American Academy of Underwater Sciences

Last updated
American Academy of Underwater Sciences
AbbreviationAAUS
Founded atCalifornia
HeadquartersMobile, AL 36691-9067
Region served
United States
ServicesDevelopment of scientific diving standards and procedures, funding of research and internships.
FieldsScientific diving, underwater science.
Membership (2022)
149 organizational members
President
Jessica Keller
Website www.aaus.org

The American Academy of Underwater Sciences (AAUS) is a group of scientific organizations and individual members who conduct scientific and educational activities underwater. It was organized in 1977 and incorporated in the State of California in 1983.

Contents

Purpose and activities

The mission of the AAUS is to facilitate the development of safe and productive scientific divers through education, research, advocacy, and the advancement of standards for scientific diving practices, certifications, and operations.

The AAUS administrates the AAUS Foundation, which is a 501c3 charity to provide internships and scholarships to students who study scientific diving or use scientific diving as a research tool. [1]

Scientific diving standards

The AAUS is responsible for the promulgation of the AAUS Standards for Scientific Diving Certification and Operation of Scientific Diving Programs. [2] [3] [4] These are the consensual guidelines for scientific diving programs in the US, and are recognized by Occupational Safety and Health Administration as the "Standard" for scientific diving. These standards are followed by all AAUS Organizational Members allowing for reciprocity between institutions. Each institution is responsible for upholding the standards within its program and among its divers. The AAUS peer reviews the standards on a regular basis, so they represent the consensus of the scientific diving community and state-of-the-art technologies.

Exemption from commercial diving regulations

In 1975 the United Brotherhood of Carpenters and Joiners of America petitioned for an emergency temporary standard be issued with respect to occupational diving operations. The ETS issued on June 15, 1976, was to be effective from July 15 but was challenged in the U.S. Court of Appeals by several diving contractors, and was withdrawn that November. A permanent standard for commercial diving became effective on 20 October 1977, but it did not consider the needs of scientific diving. The scientific diving community was unable to operate as previously, and in 1977 united to form the American Academy of Underwater Sciences (AAUS) [5]

Publications

Awards

Library

Many of the AAUS publications were available online at the Rubicon Research Repository. [7]

Related Research Articles

<span class="mw-page-title-main">Diving activities</span> Things people do while diving underwater

Diving activities are the things people do while diving underwater. People may dive for various reasons, both personal and professional. While a newly qualified recreational diver may dive purely for the experience of diving, most divers have some additional reason for being underwater. Recreational diving is purely for enjoyment and has several specialisations and technical disciplines to provide more scope for varied activities for which specialist training can be offered, such as cave diving, wreck diving, ice diving and deep diving. Several underwater sports are available for exercise and competition.

<span class="mw-page-title-main">Recreational diving</span> Diving for the purpose of leisure and enjoyment, usually when using scuba equipment

Recreational diving or sport diving is diving for the purpose of leisure and enjoyment, usually when using scuba equipment. The term "recreational diving" may also be used in contradistinction to "technical diving", a more demanding aspect of recreational diving which requires more training and experience to develop the competence to reliably manage more complex equipment in the more hazardous conditions associated with the disciplines. Breath-hold diving for recreation also fits into the broader scope of the term, but this article covers the commonly used meaning of scuba diving for recreational purposes, where the diver is not constrained from making a direct near-vertical ascent to the surface at any point during the dive, and risk is considered low.

<span class="mw-page-title-main">Professional diving</span> Underwater diving where divers are paid for their work

Professional diving is underwater diving where the divers are paid for their work. Occupational diving has a similar meaning and applications. The procedures are often regulated by legislation and codes of practice as it is an inherently hazardous occupation and the diver works as a member of a team. Due to the dangerous nature of some professional diving operations, specialized equipment such as an on-site hyperbaric chamber and diver-to-surface communication system is often required by law, and the mode of diving for some applications may be regulated.

<span class="mw-page-title-main">Police diving</span> A branch of professional diving carried out by police services

Police diving is a branch of professional diving carried out by police services. Police divers are usually professional police officers, and may either be employed full-time as divers or as general water police officers, or be volunteers who usually serve in other units but are called in if their diving services are required.

<span class="mw-page-title-main">Diving medicine</span> Diagnosis, treatment and prevention of disorders caused by underwater diving

Diving medicine, also called undersea and hyperbaric medicine (UHB), is the diagnosis, treatment and prevention of conditions caused by humans entering the undersea environment. It includes the effects on the body of pressure on gases, the diagnosis and treatment of conditions caused by marine hazards and how aspects of a diver's fitness to dive affect the diver's safety. Diving medical practitioners are also expected to be competent in the examination of divers and potential divers to determine fitness to dive.

<span class="mw-page-title-main">Scuba diving</span> Swimming underwater, breathing gas carried by the diver

Scuba diving is a mode of underwater diving whereby divers use breathing equipment that is completely independent of a surface breathing gas supply, and therefore has a limited but variable endurance. The name scuba is an acronym for "Self-Contained Underwater Breathing Apparatus" and was coined by Christian J. Lambertsen in a patent submitted in 1952. Scuba divers carry their own source of breathing gas, usually compressed air, affording them greater independence and movement than surface-supplied divers, and more time underwater than free divers. Although the use of compressed air is common, a gas blend with a higher oxygen content, known as enriched air or nitrox, has become popular due to the reduced nitrogen intake during long or repetitive dives. Also, breathing gas diluted with helium may be used to reduce the effects of nitrogen narcosis during deeper dives.

<span class="mw-page-title-main">Underwater diving</span> Descending below the surface of the water to interact with the environment

Underwater diving, as a human activity, is the practice of descending below the water's surface to interact with the environment. It is also often referred to as diving, an ambiguous term with several possible meanings, depending on context. Immersion in water and exposure to high ambient pressure have physiological effects that limit the depths and duration possible in ambient pressure diving. Humans are not physiologically and anatomically well-adapted to the environmental conditions of diving, and various equipment has been developed to extend the depth and duration of human dives, and allow different types of work to be done.

Rubicon Foundation, Inc. is a non-profit organization devoted to contributing to the interdependent dynamic between research, exploration, science and education. The foundation, started in 2002, is located in Durham, North Carolina and is primarily supported by donations and grants. Funding has included the Office of Naval Research from 2008 to 2010. Gibson, Dunn & Crutcher has provided pro bono services to assist in copyright searches and support.

<span class="mw-page-title-main">Scientific diving</span> Use of diving techniques in the pursuit of scientific knowledge

Scientific diving is the use of underwater diving techniques by scientists to perform work underwater in the direct pursuit of scientific knowledge. The legal definition of scientific diving varies by jurisdiction. Scientific divers are normally qualified scientists first and divers second, who use diving equipment and techniques as their way to get to the location of their fieldwork. The direct observation and manipulation of marine habitats afforded to scuba-equipped scientists have transformed the marine sciences generally, and marine biology and marine chemistry in particular. Underwater archeology and geology are other examples of sciences pursued underwater. Some scientific diving is carried out by universities in support of undergraduate or postgraduate research programs, and government bodies such as the United States Environmental Protection Agency and the UK Environment Agency carry out scientific diving to recover samples of water, marine organisms and sea, lake or riverbed material to examine for signs of pollution.

Diving safety officer (DSO) is the title held by the person who administers a United States university's research diving safety program. They serve as a member of the institution's diving control board (DCB), and need broad technical and scientific expertise in research-related diving. Typical qualification includes training and experience as a scientific diver, regular membership in the American Academy of Underwater Sciences (AAUS), and qualification as a diving instructor from an internationally recognized certifying agency.

<span class="mw-page-title-main">Diver training</span> Processes to develop the skills and knowledge to dive safely underwater

Diver training is the set of processes through which a person learns the necessary and desirable skills to safely dive underwater within the scope of the diver training standard relevant to the specific training programme. Most diver training follows procedures and schedules laid down in the associated training standard, in a formal training programme, and includes relevant foundational knowledge of the underlying theory, including some basic physics, physiology and environmental information, practical skills training in the selection and safe use of the associated equipment in the specified underwater environment, and assessment of the required skills and knowledge deemed necessary by the certification agency to allow the newly certified diver to dive within the specified range of conditions at an acceptable level of risk. Recognition of prior learning is allowed in some training standards.

<span class="mw-page-title-main">Diving instructor</span> Person who trains and assesses underwater divers

A diving instructor is a person who trains, and usually also assesses competence, of underwater divers. This includes freedivers, recreational divers including the subcategory technical divers, and professional divers which includes military, commercial, public safety and scientific divers.

<span class="mw-page-title-main">Robert William Hamilton Jr.</span> American physiologist and researcher in hyperbaric physiology.

Robert William Hamilton Jr., known as Bill, was an American physiologist known for his work in hyperbaric physiology.

Diving safety is the aspect of underwater diving operations and activities concerned with the safety of the participants. The safety of underwater diving depends on four factors: the environment, the equipment, behaviour of the individual diver and performance of the dive team. The underwater environment can impose severe physical and psychological stress on a diver, and is mostly beyond the diver's control. Equipment is used to operate underwater for anything beyond very short periods, and the reliable function of some of the equipment is critical to even short-term survival. Other equipment allows the diver to operate in relative comfort and efficiency, or to remain healthy over the longer term. The performance of the individual diver depends on learned skills, many of which are not intuitive, and the performance of the team depends on competence, communication, attention and common goals.

<span class="mw-page-title-main">History of scuba diving</span>

The history of scuba diving is closely linked with the history of the equipment. By the turn of the twentieth century, two basic architectures for underwater breathing apparatus had been pioneered; open-circuit surface supplied equipment where the diver's exhaled gas is vented directly into the water, and closed-circuit breathing apparatus where the diver's carbon dioxide is filtered from the exhaled breathing gas, which is then recirculated, and more gas added to replenish the oxygen content. Closed circuit equipment was more easily adapted to scuba in the absence of reliable, portable, and economical high pressure gas storage vessels. By the mid-twentieth century, high pressure cylinders were available and two systems for scuba had emerged: open-circuit scuba where the diver's exhaled breath is vented directly into the water, and closed-circuit scuba where the carbon dioxide is removed from the diver's exhaled breath which has oxygen added and is recirculated. Oxygen rebreathers are severely depth limited due to oxygen toxicity risk, which increases with depth, and the available systems for mixed gas rebreathers were fairly bulky and designed for use with diving helmets. The first commercially practical scuba rebreather was designed and built by the diving engineer Henry Fleuss in 1878, while working for Siebe Gorman in London. His self contained breathing apparatus consisted of a rubber mask connected to a breathing bag, with an estimated 50–60% oxygen supplied from a copper tank and carbon dioxide scrubbed by passing it through a bundle of rope yarn soaked in a solution of caustic potash. During the 1930s and all through World War II, the British, Italians and Germans developed and extensively used oxygen rebreathers to equip the first frogmen. In the U.S. Major Christian J. Lambertsen invented a free-swimming oxygen rebreather. In 1952 he patented a modification of his apparatus, this time named SCUBA, an acronym for "self-contained underwater breathing apparatus," which became the generic English word for autonomous breathing equipment for diving, and later for the activity using the equipment. After World War II, military frogmen continued to use rebreathers since they do not make bubbles which would give away the presence of the divers. The high percentage of oxygen used by these early rebreather systems limited the depth at which they could be used due to the risk of convulsions caused by acute oxygen toxicity.

<span class="mw-page-title-main">Outline of underwater diving</span> List of articles related to underwater diving grouped by topical relevance

The following outline is provided as an overview of and topical guide to underwater diving:

<i>NOAA Diving Manual</i> Training and operations manual for scientific diving

The NOAA Diving Manual: Diving for Science and Technology is a book originally published by the US Department of Commerce for use as training and operational guidance for National Oceanographic and Atmospheric Administration divers. NOAA also publish a Diving Standards and Safety Manual (NDSSM), which describes the minimum safety standards for their diving operations. Several editions of the diving manual have been published, and several editors and authors have contributed over the years. The book is widely used as a reference work by professional and recreational divers.

Diving regulations are the stipulations of the delegated legislation regarding the practice of underwater diving. They apply within the national territory and territorial waters of a country. In most cases they apply to occupational diving, but in a few cases also to recreational diving. There are exemptions for recreational diving in some cases where it is recognised as a self-regulated industry. Offshore diving is generally outside the scope of diving regulations, and tends to be self-regulated through voluntary membership of industry organisations.

Karl E. Huggins is an American decompression researcher and author of a set of air decompression tables for reduced risk and multi-level repetitive diving based on the US Navy tables modified to avoid Doppler ultrasound detectable vascular bubble production. He developed the algorithm used by the first commercially successful microprocessor-based decompression computer, the Orca Edge, based on the US Navy decompression algorithm derived by Robert D. Workman, but taking all six tissue compartments into account when calculating residual nitrogen for multi-level and repetitive dives.

References

  1. "American Academy of Underwater Sciences - Home" . Retrieved 14 May 2022.
  2. AAUS. "The AAUS Standards for Scientific Diving Certification and Operation of Scientific Diving Programs". Archived from the original on 2008-05-18. Retrieved 2008-07-13.
  3. AAUS. "A brief history of the AAUS exemption". Archived from the original on 2008-05-18. Retrieved 2008-07-13.
  4. Sharkey, P.; Austin, L. (1983). "Federal Regulation Of Scientific Diving: Two Scientific Divers' Perspective". Proceedings OCEANS '83. pp. 460–463. doi:10.1109/OCEANS.1983.1152066. S2CID   23322218.
  5. Schwarck, Nathan T. "Scientific Diving History and the American Academy of Underwater Sciences" (PDF). Retrieved 4 June 2020.
  6. "Conrad Limbaugh Award for Scientific Diving Leadership". www.aaus.org. Retrieved 23 October 2024.
  7. Rubicon Foundation. "American Academy of Underwater Sciences Collection". Archived from the original on July 23, 2012. Retrieved 2008-07-13.{{cite web}}: CS1 maint: unfit URL (link)