The equivalent air depth (EAD) is a way of approximating the decompression requirements of breathing gas mixtures that contain nitrogen and oxygen in different proportions to those in air, known as nitrox. [1] [2] [3]
The equivalent air depth, for a given nitrox mix and depth, is the depth of a dive when breathing air that would have the same partial pressure of nitrogen. So, for example, a gas mix containing 36% oxygen (EAN36) being used at 27 metres (89 ft) has an EAD of 20 metres (66 ft).
The equivalent air depth can be calculated for depths in metres as follows:
Working the earlier example, for a nitrox mix containing 64% nitrogen (EAN36) being used at 27 metres, the EAD is:
So at 27 metres on this mix, the diver would calculate their decompression requirements as if on air at 20 metres.
The equivalent air depth can be calculated for depths in feet as follows:
Working the earlier example, for a nitrox mix containing 64% nitrogen (EAN36) being used at 90 feet, the EAD is:
So at 90 feet on this mix, the diver would calculate their decompression requirements as if on air at 67 feet.
For a given nitrox mixture and a given depth, the equivalent air depth expresses the theoretical depth that would produce the same partial pressure of nitrogen if regular air (79% nitrogen) was used instead:
Hence, following the definition of partial pressure:
with expressing the fraction of nitrogen and expressing the pressure at the given depth. Solving for then yields a general formula:
In this formula, and are absolute pressures. In practice, it is much more convenient to work with the equivalent columns of seawater depth, because the depth can be read off directly from the depth gauge or dive computer. The relationship between pressure and depth is governed by Pascal's law:
Using the SI system with pressures expressed in pascal, we have:
Expressing the pressures in atmospheres yields a convenient formula (1 atm ≡ 101325 Pa):
To simplify the algebra we will define . Combining the general formula and Pascal's law, we have:
so that
Since , the equivalent formula for the imperial system becomes
Substituting R again, and noting that , we have the concrete formulas:
Although not all dive tables are recommended for use in this way, the Bühlmann tables are suitable for use with these kind of calculations. At 27 metres depth the Bühlmann 1986 table (for altitudes of 0–700 m) allows 20 minutes bottom time without requiring a decompression stop, while at 20 metres the no-stop time is 35 minutes. This shows that using EAN36 for a 27-metre dive can give a 75% increase in no-stop bottom time over using air at the same theoretical level of risk of developing symptoms of decompression sickness.
US Navy tables have also been used with equivalent air depth, with similar effect. The calculations are theoretically valid for all Haldanean decompression models.
In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.
Nitrox refers to any gas mixture composed of nitrogen and oxygen. This includes atmospheric air, which is approximately 78% nitrogen, 21% oxygen, and 1% other gases, primarily argon. In the usual application, underwater diving, nitrox is normally distinguished from air and handled differently. The most common use of nitrox mixtures containing oxygen in higher proportions than atmospheric air is in scuba diving, where the reduced partial pressure of nitrogen is advantageous in reducing nitrogen uptake in the body's tissues, thereby extending the practicable underwater dive time by reducing the decompression requirement, or reducing the risk of decompression sickness.
Pressure is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure is the pressure relative to the ambient pressure.
In physics and mechanics, torque is the rotational analogue of linear force. It is also referred to as the moment of force. It describes the rate of change of angular momentum that would be imparted to an isolated body.
Trimix is a breathing gas consisting of oxygen, helium and nitrogen and is used in deep commercial diving, during the deep phase of dives carried out using technical diving techniques, and in advanced recreational diving.
In a mixture of gases, each constituent gas has a partial pressure which is the notional pressure of that constituent gas as if it alone occupied the entire volume of the original mixture at the same temperature. The total pressure of an ideal gas mixture is the sum of the partial pressures of the gases in the mixture.
The ideal gas law, also called the general gas equation, is the equation of state of a hypothetical ideal gas. It is a good approximation of the behavior of many gases under many conditions, although it has several limitations. It was first stated by Benoît Paul Émile Clapeyron in 1834 as a combination of the empirical Boyle's law, Charles's law, Avogadro's law, and Gay-Lussac's law. The ideal gas law is often written in an empirical form:
The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. At 20 °C (68 °F), the speed of sound in air is about 343 metres per second, or one kilometre in 2.91 s or one mile in 4.69 s. It depends strongly on temperature as well as the medium through which a sound wave is propagating. At 0 °C (32 °F), the speed of sound in air is about 331 m/s. More simply, the speed of sound is how fast vibrations travel.
In mathematics, a generating function is a way of encoding an infinite sequence of numbers by treating them as the coefficients of a formal power series. This series is called the generating function of the sequence. Unlike an ordinary series, the formal power series is not required to converge: in fact, the generating function is not actually regarded as a function, and the "variable" remains an indeterminate. Generating functions were first introduced by Abraham de Moivre in 1730, in order to solve the general linear recurrence problem. One can generalize to formal power series in more than one indeterminate, to encode information about infinite multi-dimensional arrays of numbers.
Technical diving is scuba diving that exceeds the agency-specified limits of recreational diving for non-professional purposes. Technical diving may expose the diver to hazards beyond those normally associated with recreational diving, and to a greater risk of serious injury or death. The risk may be reduced by appropriate skills, knowledge and experience, and by using suitable equipment and procedures. The skills may be developed through appropriate specialised training and experience. The equipment involves breathing gases other than air or standard nitrox mixtures, and multiple gas sources.
A breathing gas is a mixture of gaseous chemical elements and compounds used for respiration. Air is the most common and only natural breathing gas, but other mixtures of gases, or pure oxygen, are also used in breathing equipment and enclosed habitats such as scuba equipment, surface supplied diving equipment, recompression chambers, high-altitude mountaineering, high-flying aircraft, submarines, space suits, spacecraft, medical life support and first aid equipment, and anaesthetic machines.
The gravity of Earth, denoted by g, is the net acceleration that is imparted to objects due to the combined effect of gravitation and the centrifugal force . It is a vector quantity, whose direction coincides with a plumb bob and strength or magnitude is given by the norm .
Argox is the informal name for a scuba diving breathing gas consisting of argon and oxygen. Occasionally the term argonox has been used to mean the same mix. The blend may consist of varying fractions of argon and oxygen, depending on its intended use. The mixture is made with the same gas blending techniques used to make nitrox, except that for argox, the argon is added to the initial pure oxygen partial-fill, instead of air.
The Bühlmann decompression algorithm is a mathematical model (algorithm) of the way in which inert gases enter and leave the human body as the ambient pressure changes. Versions are used to create Bühlmann decompression tables and in personal dive computers to compute no-decompression limits and decompression schedules for dives in real-time. These decompression tables allow divers to plan the depth and duration for dives and the required decompression stops.
Equivalent narcotic depth (END) (historically also equivalent nitrogen depth) is used in technical diving as a way of estimating the narcotic effect of a breathing gas mixture, such as nitrox, heliox or trimix. The method is used, for a given breathing gas mix and dive depth, to calculate the equivalent depth which would produce about the same narcotic effect when breathing air.
In mathematics, infinite compositions of analytic functions (ICAF) offer alternative formulations of analytic continued fractions, series, products and other infinite expansions, and the theory evolving from such compositions may shed light on the convergence/divergence of these expansions. Some functions can actually be expanded directly as infinite compositions. In addition, it is possible to use ICAF to evaluate solutions of fixed point equations involving infinite expansions. Complex dynamics offers another venue for iteration of systems of functions rather than a single function. For infinite compositions of a single function see Iterated function. For compositions of a finite number of functions, useful in fractal theory, see Iterated function system.
An electropermanent magnet or EPM is a type of permanent magnet in which the external magnetic field can be switched on or off by a pulse of electric current in a wire winding around part of the magnet. The magnet consists of two sections, one of "hard" magnetic material and one of "soft" material. The direction of magnetization in the latter piece can be switched by a pulse of current in a wire winding about the former. When the magnetically soft and hard materials have opposing magnetizations, the magnet produces no net external field across its poles, while when their direction of magnetization is aligned the magnet produces an external magnetic field.
The Interspiro DCSC is a semi-closed circuit nitrox rebreather manufactured by Interspiro of Sweden for military applications. Interspiro was formerly a division of AGA and has been manufacturing self-contained breathing apparatus for diving, firefighting and rescue applications since the 1950s.
John Morgan Wells was a marine biologist, and physiologist involved in the development of decompression systems for deep diving, and the use of nitrox as a breathing gas for diving. He is known for developing the widely used NOAA Nitrox I and II mixtures and their decompression tables in the late 1970s, the deep diving mixture of oxygen, helium, and nitrogen known as NOAA Trimix I, for research in undersea habitats, where divers live and work under pressure for extended periods, and for training diving physicians and medical technicians in hyperbaric medicine.
There is a strong scientific consensus that greenhouse effect due to carbon dioxide is a main driver of climate change. Following is an illustrative model meant for a pedagogical purpose, showing the main physical determinants of the effect.
{{cite journal}}
: CS1 maint: unfit URL (link){{cite journal}}
: CS1 maint: unfit URL (link){{cite book}}
: CS1 maint: unfit URL (link)