Incident pit

Last updated

An incident pit is a conceptual pit with sides that become steeper over time and with each new incident until a point of no return is reached. As time moves forward, seemingly innocuous incidents push a situation further toward a bad situation and escape from the incident pit becomes more difficult. An incident pit may or may not have a point of no return such as an event horizon.

Contents

It is a term used by divers, as well as engineers, medical personnel, and technology management personnel, to describe these situations and more importantly to avoid becoming ensnared. [1] [2]

British Sub Aqua Club Diving Officers Conference 1973

The Incident Pit concept was introduced as part of British Sub Aqua Club Diving Officer's Conference Report on 8 December 1973 by E John Towse, Chairman of the BSAC Diving Incidents Panel. The Pit was first described by Towse at a Diving Medical Conference at Stoke Mandeville Hospital organised by Dr John Betts earlier in 1973. The following is an extract from the report.[ excessive quote ]

Diving incident pit 11I20IncidentPitDiagramColour 0002.jpg
Diving incident pit
The diagram shown is something that has evolved from studying many incident reports. It is important to realize that the shape of the "Pit" is in no way connected with the depth of water and that all stages can occur in very shallow water or even on the surface.
The basic concept is that as an incident develops it becomes progressively harder to extract yourself or your companion from a worsening situation. In other words the farther you become "dragged" into the pit the steeper the sides become and a return to the "normal" situation is correspondingly more difficult.
Underwater swimming may be considered to be an activity where, due to the environment and equipment plus human nature, there is a continuing process of minor incidents - illustrated by the top area of the pit. When one of these minor incidents becomes difficult to cope with, or is further complicated by other problems usually arriving all at the same time, the situation tends to become an emergency and the first feelings of fear begin to appear - illustrated by the next layer of the pit. If the emergency is not controlled at this early stage then panic, the diver's worst enemy, leads to almost total lack of control and the emergency becomes a serious problem - illustrated by the third layer of the pit. Progression through to the final stage of the pit from the panic situation is usually very rapid and extremely difficult to reverse and a fatality may be inevitable - illustrated by the final black stage of the pit.
The time for an incident to evolve in this way can be as short as 30 seconds or less, illustrated by the straight line passing directly through all the stages in the centre of the pit, or it may be more a slower process building up over a period of one minute or more [maybe a week!] - illustrated by the curving lines running from the [top] extremities of the pit. In this later case it represents the slowly evolving incident when the diver or group may not be aware that a serious situation is in fact developing. Between 30 seconds and about 1 minute is representative of the time required to take the necessary decisions and actions when it becomes obvious that an incident is about to happen.
The final conclusion is simple: never allow incidents to develop beyond the top normal layer of activity. If you find yourself being drawn into the second stage - the emergency - then use all of your training skill and experience to extract yourself and your companions from the pit before the sides become too steep!

Pushing Ice , by Alastair Reynolds, uses incident pits as a key plot points in the context of an Interstellar Ark.

See also

Related Research Articles

<span class="mw-page-title-main">Ice diving</span> Underwater diving under ice

Ice diving is a type of penetration diving where the dive takes place under ice. Because diving under ice places the diver in an overhead environment typically with only a single entry/exit point, it requires special procedures and equipment. Ice diving is done for purposes of recreation, scientific research, public safety and other professional or commercial reasons.

<span class="mw-page-title-main">Technical diving</span> Extended scope recreational diving

Technical diving is scuba diving that exceeds the agency-specified limits of recreational diving for non-professional purposes. Technical diving may expose the diver to hazards beyond those normally associated with recreational diving, and to a greater risk of serious injury or death. Risk may be reduced via appropriate skills, knowledge, and experience. Risk can also be managed by using suitable equipment and procedures. The skills may be developed through specialized training and experience. The equipment involves breathing gases other than air or standard nitrox mixtures, and multiple gas sources.

<span class="mw-page-title-main">Cave diving</span> Diving in water-filled caves

Cave-diving is underwater diving in water-filled caves. It may be done as an extreme sport, a way of exploring flooded caves for scientific investigation, or for the search for and recovery of divers or, as in the 2018 Thai cave rescue, other cave users. The equipment used varies depending on the circumstances, and ranges from breath hold to surface supplied, but almost all cave-diving is done using scuba equipment, often in specialised configurations with redundancies such as sidemount or backmounted twinset. Recreational cave-diving is generally considered to be a type of technical diving due to the lack of a free surface during large parts of the dive, and often involves planned decompression stops. A distinction is made by recreational diver training agencies between cave-diving and cavern-diving, where cavern diving is deemed to be diving in those parts of a cave where the exit to open water can be seen by natural light. An arbitrary distance limit to the open water surface may also be specified.

<span class="mw-page-title-main">Scuba diving</span> Swimming underwater, breathing gas carried by the diver

Scuba diving is a mode of underwater diving whereby divers use breathing equipment that is completely independent of a surface breathing gas supply, and therefore has a limited but variable endurance. The name scuba is an anacronym for "Self-Contained Underwater Breathing Apparatus" and was coined by Christian J. Lambertsen in a patent submitted in 1952. Scuba divers carry their own source of breathing gas, usually compressed air, affording them greater independence and movement than surface-supplied divers, and more time underwater than free divers. Although the use of compressed air is common, a gas blend with a higher oxygen content, known as enriched air or nitrox, has become popular due to the reduced nitrogen intake during long or repetitive dives. Also, breathing gas diluted with helium may be used to reduce the effects of nitrogen narcosis during deeper dives.

<span class="mw-page-title-main">Diver rescue</span> Rescue of a distressed or incapacitated diver

Diver rescue, usually following an accident, is the process of avoiding or limiting further exposure to diving hazards and bringing a diver to a place of safety. A safe place generally means a place where the diver cannot drown, such as a boat or dry land, where first aid can be administered and from which professional medical treatment can be sought. In the context of surface supplied diving, the place of safety for a diver with a decompression obligation is often the diving bell.

<span class="mw-page-title-main">Solo diving</span> Recreational diving without a dive buddy

Solo diving is the practice of self-sufficient underwater diving without a "dive buddy", particularly with reference to scuba diving, but the term is also applied to freediving. Professionally, solo diving has always been an option which depends on operational requirements and risk assessment. Surface supplied diving and atmospheric suit diving are commonly single diver underwater activities but are accompanied by an on-surface support team dedicated to the safety of the diver, including a stand-by diver, and are not considered solo diving in this sense.

Buddy breathing is a rescue technique used in scuba diving "out-of-gas" emergencies, when two divers share one demand valve, alternately breathing from it. Techniques have been developed for buddy breathing from both twin-hose and single hose regulators, but to a large extent it has been superseded by safer and more reliable techniques using additional equipment, such as the use of a bailout cylinder or breathing through a secondary demand valve on the rescuer's regulator.

The Helicopter Aircrew Breathing Device or HABD is an item of survival equipment which was adopted by the military to increase the chances of survival for embarked troops and aircrew trapped in an aircraft which has ditched. It is a form of self contained underwater breathing apparatus (scuba) which consists of a small cylinder pressurized with atmospheric air and first stage regulator worn in a pouch on the user's life vest; a pressure gauge; an air hose and a second-stage demand regulator that delivers air to the user's mouth when the internal pressure of the mouthpiece drops during inhalation, and is ruggedly constructed to survive impacts associated with emergency ditchings.

<span class="mw-page-title-main">Buddy diving</span> Practice of mutual monitoring and assistance between two divers

Buddy diving is the use of the buddy system by scuba divers. It is a set of safety procedures intended to improve the chances of avoiding or surviving accidents in or under water by having divers dive in a group of two or sometimes three. When using the buddy system, members of the group dive together and co-operate with each other, so that they can help or rescue each other in the event of an emergency. This is most effective if both divers are competent in all relevant skills and sufficiently aware of the situation that they can respond in time, which is a matter of both attitude and competence.

A silt out or silt-out is a situation when underwater visibility is rapidly reduced to functional zero by disturbing fine particulate deposits on the bottom or other solid surfaces. This can happen in scuba and surface supplied diving, or in ROV and submersible operations, and is a more serious hazard for scuba diving in penetration situations where the route to the surface may be obscured.

<span class="mw-page-title-main">Commercial offshore diving</span> Professional diving in support of the oil and gas industry

Commercial offshore diving, sometimes shortened to just offshore diving, generally refers to the branch of commercial diving, with divers working in support of the exploration and production sector of the oil and gas industry in places such as the Gulf of Mexico in the United States, the North Sea in the United Kingdom and Norway, and along the coast of Brazil. The work in this area of the industry includes maintenance of oil platforms and the building of underwater structures. In this context "offshore" implies that the diving work is done outside of national boundaries. Technically it also refers to any diving done in the international offshore waters outside of the territorial waters of a state, where national legislation does not apply. Most commercial offshore diving is in the Exclusive Economic Zone of a state, and much of it is outside the territorial waters. Offshore diving beyond the EEZ does also occur, and is often for scientific purposes.

<span class="mw-page-title-main">Emergency ascent</span> An ascent to the surface by a diver in an emergency

An emergency ascent is an ascent to the surface by a diver in an emergency. More specifically, it refers to any of several procedures for reaching the surface in the event of an out-of-gas emergency, generally while scuba diving.

Human factors are the physical or cognitive properties of individuals, or social behavior which is specific to humans, and influence functioning of technological systems as well as human-environment equilibria. The safety of underwater diving operations can be improved by reducing the frequency of human error and the consequences when it does occur. Human error can be defined as an individual's deviation from acceptable or desirable practice which culminates in undesirable or unexpected results.

Dive safety is primarily a function of four factors: the environment, equipment, individual diver performance and dive team performance. The water is a harsh and alien environment which can impose severe physical and psychological stress on a diver. The remaining factors must be controlled and coordinated so the diver can overcome the stresses imposed by the underwater environment and work safely. Diving equipment is crucial because it provides life support to the diver, but the majority of dive accidents are caused by individual diver panic and an associated degradation of the individual diver's performance. - M.A. Blumenberg, 1996

<span class="mw-page-title-main">Fitness to dive</span> Medical fitness of a person to function safely underwater under pressure

Fitness to dive, specifically the medical fitness to dive, is the medical and physical suitability of a diver to function safely in the underwater environment using underwater diving equipment and procedures. Depending on the circumstances, it may be established with a signed statement by the diver that they do not have any of the listed disqualifying conditions. The diver must be able to fulfill the ordinary physical requirements of diving as per the detailed medical examination by a physician registered as a medical examiner of divers following a procedural checklist. A legal document of fitness to dive issued by the medical examiner is also necessary.

<span class="mw-page-title-main">Doing It Right (scuba diving)</span> Technical diving safety philosophy

Doing It Right (DIR) is a holistic approach to scuba diving that encompasses several essential elements, including fundamental diving skills, teamwork, physical fitness, and streamlined and minimalistic equipment configurations. DIR proponents maintain that through these elements, safety is improved by standardizing equipment configuration and dive-team procedures for preventing and dealing with emergencies.

Scuba diving fatalities are deaths occurring while scuba diving or as a consequence of scuba diving. The risks of dying during recreational, scientific or commercial diving are small, and on scuba, deaths are usually associated with poor gas management, poor buoyancy control, equipment misuse, entrapment, rough water conditions and pre-existing health problems. Some fatalities are inevitable and caused by unforeseeable situations escalating out of control, though the majority of diving fatalities can be attributed to human error on the part of the victim.

Diving safety is the aspect of underwater diving operations and activities concerned with the safety of the participants. The safety of underwater diving depends on four factors: the environment, the equipment, behaviour of the individual diver and performance of the dive team. The underwater environment can impose severe physical and psychological stress on a diver, and is mostly beyond the diver's control. Equipment is used to operate underwater for anything beyond very short periods, and the reliable function of some of the equipment is critical to even short-term survival. Other equipment allows the diver to operate in relative comfort and efficiency, or to remain healthy over the longer term. The performance of the individual diver depends on learned skills, many of which are not intuitive, and the performance of the team depends on competence, communication, attention and common goals.

Diving hazards are the agents or situations that pose a threat to the underwater diver or their equipment. Divers operate in an environment for which the human body is not well suited. They face special physical and health risks when they go underwater or use high pressure breathing gas. The consequences of diving incidents range from merely annoying to rapidly fatal, and the result often depends on the equipment, skill, response and fitness of the diver and diving team. The classes of hazards include the aquatic environment, the use of breathing equipment in an underwater environment, exposure to a pressurised environment and pressure changes, particularly pressure changes during descent and ascent, and breathing gases at high ambient pressure. Diving equipment other than breathing apparatus is usually reliable, but has been known to fail, and loss of buoyancy control or thermal protection can be a major burden which may lead to more serious problems. There are also hazards of the specific diving environment, and hazards related to access to and egress from the water, which vary from place to place, and may also vary with time. Hazards inherent in the diver include pre-existing physiological and psychological conditions and the personal behaviour and competence of the individual. For those pursuing other activities while diving, there are additional hazards of task loading, of the dive task and of special equipment associated with the task.

Investigation of diving accidents includes investigations into the causes of reportable incidents in professional diving and recreational diving accidents, usually when there is a fatality or litigation for gross negligence.

A diving emergency or underwater diving emergency is an emergency that involves an underwater diver. The nature of an emergency requires action to be taken to prevent or avoid death, injury, or serious damage to property or the environment. In the case of diving emergencies, the risk is generally of death or injury to the diver, while diving or in the water before or after diving.

References

  1. Nichols, David (16 October 2007). "The Incident Pit". DITY Newsletter. 3 (41).
  2. Mathiew, Daniel: Handbook on Hyperbaric Medicine, page 699. Springer, 2006 ISBN   1-4020-4376-7