Exposure assessment

Last updated

Exposure assessment is a branch of environmental science and occupational hygiene that focuses on the processes that take place at the interface between the environment containing the contaminant of interest and the organism being considered. These are the final steps in the path to release an environmental contaminant, through transport to its effect in a biological system. It tries to measure how much of a contaminant can be absorbed by an exposed target organism, in what form, at what rate and how much of the absorbed amount is actually available to produce a biological effect. Although the same general concepts apply to other organisms, the overwhelming majority of applications of exposure assessment are concerned with human health, making it an important tool in public health. [1]

Contents

Definition

Exposure assessment is the process of estimating or measuring the magnitude, frequency and duration of exposure to an agent, along with the number and characteristics of the population exposed. Ideally, it describes the sources, pathways, routes, and the uncertainties in the assessment. It is a necessary part of risk analysis and hence risk assessment.[ citation needed ]

Exposure analysis is the science that describes how an individual or population comes in contact with a contaminant, including quantification of the amount of contact across space and time. 'Exposure assessment' and 'exposure analysis' are often used as synonyms in many practical contexts. Risk is a function of exposure and hazard. For example, even for an extremely toxic (high hazard) substance, the risk of an adverse outcome is unlikely if exposures are near zero. Conversely, a moderately toxic substance may present substantial risk if an individual or a population is highly exposed. [2] [3]

Applications

Quantitative measures of exposure are used: in risk assessment, together with inputs from toxicology, to determine risk from substances released to the environment, to establish protective standards, in epidemiology, to distinguish between exposed and control groups, and to protect workers from occupational hazards.[ citation needed ]

Receptor-based approach

The receptor-based approach is used in exposure science. It starts by looking at different contaminants and concentrations that reach people. An exposure analyst can use direct or indirect measurements to determine if a person has been in contact with a specific contaminant or has been exposed to a specific risk (e.g. accident). Once a contaminant has been proved to reach people, exposure analysts work backwards to determine its source. After the identification of the source, it is important to find out the most efficient way to reduce adverse health effects. [1] If the contaminant reaches a person, it is very hard to reduce the associated adverse effects. [4] Therefore, it is very important to reduce exposure in order to diminish the risk of adverse health effects. It is highly important to use both regulatory and non-regulatory approaches in order to decrease people's exposure to contaminants. [4] In many cases, it is better to change people's activities in order to reduce their exposures rather than regulating a source of contaminants. [4] The receptor-based approach can be opposed to the source-based approach. This approach begins by looking at different sources of contaminants such as industries and power plants. Then, it is important to find out if the contaminant of interest has reached a receptor (usually humans). With this approach, it is very hard to prove that a pollutant from a source has reached a target.[ citation needed ]

Exposure

In this context exposure is defined as the contact between an agent and a target. Contact takes place at an exposure surface over an exposure period. Mathematically, exposure is defined as

where E is exposure, C(t) is a concentration that varies with time between the beginning and end of exposure. It has dimensions of mass times time divided by volume. This quantity is related to the potential dose of contaminant by multiplying it by the relevant contact rate, such as breathing rate, food intake rate etc. The contact rate itself may be a function of time. [4]

Routes of exposure

Contact between a contaminant and an organism can occur through any route. The possible routes of exposure are: inhalation, if the contaminant is present in the air; ingestion, through food, drinking or hand-to-mouth behavior; and dermal absorption, if the contaminant can be absorbed through the skin.

Exposure to a contaminant can and does occur through multiple routes, simultaneously or at different times. In many cases the main route of exposure is not obvious and needs to be investigated carefully. For example, exposure to byproducts of water chlorination can obviously occur by drinking, but also through the skin, while swimming or washing, and even through inhalation from droplets aerosolized during a shower. The relative proportion of exposure from these different routes cannot be determined a priori. Therefore, the equation in the previous section is correct in a strict mathematical sense, but it is a gross oversimplification of actual exposures, which are the sum of the integrals of all activities in all microenvironments. For example, the equation would have to be calculated with the specific concentration of a compound in the air in the room during the time interval. Similarly, the concentration in the ambient air would apply to the time that the person spends outdoors, whereas the concentration in the food that the person ingests would be added. The concentration integrals via all routes would be added for the exposure duration, e.g. hourly, daily or annually as

where y is the initial time and z the ending time of last in the series of time periods spent in each microenvironment over the exposure duration. [5]

Measurement of exposure

To quantify the exposure of particular individuals or populations two approaches are used, primarily based on practical considerations:

Direct approach

A video about measuring contaminants in the air at a workplace as part of a NIOSH Health Hazard Evaluation Program exposure assessment
A video about measuring contaminants on workers' skin and workplace surfaces as part of a NIOSH Health Hazard Evaluation Program exposure assessment

The direct approach measures the exposures to pollutants by monitoring the pollutant concentrations reaching the respondents. The pollutant concentrations are directly monitored on or within the person through point of contact, biological monitoring, or biomarkers. [6] In a workplace setting, methods of workplace exposure monitoring are used.[ citation needed ]

The point of contact approach indicates the total concentration reaching the host, while biological monitoring and the use of biomarkers infer the dosage of the pollutant through the determination of the body burden. The respondents often record their daily activities and locations during the measurement of the pollutants to identify the potential sources, microenvironments, or human activities contributing the pollutant exposure. [6] An advantage of the direct approach is that the exposures through multiple media (air, soil, water, food, etc.) are accounted for through one study technique. The disadvantages include the invasive nature of the data collection and associated costs. Point of contact is continuous measure of the contaminant reaching the target through all routes.[ citation needed ]

Biological monitoring is another approach to measuring exposure [7] which measures the amount of a pollutant within body tissues or fluids (such as blood or urine). Biological monitoring measures the body burden of a pollutant but not the source from whence it came. The substance measured may be either the contaminant itself or a biomarker which is specific to and indicative of an exposure to the contaminant. Biomarkers of exposure assessment is a measure of the contaminant or other proportionally related variable in the body. [8]

Air sampling measures the contaminant in the air as concentration units of ppmv (parts per million by volume), mg/m3 (milligrams per cubic meter) or other mass per unit volume of air. Samplers can be worn by workers or researchers to estimate concentrations found in the breathing zone (personal) or samples collected in general areas can be used to estimate human exposure by integrating time and activity patterns. Validated and semi-validated air sampling methods are published by NIOSH, OSHA, ISO and other bodies.

Surface or dermal sampling measures the contaminant on touchable surfaces or on skin. Concentrations are typically reported in mass per unit surface area such as mg/100 cm2.

In general, direct methods tend to be more accurate but more costly in terms of resources and demands placed on the subject being measured and may not always be feasible, especially for a population exposure study. Examples of direct methods include air sampling though a personal portable pump, split food samples, hand rinses, breath samples or blood samples.

Indirect approach

The indirect approach measures the pollutant concentrations in various locations or during specific human activities to predict the exposure distributions within a population. The indirect approach focuses on the pollutant concentrations within microenvironments or activities rather than the concentrations directly reaching the respondents. The measured concentrations are correlated to large-scale activity pattern data, such as the National Human Activity Pattern Survey (NHAPS), to determine the predicted exposure by multiplying the pollutant concentrations by the time spent in each microenvironment or activity, or by multiplying the pollutant concentrations by the contact rate with each media. [6] The advantage is that process is minimally invasive to the population and is associated with lower costs than the direct approach. A disadvantage of the indirect approach is that the results were determined independently of any actual exposures, so the exposure distribution is open to errors from any inaccuracies in the assumptions made during the study, the time-activity data, or the measured pollutant concentrations. Examples of indirect methods include environmental water, air, dust, soil or consumer product sampling coupled with information such as activity/location diaries.

Mathematical exposure models may also be used to explore hypothetical situations of exposure. [9]

Exposure factors

Especially when determining the exposure of a population rather than individuals, indirect methods can often make use of relevant statistics about the activities that can lead to an exposure. These statistics are called exposure factors. They are generally drawn from the scientific literature or governmental statistics. For example, they may report informations such as amount of different food eaten by specific populations, divided by location [10] or age, breathing rates, time spent for different modes of commuting, [10] showering or vacuuming, as well as information on types of residences. Such information can be combined with contaminant concentrations from ad-hoc studies or monitoring network to produce estimates of the exposure in the population of interest. These are especially useful in establishing protective standards.

Exposure factor values can be used to obtain a range of exposure estimates such as average, high-end and bounding estimates. For example, to calculate the lifetime average daily dose one would use the equation below:

All of the variables in the above equation, with the exception of contaminant concentration, are considered exposure factors. Each of the exposure factors involves humans, either in terms of their characteristics (e.g., body weight) or behaviors (e.g., amount of time spent in a specific location, which affects exposure duration). These characteristics and behaviors can carry a great deal of variability and uncertainty. In the case of lifetime average daily dose, variability pertains to the distribution and range of LADDs amongst individuals in the population. The uncertainty, on the other hand, refers to exposure analyst's lack of knowledge of the standard deviation, mean, and general shape when dealing with calculating LADD.

The U.S. Environmental Protection Agency's Exposure Factors Handbook [4] provides solutions when confronting variability and reducing uncertainty. The general points are summarized below:

Four Strategies for Confronting Variability [4] Examples
Disaggregate the variabilityDevelop distribution of body weight for subgroup
Ignore the variabilityAssume all adults weigh 65 kg
Use a maximum or minimum valueChoose a high-end value for weight distribution
Use the average valueUse the mean body weight for all adults
Analyzing Uncertainty [4] Description
Classical statistical methods (descriptive statistics and inferential statistics)Estimating the population exposure distribution directly, based on measured values from a representative sample
Sensitivity analysis Changing one input variable at a time while leaving others constant, to examine effect on output
Propagation of uncertainty Examining how uncertainty in individual parameters affects the overall uncertainty of the exposure assessment
Probabilistic analysisVarying each of the input variables over various values of their respective probability distributions (i.e. Monte Carlo integration)

Defining acceptable exposure for occupational environments

Simple representation of exposure risk assessment and management hierarchy based on available information Hierarchies of Exposure Assessment and Management.JPG
Simple representation of exposure risk assessment and management hierarchy based on available information

Occupational exposure limits are based on available toxicology and epidemiology data to protect nearly all workers over a working lifetime. Exposure assessments in occupational settings are most often performed by occupational/industrial hygiene (OH/IH) professionals who gather "basic characterization" consisting of all relevant information and data related to workers, agents of concern, materials, equipment and available exposure controls. The exposure assessment is initiated by selecting the appropriate exposure limit averaging time and "decision statistic" for the agent. Typically the statistic for deciding acceptable exposure is chosen to be the majority (90%, 95% or 99%) of all exposures to be below the selected occupational exposure limit. For retrospective exposure assessments performed in occupational environments, the "decision statistic" is typically a central tendency such as the arithmetic mean or geometric mean or median for each worker or group of workers. Methods for performing occupational exposure assessments can be found in the book A Strategy for Assessing and Managing Occupational Exposures, published by AIHA. [11]

Exposure assessment is a continuous process that is updated as new information and data becomes available.[ citation needed ]

Systemic errors

In the estimation of human exposures to environmental chemicals, the following systemic errors have been known to occur: [12]

See also

Related Research Articles

<span class="mw-page-title-main">Toxicity</span> Dose dependant harmfulness of substances

Toxicity is the degree to which a chemical substance or a particular mixture of substances can damage an organism. Toxicity can refer to the effect on a whole organism, such as an animal, bacterium, or plant, as well as the effect on a substructure of the organism, such as a cell (cytotoxicity) or an organ such as the liver (hepatotoxicity). Sometimes the word is more or less synonymous with poisoning in everyday usage.

<span class="mw-page-title-main">American Conference of Governmental Industrial Hygienists</span>

The American Conference of Governmental Industrial Hygienists (ACGIH) is a professional association of industrial hygienists and practitioners of related professions, with headquarters in Cincinnati, Ohio. One of its goals is to advance worker protection by providing timely, objective, scientific information to occupational and environmental health professionals.

<span class="mw-page-title-main">Water quality</span> Assessment against standards for use

Water quality refers to the chemical, physical, and biological characteristics of water based on the standards of its usage. It is most frequently used by reference to a set of standards against which compliance, generally achieved through treatment of the water, can be assessed. The most common standards used to monitor and assess water quality convey the health of ecosystems, safety of human contact, extent of water pollution and condition of drinking water. Water quality has a significant impact on water supply and often determines supply options.

<span class="mw-page-title-main">Occupational hygiene</span> Management of workplace health hazards

Occupational hygiene or industrial hygiene (IH) is the anticipation, recognition, evaluation, control, and confirmation (ARECC) of protection from risks associated with exposures to hazards in, or arising from, the workplace that may result in injury, illness, impairment, or affect the well-being of workers and members of the community. These hazards or stressors are typically divided into the categories biological, chemical, physical, ergonomic and psychosocial. The risk of a health effect from a given stressor is a function of the hazard multiplied by the exposure to the individual or group. For chemicals, the hazard can be understood by the dose response profile most often based on toxicological studies or models. Occupational hygienists work closely with toxicologists (see Toxicology) for understanding chemical hazards, physicists (see Physics) for physical hazards, and physicians and microbiologists for biological hazards (see Microbiology, Tropical medicine, Infection). Environmental and occupational hygienists are considered experts in exposure science and exposure risk management. Depending on an individual's type of job, a hygienist will apply their exposure science expertise for the protection of workers, consumers and/or communities.

The permissible exposure limit is a legal limit in the United States for exposure of an employee to a chemical substance or physical agent such as high level noise. Permissible exposure limits were established by the Occupational Safety and Health Administration (OSHA). Most of OSHA's PELs were issued shortly after adoption of the Occupational Safety and Health (OSH) Act in 1970.

<span class="mw-page-title-main">Aquatic toxicology</span> Study of manufactured products on aquatic organisms

Aquatic toxicology is the study of the effects of manufactured chemicals and other anthropogenic and natural materials and activities on aquatic organisms at various levels of organization, from subcellular through individual organisms to communities and ecosystems. Aquatic toxicology is a multidisciplinary field which integrates toxicology, aquatic ecology and aquatic chemistry.

The threshold limit value (TLV) is a level of occupational exposure to a hazardous substance where it is believed that nearly all healthy workers can repeatedly experience at or below this level of exposure without adverse effects. Strictly speaking, TLV is a reserved term of the American Conference of Governmental Industrial Hygienists (ACGIH), who determines and publishes TLVs annually. TLVs issued by the ACGIH are the most widely accepted occupational exposure limits both in the United States and most other countries. However, it is sometimes loosely used to refer to other similar concepts used in occupational health and toxicology, such as acceptable daily intake (ADI) and tolerable daily intake (TDI). Concepts such as TLV, ADI, and TDI can be compared to the no-observed-adverse-effect level (NOAEL) in animal testing, but whereas a NOAEL can be established experimentally during a short period, TLV, ADI, and TDI apply to human beings over a lifetime and thus are harder to test empirically and are usually set at lower levels. TLVs, along with biological exposure indices (BEIs), are published annually by the ACGIH.

<span class="mw-page-title-main">Environmental hazard</span> Harmful substance, a condition or an event

Environmental hazards are those hazards that affect biomes or ecosystems. Well known examples include oil spills, water pollution, slash and burn deforestation, air pollution, ground fissures, and build-up of atmospheric carbon dioxide. Physical exposure to environmental hazards is usually involuntary

<span class="mw-page-title-main">Endrin</span> Chemical compound

Endrin is an organochlorine compound with the chemical formula C12H8Cl6O that was first produced in 1950 by Shell and Velsicol Chemical Corporation. It was primarily used as an insecticide, as well as a rodenticide and piscicide. It is a colourless, odorless solid, although commercial samples are often off-white. Endrin was manufactured as an emulsifiable solution known commercially as Endrex. The compound became infamous as a persistent organic pollutant and for this reason it is banned in many countries.

<span class="mw-page-title-main">Soil contamination</span> Pollution of land by human-made chemicals or other alteration

Soil contamination, soil pollution, or land pollution as a part of land degradation is caused by the presence of xenobiotic (human-made) chemicals or other alteration in the natural soil environment. It is typically caused by industrial activity, agricultural chemicals or improper disposal of waste. The most common chemicals involved are petroleum hydrocarbons, polynuclear aromatic hydrocarbons, solvents, pesticides, lead, and other heavy metals. Contamination is correlated with the degree of industrialization and intensity of chemical substance. The concern over soil contamination stems primarily from health risks, from direct contact with the contaminated soil, vapour from the contaminants, or from secondary contamination of water supplies within and underlying the soil. Mapping of contaminated soil sites and the resulting clean ups are time-consuming and expensive tasks, and require expertise in geology, hydrology, chemistry, computer modelling, and GIS in Environmental Contamination, as well as an appreciation of the history of industrial chemistry.

Exposure science is the study of the contact between humans and harmful agents within their environment – whether it be chemical, physical, biological, behavioural or mental stressors – with the aim of identifying the causes and preventions of the adverse health effects they result in. This can include exposure within the home, workplace, outdoors or any other environment an individual may encounter. The term 'exposure' is the umbrella term for many different types, ranging from ultraviolet exposure, exposure to the chemicals in the food we eat, to exposure to long working hours being the occupational factor most attributable to the burden of disease.

An occupational exposure limit is an upper limit on the acceptable concentration of a hazardous substance in workplace air for a particular material or class of materials. It is typically set by competent national authorities and enforced by legislation to protect occupational safety and health. It is an important tool in risk assessment and in the management of activities involving handling of dangerous substances. There are many dangerous substances for which there are no formal occupational exposure limits. In these cases, hazard banding or control banding strategies can be used to ensure safe handling.

<span class="mw-page-title-main">Environmental monitoring</span> Monitoring of the quality of the environment

Environmental monitoring is the processes and activities that are done to characterize and describe the state of the environment. It is used in the preparation of environmental impact assessments, and in many circumstances in which human activities may cause harmful effects on the natural environment. Monitoring strategies and programs are generally designed to establish the current status of an environment or to establish a baseline and trends in environmental parameters. The results of monitoring are usually reviewed, analyzed statistically, and published. A monitoring program is designed around the intended use of the data before monitoring starts.

Mathematical exposure modeling is an indirect method of determining exposure, particularly for human exposure to environmental contaminants. It is useful when direct measurement of pollutant concentration is not feasible because direct measurement sometimes requires skilled professionals and complex, expensive laboratory equipment. The ability to make inferences in the absence of direct measurements, makes exposure modeling a powerful tool for predicting exposures by exploring hypothetical situations. It allows researchers to ask "what if" questions about exposure scenarios.

In analytical chemistry, biomonitoring is the measurement of the body burden of toxic chemical compounds, elements, or their metabolites, in biological substances. Often, these measurements are done in blood and urine. Biomonitoring is performed in both environmental health, and in occupational safety and health as a means of exposure assessment and workplace health surveillance.

<span class="mw-page-title-main">Exposome</span>

The exposome is a concept used to describe environmental exposures that an individual encounters throughout life, and how these exposures impact biology and health. It encompasses both external and internal factors, including chemical, physical, biological, and social factors that may influence human health.

Occupational toxicology is the application of toxicology to chemical hazards in the workplace. It focuses on substances and conditions that people may be exposed to in workplaces, including inhalation and dermal exposures, which are most prevalent when discussing occupational toxicology. These environmental and individual exposures can impact health, and there is a focus on identifying early adverse affects that are more subtle than those presented in clinical medicine.

The health and safety hazards of nanomaterials include the potential toxicity of various types of nanomaterials, as well as fire and dust explosion hazards. Because nanotechnology is a recent development, the health and safety effects of exposures to nanomaterials, and what levels of exposure may be acceptable, are subjects of ongoing research. Of the possible hazards, inhalation exposure appears to present the most concern, with animal studies showing pulmonary effects such as inflammation, fibrosis, and carcinogenicity for some nanomaterials. Skin contact and ingestion exposure, and dust explosion hazards, are also a concern.

<span class="mw-page-title-main">Characterization of nanoparticles</span> Measurement of physical and chemical properties of nanoparticles

The characterization of nanoparticles is a branch of nanometrology that deals with the characterization, or measurement, of the physical and chemical properties of nanoparticles.,. Nanoparticles measure less than 100 nanometers in at least one of their external dimensions, and are often engineered for their unique properties. Nanoparticles are unlike conventional chemicals in that their chemical composition and concentration are not sufficient metrics for a complete description, because they vary in other physical properties such as size, shape, surface properties, crystallinity, and dispersion state.

Dennis J. Paustenbach PhD, CIH, DABT, is an American scientist, businessman, researcher, and author. Dennis is currently President of Paustenbach and Associates, which is a consulting firm who uses risk assessment techniques to characterize occupational and environmental health hazards. He is the founder and former president of ChemRisk, a consulting firm specializing in the use of toxicology and risk assessment to characterize the hazards of chemicals in soil, air, water, food, sediments and consumer products. He was, for about 4 years, a Group Vice-President of Exponent. He has been criticized for ChemRisk's role in serving the Pacific Gas and Electric Company in a case involving contamination with hexavalent chromium, which later became the basis for the film Erin Brokovich.

References

  1. 1 2 Nieuwenhuijsen M, Paustenbach D, Duarte-Davidson R (December 2006). "New developments in exposure assessment: the impact on the practice of health risk assessment and epidemiological studies". Environment International. 32 (8): 996–1009. Bibcode:2006EnInt..32..996N. doi:10.1016/j.envint.2006.06.015. PMID   16875734.
  2. "ExpoCast". U.S. Environmental Protection Agency. Archived from the original on 11 March 2014.
  3. Vallero DA (2004). Environmental Contaminants: Assessment and Control. Academic Press. ISBN   0127100571.
  4. 1 2 3 4 5 6 7 "U.S. EPA. Exposure Factors Handbook". U.S. Environmental Protection Agency. 1997. EPA/600/P-95/002F a-c.
  5. Vallero DA (2014). Fundamentals of Air Pollution (5th ed.). Waltham, MA: Elsevier Science. ISBN   978-0-12-404602-3.
  6. 1 2 3 Ott WR, Steinemann AC, Wallace LA (2006). "1.4 Total Human Exposure Concept. 1.5 Receptor-Oriented Approach". Exposure Analysis. CRC Press. pp. 6–13. ISBN   978-1-4200-1263-7.
  7. Lioy P (1990). "Assessing total human exposure to contaminants". Environmental Science & Technology. 24 (7): 938–945. Bibcode:1990EnST...24..938L. doi:10.1021/es00077a001.
  8. Lowry, L. K. (May 1995). "Role of biomarkers of exposure in the assessment of health risks". Toxicology Letters. 77 (1–3): 31–38. doi:10.1016/0378-4274(95)03268-1. ISSN   0378-4274. PMID   7618156.
  9. Vallero D, Isukapalli S, Zartarian V, McCurdy T, McKone T, Georgopoulos P, Dary C (2010). "Ch. 44: Modeling and predicting pesticide exposures". In Krieger R (ed.). Hayes' Handbook of Pesticide Toxicology. Vol. 1 (3rd ed.). Academic Press. pp. 995–1020. ISBN   978-0-08-092201-0.
  10. 1 2 Dons E, Panis L, Van Poppel M, Theunis J, Willems H, Torfs R, Wets G (2011). "Impact of time-activity patterns on personal exposure to black carbon". Atmospheric Environment. 45 (21): 3594–3602. Bibcode:2011AtmEn..45.3594D. doi:10.1016/j.atmosenv.2011.03.064.
  11. Bullock WH, Ignacio JS, eds. (2006). A Strategy for Assessing and Managing Occupational Exposures. AIHA. ISBN   978-1-931504-69-0.
  12. Vandenberg LN, Rayasam SD, Axelrad DA, Bennett DH, Brown P, Carignan CC, et al. (January 2023). "Addressing systemic problems with exposure assessments to protect the public's health". Environmental Health. 21 (Suppl 1): 121. Bibcode:2023EnvHe..21S.121V. doi: 10.1186/s12940-022-00917-0 . PMC   9835264 . PMID   36635700.
  13. "CBI Claims and Reviews Under TSCA". www.epa.gov. 2015-04-22. Retrieved 2023-03-01.

Further reading