Ratio decompression

Last updated

Ratio decompression (usually referred to in abbreviated form as ratio deco) is a technique for calculating decompression schedules for scuba divers engaged in deep diving without using dive tables, decompression software or a dive computer. It is generally taught as part of the "DIR" philosophy of diving promoted by organisations such Global Underwater Explorers (GUE) Innerspace Explorers (ISE) and Unified Team Diving (UTD) at the advanced technical diving level. It is designed for decompression diving executed deeper than standard recreational diving depth limits using trimix as a "bottom mix" breathing gas.

Contents

There have been three iterations of UTD Ratio Deco, The latest as of 2021 is RD 3.0, which has less emphasis on deep stops than RD 2.0.

Theory

The physiology behind the off-gassing of nitrogen or helium absorbed by the body from breathing gases under pressure has never been definitively established, particularly in relation to the formation of bubbles in the body's tissues, [1] and a number of different algorithms have been developed over the years, based on simplified hypotheses of gas transport and absorption in body tissues, modified to fit empirical data, to predict the rate of off-gassing to reduce the risk of decompression sickness in divers to an acceptable level. However, these models do not describe the individual physiology of the diver accurately: divers have been known to suffer symptomatic decompression sickness whilst diving within the limits of dive tables or dive computers (sometimes referred to as an "undeserved hit"), and divers have exceeded No Decompression Limits but remained asymptomatic.

While Ratio Decompression is not a complete decompression model, it most resembles those of Bühlmann algorithm, and the Varying Permeability Model algorithm, with emphasis on the use of deep stops and gradient factors.[ citation needed ]

A theoretical illustration of different ascent profiles. Ratio deco would be expected to give a slower ascent similar to the red line profile, whereas traditional Haldanean models would be expected to give a steeper ascent similar to the yellow line profile. Illustration only - not calculated on the basis of any actual profile. Theoretical dive profile.JPG
A theoretical illustration of different ascent profiles. Ratio deco would be expected to give a slower ascent similar to the red line profile, whereas traditional Haldanean models would be expected to give a steeper ascent similar to the yellow line profile. Illustration only - not calculated on the basis of any actual profile.

A conventional decompression profile, based on a dissolved gas model algorithm, will result in a diver ascending relatively quickly through shorter deep stops before spending a great deal of time at the shallower stops (resulting in a much sharper angle in the depth/time graph of the ascent profile), ratio deco will allow a diver to dynamically[ clarification needed ] take a total decompression obligation[ clarification needed ] for a given dive and create a profile which makes better use[ clarification needed ] the most effective parts[ clarification needed ] of the decompression profile, and spends comparatively less time at the less effective stops[ clarification needed ] (resulting in a much softer[ clarification needed ][ weasel words ] curve in the depth/time graph of the ascent profile).[ citation needed ]

Methodology

The basis for calculating a decompression schedule using ratio decompression is actually relatively simple (and certainly much simpler than the extremely complicated algorithms used by dive computers). The following represents a slightly simplified summary of the process.[ clarification needed ] Not all versions of ratio deco use exactly the same procedure.

The starting point is to ascertain the correct ratio (from whence the technique gets its name) of the amount of total decompression time as a ratio to the total bottom time. [2] This ratio is fixed solely by reference to depth. Although on traditional tables the amount of decompression would vary according to time at depth, [3] the basis of the theory that most dives will operate within a range of normalcy[ clarification needed ] which makes the use of fixed ratios permissible.[ clarification needed ] Certain depths establish certain ratios; a 1:1 ratio occurs at approximately 150 feet (46 m); a 2:1 ratio occurs at approximately 220 feet (67 m). Between these depths, for each 10 feet (3 m) deeper or shallower than a fixed ratio depth, the diver will then add or subtract a specified number of minutes to their total decompression time.[ citation needed ] Accordingly, once the diver knows their planned depth and time, they can look up the most proximate ratio, calculate the difference in depths, and add or subtract the appropriate number of minutes from their total bottom time to give a total decompression time.

Unlike traditional dive tables (but on a similar basis as dive computers which accumulate gas loading based on summation of ingassing at current depth over short intervals - ratio deco sums over 5 minute intervals while computers may refine this to 30 second intervals or less), ratio deco is calculated by reference to average[ clarification needed ] depth rather than maximum depth. The technique also requires that the dive be divided into 5 minute segments, and the total decompression time accumulated for each 5 minute segment be calculated. To add an element of conservatism, divers lump 5 minute segments into pairs, and use the deeper depth of the pair to calculate the amount of decompression time accumulated.[ citation needed ]

Once the diver has calculated the total required decompression time, they calculate the depth at which the deep stops commence. To do this, they calculate the absolute pressure (in atmospheres absolute) at their maximum depth, [4] and multiplying this figure by either 6 (for feet) or 2 (for meters), and then deducting that figure from the maximum depth, and rounding up to the next shallower increment of 10 feet (3 m). [5] That is the depth at which the deep stops will commence, and is equivalent to a pressure of 80% of the pressure at maximum depth. The diver will then do standard deep stops at every 10 feet (3 m) until they reach the depth for the appropriate gas switch to their decompression gas. The diver is expected to do at least 3 minutes at the gas switch stop to acclimatise to the higher partial pressure of oxygen (known as the "oxygen window in technical diving"), and use this window to calculate the remaining stops.

After the gas switch is made, the actual decompression is performed. The total decompression is divided into two - half up to a depth of 30 feet (9 m), and half between 20 feet (6 m) and the surface. For the deeper half, the diver simply calculates the total number of stops, stopping every 10 feet (3 m), up to and including the last stop, and then divides the deep half of the decompression time equally between all of the stops. At 20 feet (6 m) the diver will then perform the second half of the total required decompression, and then ascend as slowly as possible to the surface (characteristically aiming for 3 feet (1 m) per minute).

Limitations

Ratio decompression has never been adopted by more mainstream technical diver training agencies, such as TDI or IANTD. Although the safety record of ratio deco appears to be good,[ citation needed ] it suffers from a number of limitations.

GUE has not been keen on the wider use of the technique, and has always stressed that ratio deco should form part of the wider DIR philosophy espoused by the organisation. GUE has expressed concerns that divers trying to utilise the technique without proper training, or without employing DIR approach to skill development, hydration and fitness leads to an unacceptably high risk of decompression sickness.[ citation needed ]

However, the technique has undoubted value in emergency situations where a dive plan is "blown" for one reason or another, and a personal dive computer is not in use.[ clarification needed ]

Independent review

Although to date no independent forensic review of ratio decompression as a decompression algorithm has been conducted, in his book Deco for Divers, Mark Powell considers ratio decompression, and analyses it in slightly simplistic "flattening the curve" terms, illustrating it by way of comparison to certain more traditional models. [6] Nonetheless, given the limited amount of forensic research available on any decompression algorithm, it is difficult to see what further comment the book would have been in a position to make.

Footnotes

  1. In the article, Diving physics and "fizzyology", under "Decompression", the basis for decompression inevitably comes back to "we don't really know." Archived October 24, 2008, at the Wayback Machine
  2. For the purposes of ratio decompression, bottom time means time on the bottom - and does not include descent time in the same way that (for example) the US Navy diving tables do.
  3. For example, using the US Navy diving tables (for air - ratio deco is predicated on the use of trimix - although the same basic considerations to time of exposure apply), a dive to 180 feet (55 m) for 5 minutes would result in no decompression obligation at all, a 15 minute dive would result in total decompression obligation of 15 minutes, and a 30 minute dive would result in a total decompression obligation of 56 minutes. "Archived copy". Archived from the original on 2006-12-08. Retrieved 2006-12-08.CS1 maint: archived copy as title (link)
  4. This is calculated by dividing depth by either 33 (for feet) or 10 (for meters) and adding one.
  5. So for example, if the maximum depth was 180 feet, that is 6.5 ATA; multiplying out by 6 gives a figure of 39 feet. 180 39 = 141 feet, which is rounded up to 140 feet. In metric: max depth is 55 m, that is 6.5 ATA; 6.5 × 2 = 13; and 55 13 = 42 m (which doesn't need rounding).
  6. Powell, Mark (2008). Deco for divers, decompression theory and physiology. Southend-on-Sea, UK: Aquapress Ltd. pp. 213–217. ISBN   1-905492-07-3. OCLC   286538970.

Related Research Articles

Trimix (breathing gas) Breathing gas consisting of oxygen, helium and nitrogen

Trimix is a breathing gas consisting of oxygen, helium and nitrogen and is used in deep commercial diving, during the deep phase of dives carried out using technical diving techniques, and in advanced recreational diving.

Technical diving Extended scope recreational diving

Technical diving is scuba diving that exceeds the agency-specified limits of recreational diving for non-professional purposes. Technical diving may expose the diver to hazards beyond those normally associated with recreational diving, and to a greater risk of serious injury or death. The risk may be reduced by appropriate skills, knowledge and experience, and by using suitable equipment and procedures. The skills may be developed through appropriate specialised training and experience. The equipment often involves breathing gases other than air or standard nitrox mixtures, and multiple gas sources.

Deep diving Underwater diving to a depth beyond the norm accepted by the associated community

Deep diving is underwater diving to a depth beyond the norm accepted by the associated community. In some cases this is a prescribed limit established by an authority, while in others it is associated with a level of certification or training, and it may vary depending on whether the diving is recreational, technical or commercial. Nitrogen narcosis becomes a hazard below 30 metres (98 ft) and hypoxic breathing gas is required below 60 metres (200 ft) to lessen the risk of oxygen toxicity.

Dive computer Instrument to calculate decompression status in real time

A dive computer, personal decompression computer or decompression meter is a device used by an underwater diver to measure the elapsed time and depth during a dive and use this data to calculate and display an ascent profile which according to the programmed decompression algorithm, will give a low risk of decompression sickness.

Breathing gas Gas used for human respiration

A breathing gas is a mixture of gaseous chemical elements and compounds used for respiration. Air is the most common, and only natural, breathing gas. But other mixtures of gases, or pure oxygen, are also used in breathing equipment and enclosed habitats such as scuba equipment, surface supplied diving equipment, recompression chambers, high-altitude mountaineering, high-flying aircraft, submarines, space suits, spacecraft, medical life support and first aid equipment, and anaesthetic machines.

Blue Hole (Red Sea) Submarine sinkhole a few kilometres north of Dahab, Egypt

The Blue Hole is a diving location on the southeast Sinai, a few kilometres north of Dahab, Egypt on the coast of the Red Sea.

The Varying Permeability Model, Variable Permeability Model or VPM is an algorithm that is used to calculate the decompression stops needed for a particular dive profile. It was developed by D.E. Yount and others for use in professional diving and recreational diving. It was developed to model laboratory observations of bubble formation and growth in both inanimate and in vivo systems exposed to pressure. In 1986, this model was applied by researchers at the University of Hawaii to calculate diving decompression tables.

The Bühlmann decompression algorithm is a mathematical model (algorithm) of the way in which inert gases enter and leave the human body as the ambient pressure changes. Versions are used to create Bühlmann decompression tables and in personal dive computers to compute no-decompression limits and decompression schedules for dives in real-time. These decompression tables allow divers to plan the depth and duration for dives and the required decompression stops.

Dive profile a divers pressure exposure over the time of a dive

A dive profile is a description of a diver's pressure exposure over time. It may be as simple as just a depth and time pair, as in: "sixty for twenty," or as complex as a second by second graphical representation of depth and time recorded by a personal dive computer. Several common types of dive profile are specifically named, and these may be characteristic of the purpose of the dive. For example, a working dive at a limited location will often follow a constant depth (square) profile, and a recreational dive is likely to follow a multilevel profile, as the divers start deep and work their way up a reef to get the most out of the available breathing gas. The names are usually descriptive of the graphic appearance.

Professor Albert A. Bühlmann was a Swiss physician who was principally responsible for a number of important contributions to decompression science at the Laboratory of Hyperbaric Physiology at the University Hospital in Zürich, Switzerland. His impact on diving ranged from complex commercial and military diving to the occasional recreational diver. He is held in high regard for his professional ethics and attention to his research subjects.

In underwater diving, ascending and descending is done using strict protocols to avoid problems caused by the changes in ambient pressure and the hazards of obstacles near the surface such as collision with vessels. Diver certification and accreditation organisations place importance on these protocols early in their diver training programmes.

Decompression (diving) The reduction of ambient pressure on underwater divers after hyperbaric exposure and the elimination of dissolved gases from the divers tissues

The decompression of a diver is the reduction in ambient pressure experienced during ascent from depth. It is also the process of elimination of dissolved inert gases from the diver's body, which occurs during the ascent, largely during pauses in the ascent known as decompression stops, and after surfacing, until the gas concentrations reach equilibrium. Divers breathing gas at ambient pressure need to ascend at a rate determined by their exposure to pressure and the breathing gas in use. A diver who only breathes gas at atmospheric pressure when free-diving or snorkelling will not usually need to decompress, Divers using an atmospheric diving suit do not need to decompress as they are never exposed to high ambient pressure.

Scuba gas planning Estimation of breathing gas mixtures and quantities required for a planned dive profile

Scuba gas planning is the aspect of dive planning which deals with the calculation or estimation of the amounts and mixtures of gases to be used for a planned dive profile. It usually assumes that the dive profile, including decompression, is known, but the process may be iterative, involving changes to the dive profile as a consequence of the gas requirement calculation, or changes to the gas mixtures chosen. Use of calculated reserves based on planned dive profile and estimated gas consumption rates rather than an arbitrary pressure is sometimes referred to as rock bottom gas management. The purpose of gas planning is to ensure that for all reasonably foreseeable contingencies, the divers of a team have sufficient breathing gas to safely return to a place where more breathing gas is available. In almost all cases this will be the surface.

This is a glossary of technical terms, jargon, diver slang and acronyms used in underwater diving. The definitions listed are in the context of underwater diving. There may be other meanings in other contexts.

Decompression practice Techniques and procedures for safe decompression of divers

The practice of decompression by divers comprises the planning and monitoring of the profile indicated by the algorithms or tables of the chosen decompression model, to allow asymptomatic and harmless release of excess inert gases dissolved in the tissues as a result of breathing at ambient pressures greater than surface atmospheric pressure, the equipment available and appropriate to the circumstances of the dive, and the procedures authorized for the equipment and profile to be used. There is a large range of options in all of these aspects.

History of decompression research and development Chronological list of notable events in the history of diving decompression.

Decompression in the context of diving derives from the reduction in ambient pressure experienced by the diver during the ascent at the end of a dive or hyperbaric exposure and refers to both the reduction in pressure and the process of allowing dissolved inert gases to be eliminated from the tissues during this reduction in pressure.

Decompression theory Theoretical modelling of decompression physiology

Decompression theory is the study and modelling of the transfer of the inert gas component of breathing gases from the gas in the lungs to the tissues and back during exposure to variations in ambient pressure. In the case of underwater diving and compressed air work, this mostly involves ambient pressures greater than the local surface pressure, but astronauts, high altitude mountaineers, and travellers in aircraft which are not pressurised to sea level pressure, are generally exposed to ambient pressures less than standard sea level atmospheric pressure. In all cases, the symptoms caused by decompression occur during or within a relatively short period of hours, or occasionally days, after a significant pressure reduction.

Doing It Right (scuba diving) Technical diving safety philosophy

Doing It Right (DIR) is a holistic approach to scuba diving that encompasses several essential elements, including fundamental diving skills, teamwork, physical fitness, and streamlined and minimalistic equipment configurations. DIR proponents maintain that through these elements, safety is improved by standardizing equipment configuration and dive-team procedures for preventing and dealing with emergencies.

Pyle stop Type of short deep decompression stops in addition to the standard profile

A Pyle stop is a type of short, optional deep decompression stop performed by scuba divers at depths well below the first decompression stop mandated by a conventional dissolved phase decompression algorithm, such as the US Navy or Bühlmann decompression algorithms. They were named after Dr. Richard Pyle, an American ichthyologist from Hawaii, who found that they prevented his post-dive fatigue symptoms after deep dives to collect fish specimens.

Decompression equipment Equipment used by divers to facilitate decompression

There are several categories of decompression equipment used to help divers decompress, which is the process required to allow divers to return to the surface safely after spending time underwater at higher pressures.