or organisms.

<span class="mw-page-title-main">Idiopathic pulmonary fibrosis</span> Medical condition

Idiopathic pulmonary fibrosis (IPF), or (formerly) fibrosing alveolitis, is a rare, progressive illness of the respiratory system, characterized by the thickening and stiffening of lung tissue, associated with the formation of scar tissue. It is a type of chronic scarring lung disease characterized by a progressive and irreversible decline in lung function. The tissue in the lungs becomes thick and stiff, which affects the tissue that surrounds the air sacs in the lungs. Symptoms typically include gradual onset of shortness of breath and a dry cough. Other changes may include feeling tired, and abnormally large and dome shaped finger and toenails. Complications may include pulmonary hypertension, heart failure, pneumonia or pulmonary embolism.

Restrictive lung diseases are a category of extrapulmonary, pleural, or parenchymal respiratory diseases that restrict lung expansion, resulting in a decreased lung volume, an increased work of breathing, and inadequate ventilation and/or oxygenation. Pulmonary function test demonstrates a decrease in the forced vital capacity.

Alveolar capillary dysplasia (ACD) is a rare, congenital diffuse lung disease characterized by abnormal blood vessels in the lungs that cause highly elevated pulmonary blood pressure and an inability to effectively oxygenate and remove carbon dioxide from the blood. ACD typically presents in newborn babies within hours of birth as rapid and labored breathing, blue-colored lips or skin, quickly leading to respiratory failure and death. Atypical forms of ACD have been reported with initially milder symptoms and survival of many months before the onset of respiratory failure or lung transplantation.

Stannosis is an occupational, non-fibrotic pneumoconiosis caused by chronic exposure and inhalation of tin. Pneumoconiosis is essentially when inorganic dust is found on the lung tissue; in this case, caused by tin oxide minerals. Dust particles and fumes from tin industries, stannous oxide (SnO) and stannic oxide (SnO2), are specific to stannosis diagnoses. Hazardous occupations such as, tinning, tin-working, and smelting are where most cases of stannosis are documented. When melted tin ions are inhaled as a fume, the tin oxides deposit onto the lung nodules and immune response cells. If a worker is exposed to tin oxides over multiple events for an extended time, they are at risk of developing stannosis.

<span class="mw-page-title-main">Flock worker's lung</span> Occupational disease

Flock worker's lung is an occupational lung disease caused by exposure to flock, small fibers that are glued to a backing in order to create a specific texture. People who work in flocking are at risk of inhaling small pieces of the flock fibers, which causes interstitial lung disease. The disease was initially described in 1998, when a group of workers at a flocking plant developed interstitial lung disease of unknown cause.

<span class="mw-page-title-main">Emphysema</span> Medical condition

Emphysema is any air-filled enlargement in the body's tissues. Most commonly emphysema refers to the enlargement of air spaces (alveoli) in the lungs, and is also known as pulmonary emphysema.

<span class="mw-page-title-main">Crazy paving (medicine)</span> Medical sign on CT of the chest

Crazy paving refers to a pattern seen on computed tomography of the chest, involving lobular septal thickening with variable alveolar filling. The finding is seen in pulmonary alveolar proteinosis, and other diseases. Its name comes from its resemblance to irregular paving stones, called crazy pavings.

References

  1. 1 2 3 4 5 6 7 8 9 Sauler, Maor; Gulati, Mridu (December 2012). "Newly Recognized Occupational and Environmental Causes of Chronic Terminal Airways and Parenchymal Lung Disease". Clinics in Chest Medicine. 33 (4): 667–680. doi:10.1016/j.ccm.2012.09.002. PMC   3515663 . PMID   23153608.
  2. 1 2 3 4 5 6 7 8 9 Cummings, Kristin J.; Nakano, Makiko; Omae, Kazuyuki; Takeuchi, Koichiro; Chonan, Tatsuya; Xiao, Yong-long; Harley, Russell A.; Roggli, Victor L.; Hebisawa, Akira (June 2012). "Indium Lung Disease". Chest. 141 (6): 1512–1521. doi:10.1378/chest.11-1880. ISSN   0012-3692. PMC   3367484 . PMID   22207675.
  3. The Technical Guideline for Preventing Health Impairment of Workers Engaged in the Indium Tin Oxide Handling Processes (PDF). JNIOSH. 2010.
  4. 1 2 Homma, Toshiaki; Ueno, Takahiro; Sekizawa, Kiyohisa; Tanaka, Akiyo; Hirata, Miyuki (May 2003). "Interstitial pneumonia developed in a worker dealing with particles containing indium-tin oxide". Journal of Occupational Health. 45 (3): 137–139. doi:10.1539/joh.45.137. ISSN   1341-9145. PMID   14646287. S2CID   7176147.
  5. Cummings, Kristin J.; Donat, Walter E.; Ettensohn, David B.; Roggli, Victor L.; Ingram, Peter; Kreiss, Kathleen (March 1, 2010). "Pulmonary alveolar proteinosis in workers at an indium processing facility". American Journal of Respiratory and Critical Care Medicine. 181 (5): 458–464. doi:10.1164/rccm.200907-1022CR. ISSN   1535-4970. PMC   3159086 . PMID   20019344.

Further reading