Fitness to dive

Last updated
PC-based spirometer output PCBasedSpirometer.jpg
PC-based spirometer output
Hand held spirometer with display and transducer Handheld spirometer.jpg
Hand held spirometer with display and transducer

Fitness to dive, specifically the medical fitness to dive, is the medical and physical suitability of a diver to function safely in the underwater environment using underwater diving equipment and procedures. Depending on the circumstances, it may be established with a signed statement by the diver that they do not have any of the listed disqualifying conditions. The diver must be able to fulfill the ordinary physical requirements of diving as per the detailed medical examination by a physician registered as a medical examiner of divers following a procedural checklist. A legal document of fitness to dive issued by the medical examiner is also necessary.

Contents

The most important medical is the one before starting diving as the diver can be screened to prevent exposure in the event of an imminent danger. The other important medicals are after some significant illness, where medical intervention is needed and has to be done by a doctor proficient in diving medicine, and can not be done by prescriptive rules. [1]

Psychological factors can affect fitness to dive, particularly where they affect response to emergencies, or risk-taking behavior. The use of medical and recreational drugs can also influence fitness to dive, both for physiological and behavioral reasons. In some cases, prescription drug use might have a net positive effect when viably treating an underlying condition. However, the side effects of viable medication frequently have undesirable influences on the fitness of a diver. Most cases of recreational drug use result in an impaired fitness to dive, and a significantly increased risk of sub-optimal response to emergencies.

General requirements

The medical, mental and physical fitness of professional divers is important for safety at work for the diver and the other members of the diving team. [2]

As a general principle, fitness to dive is dependent on the absence of conditions which would constitute an unacceptable risk for the diver, and for professional divers, to any member of the diving team. General physical fitness requirements are also often specified by a certifying agency, and are usually related to ability to swim and perform the activities that are associated with the relevant type of diving.

The general hazards of diving are much the same for recreational divers and professional divers, but the risks vary with the diving procedures used. These risks are reduced by appropriate skills and equipment.

Medical fitness to dive generally implies that the diver has no known medical conditions that limit the ability to do the job, jeopardize the safety of the diver or the team, that might get worse as an effect of diving, or predispose the diver to diving or occupational illness. [2]

There are three types of diver medical assessment: initial assessments, routine re-assessments and special re-assessments after injury or decompression illness. [2]

Fitness of recreational divers

Standards for fitness to dive are specified by the diver certification agency which will issue certification to the diver after training. Some agencies consider assessment of fitness to dive as largely the responsibility of the individual diver, others require a registered medical practitioner to make an examination based on specified criteria. These criteria are generally common to certification agencies, and are based on the criteria for professional divers, though the standards may be relaxed.

The purpose of establishing fitness to dive is to reduce risk of a range of diving related medical conditions associated with known or suspected pre-existing conditions, and is not generally an indication of the person's psychological suitability for diving and has no reference to their diving skills.

A certification of fitness to dive is generally for a specified period, (usually a year or less), and may specify limitations or restrictions.

In most cases, a statement or certificate of fitness to dive for recreational divers is only required during training courses. Ordinary recreational diving is at the diver's own risk. The medical literature, anecdotal evidence and small-scale surveys suggest that a significant part of the recreational scuba diving population may have chronic medical conditions that affect their fitness to dive according to the Recreational Scuba Training Council's guidelines, are aware of these, and continue to dive. It has not been established whether the risk associated with these conditions is clinically significant or whether repeated screening is necessary or desirable, or whether the risks traditionally associated with some contraindicated conditions are realistic. It is also not clear whether these conditions were generally present at initial screening but not known or disclosed, or whether they developed afterwards, and if so, whether in some cases they are consequences of diving injury. [3] [4]

In rare cases, state or national legislation may require recreational divers to be examined by registered medical examiners of divers. [5] In France, Norway, Portugal and Israel. recreational divers are required by regulation to be examined for medical fitness to dive. [6]

Standard forms for recreational diving

Recreational diver certification agencies may provide a standard document [7] which the diver is required to complete, specifying whether any of a range of conditions apply to the diver. If no disqualifying conditions are admitted, the diver is considered to be fit to dive. Occasionally divers have provided deliberately falsified medical forms, stating that they do not have conditions which would disqualify them from diving, sometimes with fatal consequences.[ citation needed ]

The RSTC medical statement is used by all RSTC member affiliates: RSTC Canada, RSTC, RSTC-Europe and IAC (former Barakuda), FIAS, ANIS, SSI Europe, PADI Norway, PADI Sweden, PADI Asia Pacific, PADI Japan, PADI Canada, PADI Americas, PADI Worldwide, IDD Europe, YMCA, IDEA, PDIC, SSI International, BSAC Japan and NASDS Japan. [8]

Other certification agencies may rely on the competence of a general practitioner to assess fitness to dive, either with or without an agency specified checklist.[ citation needed ]

In some cases the certification agency may require a medical examination by a registered medical examiner of divers.[ citation needed ]

In 2020 the revised 'RSTC Medical Declaration Form' and 'Notes for Physicians' (diving medical guidance) were published, following a three-year review by the 'Diver Medical Screen Committee'. [9] (DMSC) comprises a team of internationally respected diving medicine experts; Dr Nick Bird, Dr Oliver Firth, (the late) Professor Tony Frew, Dr Alessandro Marroni, Professor Simon Mitchell, Associate Professor Neal Pollock and Dr Adel Taher.

Fitness of professional divers

The requirements for medical examination and certification of fitness of professional divers is typically regulated by national or state legislation for occupational health and safety [10] [2]

Fitness testing procedures

Typical output from a spirometer of a normal person taking 4 tidal breaths, followed by maximal inspiration and expiration. Corresponding volumes and capacities are noted in the right-hand boxes. Lungvolumes.svg
Typical output from a spirometer of a normal person taking 4 tidal breaths, followed by maximal inspiration and expiration. Corresponding volumes and capacities are noted in the right-hand boxes.
Cardiac stress test Stress test.jpg
Cardiac stress test

Lung function tests

A frequently used test for lung function for divers is spirometry, which measures the amount (volume) and/or speed (flow) of air that can be inhaled and exhaled. Spirometry is an important tool used for generating pneumotachographs, which are helpful in assessing conditions such as asthma, pulmonary fibrosis, cystic fibrosis, and COPD, all of which are contraindications for diving. Sometimes only peak expiratory flow (PEF) is measured, which uses a much simpler apparatus, but is still useful to give an indication of lung overpressure risk.

Cardiac stress test

The cardiac stress test is done with heart stimulation, either by exercise on a treadmill, or pedaling a stationary exercise bicycle ergometer, with the patient connected to an electrocardiogram (or ECG).

The Harvard Step Test is a type of cardiac stress test for detecting and/or diagnosing cardiovascular disease. It also is a good measurement of fitness, and the ability to recover after a strenuous exercise, and is sometimes used as an alternative for the cardiac stress test.

Medical examiner of divers

The most important medical examination is the one before starting diving, as the diver can be screened to prevent exposure when a dangerous condition exists. The other important medicals are after some significant illness, where medical intervention is needed there and has to be done by a doctor who is competent in diving medicine, and can not be done by prescriptive rules. [1] For medical examinations prescribed in terms of occupational health legislation, the examiner may be required to be registered as a specialist in diving medicine, or be registered as competent to make medical examinations on divers, which implies an awareness of the physiological effects of diving and the mechanisms of diving diseases. Standards and levels of specialization and registration vary considerably between countries, and international recognition is limited. [11] In most cases, medical examination for recreational divers is not compulsory, therefore international recognition of medical examiners is not relevant.

Disqualifying conditions

The general principles for disqualification are that diving causes a deterioration in the medical condition and the medical condition presents an excessive risk for a diving injury to both the individual and the diving partner. [7]

There are some conditions that are considered absolute contraindications for diving. Details vary between recreational and professional diving and in different parts of the world. Those listed below are widely recognized.

Permanently disqualifying conditions

Temporarily disqualifying conditions

Any illness requiring drug treatment may constitute a temporary disqualification if either the illness or the drug may compromise diving safety. Sedatives, tranquilizers, antidepressants, antihistamines, anti-diabetic drugs, steroids, anti-hypertensives, anti-epilepsy drugs, alcohol and hallucinatory drugs such as marijuana and LSD may increase risk to the diver. Some drugs which affect brain function have unpredictable effects on a diver exposed to high pressure in deep diving. [13]

Conditions which may disqualify or require restrictions depending on severity and management

Some medical conditions may temporarily or permanently disqualify a person from diving depending on severity and the specific requirements of the registration body. These conditions may also require the diver to restrict the scope of activities or take specific additional precautions. They are also referred to as relative contraindications, and may be acute or chronic.

Asthma

In the past, asthma was generally considered a contraindication for diving due to theoretical concern about an increased risk for pulmonary barotrauma and decompression sickness. The conservative approach was to arbitrarily disqualify asthmatics from diving. This has not stopped asthmatics from diving, and experience in the field and data in the current literature do not support this dogmatic approach. Asthma has a similar prevalence in divers as in the general population. [14]

The theoretical concern for asthmatic divers is that pulmonary obstruction, air trapping and hyperinflation may increase risk for pulmonary barotrauma, and the diver may be exposed to environmental factors that increase the risk of bronchospasm and the development of an acute asthmatic attack which could lead to panic and drowning. As of 2016, there is no epidemiological evidence for an increased relative risk of pulmonary barotrauma, decompression sickness or death among divers with asthma. This evidence only accounts for asthmatics with mild disease and the actual risk for severe or uncontrolled asthmatics, may be higher. [14]

Cancers

Cancers are generally considered a class of abnormal, fast growing and disordered cells which have the potential to spread to other parts of the body. They may occur in virtually any organ or tissue. The effect of a cancer on fitness to dive can vary considerably, and will depend on several factors. If the cancer or the treatment compromise the diver's ability to perform the normal activities associated with diving, including the necessary physical fitness, and particularly cancers or treatments which compromise fitness to withstand the pressure changes, then the diver should abstain from diving until passed as fit by a diving medical practitioner who is aware of the condition. Specific considerations include whether the tumor or treatment affects organs which are directly affected by pressure changes, whether the person's capacity to manage themselves in an emergency is compromised, including mental awareness and judgement, and that diving should not aggravate the disease. Some cancers, such as lung cancer would be an absolute contraindication. [15]

Diabetes

Like asthma, the traditional medical response to diabetes was to declare the person unfit to dive, but in a similar way, a significant number of divers with well-managed diabetes have logged sufficient dives to provide statistical evidence that it can be done at acceptable risk, and the recommendations of diving medical researchers and insurers has changed accordingly. [16] [17]

Current (2016) medical opinion of Divers Alert Network (DAN) and the Diving Diseases Research Centre (DDRC) is that diabetics should not dive if they have any of the following complications:

DAN makes the following recommendations for additional precautions by diabetic divers:

Epilepsy

Epilepsy is a central nervous system disorder in which the person has had at least two seizures, often for no discernible cause. Even if no one with a history of epilepsy dived, a few people would experience their first seizure while diving. As a seizure may involve loss of consciousness, this puts the convulsing diver at significant risk, particularly on scuba with half mask and demand valve, which may become dislodged. [18]

If epilepsy is required to be controlled by medication, diving is contraindicated. A possible acceptable risk would be a history of febrile seizures in infancy, apneic spells or seizures attendant to acute illness such as encephalitis and meningitis, all without recurrence without medication. [12] By 2004 the UK Sport Diving Medical Committee ruled that a person with epilepsy must go 5 years without fits and off medication before being passed to dive. [19] Very little reliable epidemiological evidence exists to suggest that a past history of seizures may correlate with increased risk to recreational scuba divers. [19]

Most objections to allowing people who have a long history of no seizures to dive are largely theoretical, and in many cases entirely unsupported by reliable evidence. [19]

The British Diving Diseases Research Centre (DDRC) recommendation as of 2019 is that if a person previously had epilepsy but has been off medication without seizure for at least five years they may be fit to dive. If the seizures were exclusively nocturnal, this is reduced to three years. Medical advice from a diving doctor is recommended. [21]

The European Diving Technology Committee guidelines for fitness to dive states that epilepsy is a contraindication to occupational diving, but that where a diver has been free of seizures for ten years without treatment they may be assessed by an expert for fitness to dive. [2]

Pregnancy

A study investigating potential links between diving while pregnant and fetal abnormalities by evaluating field data showed that most women are complying with the diving industry recommendation and refraining from diving while pregnant. There were insufficient data to establish significant correlation between diving and fetal abnormalities, and differences in placental circulation between humans and other animals limit the applicability of animal research for pregnancy and diving studies. [22]

The literature indicates that diving during pregnancy does increase the risk to the fetus, but to an uncertain extent. As diving is an avoidable risk for most women, the prudent choice is to avoid diving while pregnant. However, if diving is done before pregnancy is recognized, there is generally no indication for concern. [23]

In addition to possible risk to the fetus, changes in a woman's body during pregnancy might make diving more problematic. There may be problems fitting equipment and the associated hazards of ill fitting equipment. Swelling of the mucous membranes in the sinuses could make ear clearing difficult, and nausea may increase discomfort. [23]

Diving after childbirth

Divers who want to return to diving after having a child should generally follow the guidelines suggested for other sports and activities, as diving requires a similar level of conditioning and fitness.

After a vaginal delivery, without complications, three weeks is usually sufficient to allow the cervix to close, which reduces the risk of uterine infection. Divers Alert Network recommends as a rule of thumb, to wait four weeks after normal delivery before resuming diving, and at least eight weeks after cesarean delivery. Any complications may indicate a longer wait, and medical clearance is advised. [24]

Physical disabilities

Adaptive Diving, diving with physical disabilities:

Adaptive diving is a branch of scuba diving that caters to individuals with physical disabilities. It encompasses a range of strategies and modifications to ensure that people with diverse physical challenges can enjoy the freedom of diving. Here are some key aspects of adaptive diving:

Equipment Modifications: Divers with physical disabilities may require specialized equipment adaptations. For amputees, prosthetic limbs can be fitted with diving attachments. Custom harnesses, buoyancy compensators, and fins are designed to accommodate various physical limitations. For sight correction, prescription masks or seedeep reading glasses with strong lenses can be used, allowing correction of such limitation, and enabling the needed sight to read your dive gauge and dive watch. [25]

Training and Certification: Several scuba diving organizations offer adaptive diving courses and certifications. These courses teach divers and instructors how to adapt techniques and equipment to different disabilities, ensuring safe and enjoyable dives. [26]

Buddy System: The buddy system is crucial in scuba diving, and it's especially important for divers with physical disabilities. Divers work together with their dive buddies to assist each other as needed, ensuring a safe and enjoyable dive experience.

Dive Destinations and Facilities: Many dive resorts and destinations around the world are equipped to accommodate divers with physical disabilities. They provide accessible entry points, adaptive equipment, and trained staff to assist disabled divers.

Supportive Organizations: Numerous organizations and foundations are dedicated to promoting adaptive diving and providing resources for individuals with physical disabilities. These organizations often organize dive trips, training programs, and support networks for disabled divers.

Patent foramen ovale

A patent foramen ovale (PFO), or atrial shunt can potentially cause a paradoxical gas embolism by allowing venous blood containing what would normally be asymptomatic inert gas decompression bubbles to shunt from the right atrium to the left atrium during exertion, and can be then circulated to the vital organs where an embolism may form and grow due to local tissue supersaturation during decompression. This congenital condition is found in roughly 25% of adults, and is not listed as a disqualifier from diving nor as a required medical test for professional or recreational divers. Some training organisations recommend that divers contemplating technical diver training should have themselves tested as a precaution, and to allow informed consent to assume the associated risks. [27]

Factors which temporarily affect fitness to dive

Several factors may temporarily affect fitness to dive by altering the risk of encountering problems during a dive. Some of these depend on conditions that vary according to time or place, and are not addressed in a medical examination. Others are more within the control of the diver. These include:

COVID-19

The long term effects of Coronavirus disease 2019 are highly variable in severity, and the effects on fitness to dive will vary from case to case. Many of these effects influence the lungs and cardiovascular system, and therefore may significantly affect risk of diving injury, or the diver's ability to manage an emergency effectively. [29] A review indicated that people who have recovered from COVID-19 had reduced levels of physical function and fitness compared to healthy controls. Recovery of physical functions tends to be incomplete, with some residual impairments present up to 2 years after infection. There is some evidence that combined aerobic and resistance training can improve physical function and fitness after medical recovery, but further research is required to determine the effectiveness of exercise in restoring fitness. [30]

Diving medicine specialists at Divers Alert Network have advised that divers wishing to return to recreational diving after recovering from COVID-19 should wait until they have regained their previous physical fitness, then consult a qualified diving medical practitioner. This process is similar to the compulsory procedure for professional divers for return to diving after illness. The process takes into account the significant number of people who may have had asymptomatic infections, and treats them as if they did not have COVID. [29] [31] [32]

Return to diving after COVID-19

The principles behind the DAN protocol for returning to diving activity after COVID-19 are based on risk. The returning diver should not pose a risk of infecting others, and should not be at elevated risk of barotrauma or decompression illness due to damage to the lungs, or be at reduced capacity to manage problems due to cognitive dysfunction or insufficient physical fitness. Aerobic fitness recommendation for commercial divers is 10 Mets, and for recreational divers 6 Mets. [29] [32]

A grading system based on severity of illness is suggested as a guideline (July 2021), with the understanding that individual circumstances may differ, and that this model is subject to revision as and when further data becomes available. [29]

The DAN recommendation for diving after vaccination, is not to dive while one is not feeling well in the days after vaccination, to the same extent that one would not dive if not feeling well at any other time. [29]

DAN is conducting research on the long term (5 year) effects of COVID-19 on fitness to dive for recreational scuba and freediving. [33]

The Diving Medical Advisory Council and IMCA have also issued advisory documents on this topic for commercial divers. [34] [35]

Psychological fitness to dive

Psychological fitness has been defined in a military context as "the integration and optimization of mental, emotional, and behavioral abilities and capacities to optimize performance and strengthen resilience". [36] There are other definitions in a self-help/personal growth context, also referred to as emotional or mental fitness, [37] [38] but the military definition is appropriate in the context of the ability to survive and perform in a hostile environment. Psychological fitness to dive is to some extent a characteristic of the person who trains to become a diver, and in recreational diving there is little or no further training, but training for diving in harsher environments and for more demanding tasks often includes elements of training to improve psychological fitness, which allows the diver to better cope with the stresses of emergencies.

Competence, physical health and fitness and are important factors in safe performance, but psychological factors contributing to human failure or success are also important and should also be addressed in the interests of due diligence. [39]

There is little screening for psychological fitness for recreational diving, and not much more for commercial and scientific diving. Technical diving exposes the diver to more unforgiving hazards and higher risks, but it is a recreational activity and to a large extent participation is at the option of the participant.

Psychological profiles indicating intelligence and below average neuroticism tend to correlate with successful diving activity over the long term. These divers tend to be self-sufficient and emotionally stable, and less likely to be involved in accidents unrelated to health problems. Nevertheless, many people with mild neuroses can and do dive with an acceptable safety record. [40] Besides any risks caused by the condition itself, there may be hazards due to the effects of medications taken to manage the condition, either singly or in combination. There are no scientific studies into the safety of diving with most medications, and in most cases the effects of the medication are secondary to the effects of the underlying condition. Drugs with strong effects on moods should be used with care when diving. [40]

A mild state of anxiety can improve performance by making the person more alert and quicker to react, but more severe levels can degrade performance, by narrowing focus and distracting attention, culminating in extreme and debilitating anxiety or panic, where rational response to a developing emergency is lost. [41] A tendency to be generally anxious is known as trait anxiety, as opposed to anxiety brought on by a situation, which is termed state anxiety. Divers who are prone to trait anxiety are more likely to mismanage a developing emergency by panicking and missing the opportunity to recover from the initial incident. [42] Training can help a diver to recognize rising stress levels, and allow them to take corrective action before the situation deteriorates into an injury or fatality. Over-learning appropriate responses to predictable and reasonably foreseeable contingencies allows the diver to react confidently and effectively, which reduces stress as the positive consequences of the appropriate actions are apparent, usually allowing the diver to terminate the dive in a controlled and safe manner. [43]

Statistics from incidents where the circumstances are known implicate panic and inappropriate response in a large proportion of fatalities and near misses. [44] In 1998 the Recreational Scuba Training Council listed "a history of panic disorder" as an absolute contraindication to scuba diving, but the 2001 guideline specifies "a history of untreated panic disorder" as a severe risk condition, which suggests that some people who are being treated for the condition might dive at an acceptable level of risk. [44]

Two personality traits are consistently mentioned across contexts, These are a propensity for adventure or sensation-seeking, and lower trait anxiety than the general population. Both of these characteristics are associated with tolerance to physiological stress and safety implications. Trait anxiety is associated with a tendency to panic, which is implicated in a high proportion of diving incidents, and sensation seeking is associated with risk taking behavior. The current trend in research has moved from describing personality profiles to investigating associations between personality and diving performance. [45]

Recreational diving

Recreational diving can have a more beneficial effect on the state of mind of participants than many other physical leisure activities by way of stress reduction and improvement of well-being. [46] [47]

Recreational scuba diving may be considered an extreme sport since personal risk is involved, [48] but it is also a leisure activity conducted for entertainment and relaxation. The diver is free to not dive or to terminate a dive at any time, and to make this physiologically practicable at acceptable risk, there are limitations on the depth, decompression status, and environment in which mainstream recreational diving can take place.

Limited research into the personality characteristics of people choosing to start recreational diving indicate tendencies of self-sufficiency, boldness and impulsiveness (and low scores on conformity, warmth and sensitivity), and are not typical of the personality profiles expected from extreme athletes.[ clarification needed ] Four prevalent personality types were identified, and the results suggested that the risk behavior of the diver would probably depend on the personality type. [48]

Personality types identified were: [48]

Motivation to continue diving and to travel to dive: Kler and Tribe (2012) hypothesize and present evidence that a major motivation to pursue diving tourism at considerable expense is the participants gain meaning, fulfillment and long-term satisfaction (eudaimonia) through learning and personal growth from their participation. [49]

For most recreational divers the activity is enjoyable and relaxing. The need to focus on the activities and skills and the tendency to become enthralled by the underwater environment enables divers to leave their worries above the surface. [50]

Technical diving

Technical diving is the extension of recreational diving to higher risk activities. Technical divers operate in the range of activities that are generally beyond the expected competence of recreational diving, and often beyond the legally acceptable range of risk for professional diving. Military and public safety divers may occasionally be exposed to similar levels of risk in the course of their duties, but this will be for compelling operational reasons, whereas the technical diver chooses to accept these risks in the pursuit of a recreational activity. The risks are managed by the use of specialized equipment, avoidance of single points of failure by teamwork and equipment redundancy, the use of procedures known to be effective, maintenance of a high level of skill, sufficient physical fitness to perform effectively in the expected conditions and any reasonably foreseeable contingency, and appropriate reaction to contingencies. The diver makes an informed assessment of the residual risk and accepts the possible consequences. The way in which a diver reacts to the environment is influenced by attitude, awareness, physical fitness, self-discipline, and the ability to distinguish reality from perception. [51]

In a situation where there is no simple and direct escape to safety, reaction to stress can determine the difference between an enjoyable dive and an accident that may lead to death or disability. If uncontrolled, stress may lead to panic. Overhead environments present challenges and choices where an error may be fatal. Time-pressure stress related to matching gas supply to dive duration can increase when the dive plan is compromised and gas supply runs low, or decompression obligation accumulates beyond the planned limit. When this kind of stress causes the diver to increase gas consumption due to overreacting, the problem gets worse and can spiral into an unrecoverable incident. The ability to react calmly, promptly, and correctly to life-threatening situations, and to persistently and rationally strive to deal effectively with the situation can make the difference between life and death. [51]

Military diving

Studies of the personality traits of navy divers have indicated that although they operate in a military environment, navy divers tend to be non-conformists. [48]

In a comparison between navy and civilian divers, navy divers scored higher than navy non-divers and civilian divers on calmness and self-control in difficult circumstances and were more emotionally controlled and adventurous, less assertive, more practical, more self-controlled and more likely to follow rules and procedures precisely and work together as a team. [48] [52] The navy divers were found to be willing to accept higher risk, and to have a strong sense of control and acceptance of taking personal responsibility for events. [53]

Commercial diving

Serious injuries in commercial diving can be extremely costly to the employer, and the working environment can be inherently very hazardous. This is combined with a legislative environment which has a low risk tolerance, so commercial divers need to be selected for the ability to follow best practice procedures reliably and work well as members of a team, as well as the requisite work skills needed to work efficiently and profitably. [46]

Effects of drugs

The use of medical and recreational drugs, can also influence fitness to dive, both for physiological and behavioral reasons. In some cases prescription drug use may have a net positive effect, when effectively treating an underlying condition, but frequently the side effects of effective medication may have undesirable influences on the fitness of diver, and most cases of recreational drug use result in an impaired fitness to dive, and a significantly increased risk of sub-optimal response to emergencies.

Prescription and non-prescription medication

There are no specific studies that give objective values for the effects and risks of most medications if used while diving, and their interactions with the physiological effects of diving. Any advice given by a medical practitioner is based on educated (to a greater or lesser extent), but unproven assumption, and each case is best evaluated by an expert. [54]

Personality differences between divers will cause each to respond differently to the effects of various breathing gases under pressure and abnormal physiological states. Some of the diving disorders can present symptoms similar to those of psychoneurotic reactions or an organic cerebral syndrome. When considering allowing or barring someone with psychological problems to dive, the certifying physician must be aware of all the possibilities and variations in the specific case. [54]

In many cases an acute illness is best treated in the absence of potential complications caused by diving, but chronic conditions may require medication if the person is to dive at all. Some of the medication types which are commonly or occasionally known to be used by active divers are listed here, along with possible side effects and complications: [54]

Over the counter drugs are generally considered safe for consumer use when the directions for use are followed. They are generally not tested in hyperbaric conditions and may have undesirable side effects, particularly in combination with other drugs. [55]

Recreational drugs and substance abuse

See also

Related Research Articles

<span class="mw-page-title-main">Nitrogen narcosis</span> Reversible narcotic effects of respiratory nitrogen at elevated partial pressures

Narcosis while diving is a reversible alteration in consciousness that occurs while diving at depth. It is caused by the anesthetic effect of certain gases at high pressure. The Greek word νάρκωσις (narkōsis), "the act of making numb", is derived from νάρκη (narkē), "numbness, torpor", a term used by Homer and Hippocrates. Narcosis produces a state similar to drunkenness, or nitrous oxide inhalation. It can occur during shallow dives, but does not usually become noticeable at depths less than 30 metres (98 ft).

<span class="mw-page-title-main">Decompression sickness</span> Disorder caused by dissolved gases forming bubbles in tissues

Decompression sickness is a medical condition caused by dissolved gases emerging from solution as bubbles inside the body tissues during decompression. DCS most commonly occurs during or soon after a decompression ascent from underwater diving, but can also result from other causes of depressurisation, such as emerging from a caisson, decompression from saturation, flying in an unpressurised aircraft at high altitude, and extravehicular activity from spacecraft. DCS and arterial gas embolism are collectively referred to as decompression illness.

<span class="mw-page-title-main">Oxygen toxicity</span> Toxic effects of breathing oxygen at high partial pressures

Oxygen toxicity is a condition resulting from the harmful effects of breathing molecular oxygen at increased partial pressures. Severe cases can result in cell damage and death, with effects most often seen in the central nervous system, lungs, and eyes. Historically, the central nervous system condition was called the Paul Bert effect, and the pulmonary condition the Lorrain Smith effect, after the researchers who pioneered the discoveries and descriptions in the late 19th century. Oxygen toxicity is a concern for underwater divers, those on high concentrations of supplemental oxygen, and those undergoing hyperbaric oxygen therapy.

<span class="mw-page-title-main">Barotrauma</span> Injury caused by pressure

Barotrauma is physical damage to body tissues caused by a difference in pressure between a gas space inside, or in contact with, the body and the surrounding gas or liquid. The initial damage is usually due to over-stretching the tissues in tension or shear, either directly by an expansion of the gas in the closed space or by pressure difference hydrostatically transmitted through the tissue. Tissue rupture may be complicated by the introduction of gas into the local tissue or circulation through the initial trauma site, which can cause blockage of circulation at distant sites or interfere with the normal function of an organ by its presence. The term is usually applied when the gas volume involved already exists prior to decompression. Barotrama can occur during both compression and decompression events.

In-water recompression (IWR) or underwater oxygen treatment is the emergency treatment of decompression sickness (DCS) by returning the diver underwater to help the gas bubbles in the tissues, which are causing the symptoms, to resolve. It is a procedure that exposes the diver to significant risk which should be compared with the risk associated with the available options and balanced against the probable benefits. Some authorities recommend that it is only to be used when the time to travel to the nearest recompression chamber is too long to save the victim's life; others take a more pragmatic approach and accept that in some circumstances IWR is the best available option. The risks may not be justified for case of mild symptoms likely to resolve spontaneously, or for cases where the diver is likely to be unsafe in the water, but in-water recompression may be justified in cases where severe outcomes are likely if not recompressed, if conducted by a competent and suitably equipped team.

<span class="mw-page-title-main">Diving medicine</span> Diagnosis, treatment and prevention of disorders caused by underwater diving

Diving medicine, also called undersea and hyperbaric medicine (UHB), is the diagnosis, treatment and prevention of conditions caused by humans entering the undersea environment. It includes the effects on the body of pressure on gases, the diagnosis and treatment of conditions caused by marine hazards and how relationships of a diver's fitness to dive affect a diver's safety. Diving medical practitioners are also expected to be competent in the examination of divers and potential divers to determine fitness to dive.

<span class="mw-page-title-main">Scuba diving</span> Swimming underwater, breathing gas carried by the diver

Scuba diving is a mode of underwater diving whereby divers use breathing equipment that is completely independent of a surface breathing gas supply, and therefore has a limited but variable endurance. The name scuba is an anacronym for "Self-Contained Underwater Breathing Apparatus" and was coined by Christian J. Lambertsen in a patent submitted in 1952. Scuba divers carry their own source of breathing gas, usually compressed air, affording them greater independence and movement than surface-supplied divers, and more time underwater than free divers. Although the use of compressed air is common, a gas blend with a higher oxygen content, known as enriched air or nitrox, has become popular due to the reduced nitrogen intake during long or repetitive dives. Also, breathing gas diluted with helium may be used to reduce the effects of nitrogen narcosis during deeper dives.

Hyperoxia occurs when cells, tissues and organs are exposed to an excess supply of oxygen (O2) or higher than normal partial pressure of oxygen.

Diving disorders, or diving related medical conditions, are conditions associated with underwater diving, and include both conditions unique to underwater diving, and those that also occur during other activities. This second group further divides into conditions caused by exposure to ambient pressures significantly different from surface atmospheric pressure, and a range of conditions caused by general environment and equipment associated with diving activities.

<span class="mw-page-title-main">Diver rescue</span> Rescue of a distressed or incapacitated diver

Diver rescue, usually following an accident, is the process of avoiding or limiting further exposure to diving hazards and bringing a diver to a place of safety. A safe place generally means a place where the diver cannot drown, such as a boat or dry land, where first aid can be administered and from which professional medical treatment can be sought. In the context of surface supplied diving, the place of safety for a diver with a decompression obligation is often the diving bell.

<span class="mw-page-title-main">Underwater diving</span> Descending below the surface of the water to interact with the environment

Underwater diving, as a human activity, is the practice of descending below the water's surface to interact with the environment. It is also often referred to as diving, an ambiguous term with several possible meanings, depending on context. Immersion in water and exposure to high ambient pressure have physiological effects that limit the depths and duration possible in ambient pressure diving. Humans are not physiologically and anatomically well-adapted to the environmental conditions of diving, and various equipment has been developed to extend the depth and duration of human dives, and allow different types of work to be done.

Divers Alert Network (DAN) is a group of not-for-profit organizations dedicated to improving diving safety for all divers. It was founded in Durham, North Carolina, United States, in 1980 at Duke University providing 24/7 telephonic hot-line diving medical assistance. Since then the organization has expanded globally and now has independent regional organizations in North America, Europe, Japan, Asia-Pacific and Southern Africa.

The World Recreational Scuba Training Council (WRSTC) was founded in 1999 and is dedicated to creating minimum recreational diving training standards for the various scuba diving certification agencies across the world. The WRSTC restricts its membership to national or regional councils. These councils consist of individual training organizations who collectively represent at least 50% of the annual diver certifications in the member council's country or region. A national council is referred to as a RSTC.

Human factors are the physical or cognitive properties of individuals, or social behavior which is specific to humans, and influence functioning of technological systems as well as human-environment equilibria. The safety of underwater diving operations can be improved by reducing the frequency of human error and the consequences when it does occur. Human error can be defined as an individual's deviation from acceptable or desirable practice which culminates in undesirable or unexpected results.

Dive safety is primarily a function of four factors: the environment, equipment, individual diver performance and dive team performance. The water is a harsh and alien environment which can impose severe physical and psychological stress on a diver. The remaining factors must be controlled and coordinated so the diver can overcome the stresses imposed by the underwater environment and work safely. Diving equipment is crucial because it provides life support to the diver, but the majority of dive accidents are caused by individual diver panic and an associated degradation of the individual diver's performance. - M.A. Blumenberg, 1996

<span class="mw-page-title-main">Diver training</span> Processes to develop the skills and knowledge to dive safely underwater

Diver training is the set of processes through which a person learns the necessary and desirable skills to safely dive underwater within the scope of the diver training standard relevant to the specific training programme. Most diver training follows procedures and schedules laid down in the associated training standard, in a formal training programme, and includes relevant foundational knowledge of the underlying theory, including some basic physics, physiology and environmental information, practical skills training in the selection and safe use of the associated equipment in the specified underwater environment, and assessment of the required skills and knowledge deemed necessary by the certification agency to allow the newly certified diver to dive within the specified range of conditions at an acceptable level of risk. Recognition of prior learning is allowed in some training standards.

<span class="mw-page-title-main">Neal W. Pollock</span> Canadian researcher in diving physiology and hyperbaric medicine

Neal Pollock is a Canadian academic and diver. Born in Edmonton, Canada he completed a bachelor's degree in zoology; the first three years at University of Alberta and the final year at the University of British Columbia. After completing a master's degree he then served as diving officer at University of British Columbia for almost five years. He then moved to Florida and completed a doctorate in exercise physiology/environmental physiology at Florida State University.

Diving safety is the aspect of underwater diving operations and activities concerned with the safety of the participants. The safety of underwater diving depends on four factors: the environment, the equipment, behaviour of the individual diver and performance of the dive team. The underwater environment can impose severe physical and psychological stress on a diver, and is mostly beyond the diver's control. Equipment is used to operate underwater for anything beyond very short periods, and the reliable function of some of the equipment is critical to even short-term survival. Other equipment allows the diver to operate in relative comfort and efficiency, or to remain healthy over the longer term. The performance of the individual diver depends on learned skills, many of which are not intuitive, and the performance of the team depends on competence, communication, attention and common goals.

Investigation of diving accidents includes investigations into the causes of reportable incidents in professional diving and recreational diving accidents, usually when there is a fatality or litigation for gross negligence.

<span class="mw-page-title-main">Index of underwater diving</span> Alphabetical listing of underwater diving related articles

The following index is provided as an overview of and topical guide to underwater diving:

References

  1. 1 2 Williams, G.; Elliott, D.H.; Walker, R.; Gorman, DF.; Haller, V. (2001). "Fitness to dive: Panel discussion with audience participation". Journal of the South Pacific Underwater Medicine Society. 31 (3). Archived from the original on July 5, 2013. Retrieved 7 April 2013.{{cite journal}}: CS1 maint: unfit URL (link)
  2. 1 2 3 4 5 Joint Medical Subcommittee of ECHM and EDTC (24 June 2003). Wendling, Jürg; Elliott, David; Nome, Tor (eds.). Fitness to Dive Standards - Guidelines for Medical Assessment of Working Divers (PDF) (Report). European Diving Technology Committee. Archived from the original (PDF) on 26 August 2016. Retrieved 18 May 2017.
  3. Hanson, E.; Fleisher, J.; Jackman, R.; Dovenbarger, J.; Uguccioni, D.; Thalmann, E.; Cudahy, E. "Demographics And Illness Prevalence in Recreational Scuba Divers". www.diversalertnetwork.org. Groton, CT: Naval Submarine Medical Research Laboratory. Archived from the original on 29 December 2019. Retrieved 9 January 2020.
  4. Taylor, David McD.; O'Toole, Kevin S.; Ryan, Christopher M. (September 2002). "Experienced, Recreational Scuba Divers in Australia Continue to Dive Despite Medical Contraindications". Wilderness & Environmental Medicine. 13 (3): 187–193. doi: 10.1580/1080-6032(2002)013[0187:ERSDIA]2.0.CO;2 . PMID   12353595. Archived from the original on 2024-01-21. Retrieved 2020-01-09.
  5. Richardson, Drew. "The RSTC Medical statement and candidate screening model; discussion". South Pacific Underwater Medicine Society (SPUMS) Journal Volume 30 No.4 December 2000. South Pacific Underwater Medicine Society. pp. 210–213. Archived from the original on July 5, 2013. Retrieved 26 January 2013.{{cite web}}: CS1 maint: unfit URL (link)
  6. Elliott, D. (2000), "Why fitness? Who benefits from diver medical examinations?", Journal of the South Pacific Underwater Medicine Society., 30 (4), archived from the original on July 5, 2013, retrieved 2013-04-07{{citation}}: CS1 maint: unfit URL (link)
  7. 1 2 "Dive Standards & Medical Statement". World Recreational Scuba Training Council. Archived from the original on 25 June 2012. Retrieved 26 January 2013.
  8. Richardson, Drew. "The RSTC Medical statement and candidate screening model". South Pacific Underwater Medicine Society (SPUMS) Journal Volume 30 No.4 December 2000. South Pacific Underwater Medicine Society. pp. 210–213. Archived from the original on July 5, 2013. Retrieved 26 January 2013.{{cite web}}: CS1 maint: unfit URL (link)
  9. Lunn, Rosemary E (23 June 2020). "The 'Medical Statement' form has been updated". X-Ray Magazine. Archived from the original on 21 January 2024. Retrieved 26 August 2020.
  10. "Diving Regulations 2009 of the South African Occupational Health and Safety Act, 1993", Government Notice R41, Government Gazette (#32907), 29 January 2010
  11. Educational and Training Standards for Physicians in Diving and Hyperbaric Medicine (PDF), Joint Educational Subcommittee of the European Committee for Hyperbaric Medicine (ECHM) and the European Diving Technical Committee (EDTC), 2011, archived (PDF) from the original on 28 September 2016, retrieved 30 March 2013
  12. 1 2 3 4 5 6 Vorosmarti, J; Linaweaver, PG., eds. (1987). Fitness to Dive. 34th Undersea and Hyperbaric Medical Society Workshop. UHMS Publication Number 70(WS-WD)5-1-87. (Report). Bethesda: Undersea and Hyperbaric Medical Society. p. 116. Archived from the original on August 20, 2008. Retrieved 7 April 2013.{{cite report}}: CS1 maint: unfit URL (link)
  13. Edmonds; Thomas; McKenzie; Pennefather (2010). Diving Medicine for Scuba Divers (3rd ed.). Carl Edmonds. Archived from the original on 2010-11-27. Retrieved 2013-04-07.
  14. 1 2 Adir, Yochai; Bove, Alfred A. (2016). "Can asthmatic subjects dive?" (PDF). European Respiratory Review. 25 (140): 214–220. doi: 10.1183/16000617.0006-2016 . PMC   9487249 . PMID   27246598. S2CID   35971130. Archived (PDF) from the original on 23 June 2016. Retrieved 10 June 2016.
  15. DAN medical team (10 April 2017). "Diving with cancer". DAN Southern Africa. Archived from the original on 6 July 2018. Retrieved 2 September 2017.
  16. 1 2 3 4 5 6 Staff (2016). "Diving and diabetes". Diver Health. Plymouth, UK.: Diving Diseases Research Centre - DDRC Healthcare. Retrieved 11 June 2016.
  17. 1 2 3 4 5 6 7 8 9 10 Pollock NW; Uguccioni DM; Dear GdeL, eds. (2005). "Guidelines to Diabetes & Recreational Diving" (PDF). Diabetes and recreational diving: guidelines for the future. Proceedings of the Undersea and Hyperbaric Medical Society/Divers Alert Network 2005 June 19 Workshop. Durham, NC: Divers Alert Network. Retrieved 11 June 2016.
  18. Sawatsky, David (17 January 2012). "Epilepsy/Seizures and Diving". divermag.com. Archived from the original on 30 December 2019. Retrieved 30 December 2019.
  19. 1 2 3 4 5 6 7 Almeida, Maria do Rosario G.; Bell, Gail S.; Sander, Josemir W. (14 May 2007). "Epilepsy and Recreational Scuba Diving: An Absolute Contraindication or Can There Be Exceptions? A Call for Discussion". Epilepsia. 48 (5): 851–858. doi: 10.1111/j.1528-1167.2007.01045.x . PMID   17508997.
  20. 1 2 "Epilepsy". www.ukdmc.org. UK diving medical committee. Archived from the original on 31 December 2019. Retrieved 31 December 2019.
  21. "Can I dive with Epilepsy?". DDRC healthcare. Retrieved 30 December 2019.
  22. St Leger Dowse, M.; Gunby, A.; Moncad, R.; Fife, C.; Bryson, P. (2006). "Scuba diving and pregnancy: Can we determine safe limits?". Journal of Obstetrics and Gynaecology. 26 (6): 509–513. doi:10.1080/01443610600797368. PMID   17000494. S2CID   883392.
  23. 1 2 Held, Heather E; Pollock, Neal W. (2007). "The Risks of Pregnancy and Diving". DAN Medical articles. Durham, NC.: Divers Alert Network. Archived from the original on 7 June 2016. Retrieved 11 June 2016.
  24. DAN medical team (June 2016). "Return to Diving After Giving Birth". DANSA website. Divers Alert Network. Archived from the original on 20 August 2016. Retrieved 11 August 2016.
  25. Archived 2024-01-02 at the Wayback Machine . DivingGuru. https://www.see-deep.com/ Archived 2024-01-02 at the Wayback Machine 02-jan-2024
  26. Archived 2024-01-02 at the Wayback Machine . DivingGuru. https://www.padi.com/courses/adaptive-techniques Archived 2024-01-02 at the Wayback Machine 02-jan-2024
  27. Caruso, James L (2006). "The Pathologist's Approach to SCUBA Diving Deaths". American Society for Clinical Pathology Teleconference. Archived from the original on August 20, 2008. Retrieved 2011-01-14.{{cite journal}}: CS1 maint: unfit URL (link)
  28. St Leger Dowse, M.; Gunby, A.; Phil, D.; Moncad, R.; Fife, C.; Morsman, J.; Bryson, P. (2006). "Problems associated with scuba diving are not evenly distributed across a menstrual cycle". Journal of Obstetrics and Gynaecology. 26 (3): 216–221. doi:10.1080/01443610600555261. PMID   16698628. S2CID   15533385.
  29. 1 2 3 4 5 6 7 8 9 Cronje, Frans (7 July 2021). "Return To Diving After COVID". www.youtube.com. Divers Alert Network South Africa. Archived from the original on 10 July 2021. Retrieved 10 July 2021.
  30. Rooney, Scott; Webster, Amy; Paul, Lorna (31 July 2020). "Systematic Review of Changes and Recovery in Physical Function and Fitness After Severe Acute Respiratory Syndrome–Related Coronavirus Infection: Implications for COVID-19 Rehabilitation". Phys Ther. 100 (10): 1717–1729. doi:10.1093/ptj/pzaa129. PMC   7454932 . PMID   32737507.
  31. "Diving after COVID-19: What divers need to know". www.youtube.com. Divers Alert Network. 29 May 2020. Archived from the original on 1 September 2020. Retrieved 3 July 2020.
  32. 1 2 Sadler, Charlotte; Alvarez Villela, Miguel; Van Hoesen, Karen; Grover, Ian; Lang, Michael; Neuman, Tom; Lindholm, Peter (30 September 2020). "Diving after SARS-CoV-2 (COVID-19) infection: Fitness to dive assessment and medical guidance". Diving Hyperb Med. 50 (3): 278–287. doi:10.28920/dhm50.3.278-287. PMC   7755459 . PMID   32957131.
  33. "DAN COVID-19 Study - Initial Survey". www.research.net. Divers Alert Network. Archived from the original on 22 December 2020. Retrieved 21 December 2020.
  34. "Novel Coronavirus (COVID-19) – Guidance for Diving Contractors. Information Note 1563". International Marine Contractors Association. 31 May 2021. Archived from the original on 10 July 2021. Retrieved 10 July 2021.
  35. "Return to Diving after Covid-19 DMAC 33 Rev.1" (PDF). London, UK: The Diving Medical Advisory Committee. December 2020. Archived (PDF) from the original on 2021-07-10. Retrieved 2021-07-10.
  36. Bates, Mark; Bowles, Stephen; Hammermeister, Jon; Stokes, Charlene; Pinder, Evette; Moore, Monique; Fritts, Matthew; Vythilingam, Meena; Yosick, Todd; Rhodes, Jeffrey; Myatt, Craig; Westphal, Richard; Fautua, David; Hammer, Paul; Burbelo, Gregory (2010). "Psychological Fitness". Military Medicine. 175 (8S): 21–38. doi: 10.7205/MILMED-D-10-00073 .
  37. Lazarus, Clifford N. (21 May 2011). "Three Keys to Optimum Mental Fitness". Psychology today. Archived from the original on 21 January 2024. Retrieved 31 December 2019.
  38. Furber, Gareth (24 April 2019). "Mental Fitness – Lesson 8 – components of mental fitness". blogs.flinders.edu.au. Archived from the original on 31 December 2019. Retrieved 31 December 2019.
  39. de Beer, Leon; Rothmann, Ina; van Jaarsveldt, Wessel; Botha, Leon; Botha, Rudolph (5 April 2016). Psychological Fitness IndexCase study: The Impact of Psychological Fitness Promotion on Safety Outcomes in a Corporate Environment (PDF) (Report). Archived (PDF) from the original on 26 November 2018. Retrieved 31 December 2019.
  40. 1 2 Campbell, Ernest (2000). "Medical info: Psychological Issues in Diving". www.diversalertnetwork.org. Archived from the original on 11 November 2017. Retrieved 11 November 2017. From the September/October 2000 issue of Alert Diver.
  41. Yarbrough, John R. "Anxiety: Is It A Contraindication to Diving?". www.diversalertnetwork.org. Divers Alert Network. Archived from the original on 13 November 2017. Retrieved 12 November 2017.
  42. 1 2 Campbell, Ernest. "Medical info: Psychological Issues in Diving II - Anxiety, Phobias in Diving". www.diversalertnetwork.org. Retrieved 11 November 2017.
  43. Lock, Gareth (8 May 2011). Human factors within sport diving incidents and accidents: An Application of the Human Factors Analysis and Classification System (HFACS) (PDF). Cognitas Incident Management Limited. Archived (PDF) from the original on 6 November 2016. Retrieved 5 November 2016.
  44. 1 2 Colvard, David F.; Colvard, Lynn Y. (2003). "A Study of Panic in Recreational Scuba Divers". The Undersea Journal. CiteSeerX   10.1.1.506.6586 .
  45. Van Wijk, Charles H (December 2017). "Personality and behavioural outcomes in diving: current status and recommendations for future research". Diving and Hyperbaric Medicine. 47 (4): 248–252. doi:10.28920/dhm47.4.248-252. PMC   6706337 . PMID   29241235.
  46. 1 2 Niewiedział, Dorota; Kolańska, Magdalena; Dabrowiecki, Zbigniew; Jerzemowski, Mateusz; Siermontowski, Piotr; Kobos, Zdzislaw; Olszański, Romuald (2018). "Psychological Aspects of Diving in Selected Theoretical and Research Perspectives". Polish Hyperbaric Research. 62: 43–54. doi: 10.2478/phr-2018-0003 .
  47. Beneton, Frédéric; Michoud, Guillaume; Coulange, Mathieu; Laine, Nicolas; Ramdani, Céline; Borgnetta, Marc; Breton, Patricia; Guieu, Regis; Rostain, J. C.; Trousselard, Marion (18 December 2017). "Recreational Diving Practice for Stress Management: An Exploratory Trial". Frontiers in Psychology. 8: 2193. doi: 10.3389/fpsyg.2017.02193 . PMC   5741699 . PMID   29326628.
  48. 1 2 3 4 5 Coetzee, Nicoleen (December 2010). "Personality profiles of recreational scuba divers". African Journal for Physical, Health Education, Recreation and Dance. 16 (4): 568–579. CiteSeerX   10.1.1.966.9936 .
  49. Kler, Balvinder Kaur; Tribe, John (2012). "Flourishing Through Scuba: Understanding the Pursuit of Dive Experiences". Tourism in Marine Environments. 8 (1/2): 19–32. doi:10.3727/154427312X13262430524027. Archived from the original on 2021-09-21. Retrieved 2020-01-01.
  50. Walton, Laura (2019). "Fixing problems under the surface". The Psychologist. The British Psychological Society. 12: 28–33. Archived from the original on 2021-06-24. Retrieved 2021-06-16.
  51. 1 2 Mount, Tom (August 2008). "18: Psychological & Physical Fitness For Technical Diving". In Mount, Tom; Dituri, Joseph (eds.). Exploration and Mixed Gas Diving Encyclopedia (1st ed.). Miami Shores, Florida: International Association of Nitrox Divers. pp. 209–224. ISBN   978-0-915539-10-9.
  52. van Wijk, C. (2002). "Comparing personality traits of navy divers, navy non-divers and civilian sport divers". Journal of the South Pacific Underwater Medicine Society.
  53. Krooss, Barbara. "Going Deeper - Medical and Psychological Aspects of Diving With Disabilities". Archived from the original on 13 November 2017. Retrieved 13 November 2017.
  54. 1 2 3 4 Campbell, Ernest. "Medical info: Psychological Issues in Diving III - Schizophrenia, Substance Abuse". www.diversalertnetwork.org. Retrieved 11 November 2017.
  55. 1 2 3 Nord, Daniel A (May–June 1996). "DAN Takes a Look at Over-the-Counter Medications". www.diversalertnetwork.org. Archived from the original on 30 December 2019. Retrieved 30 December 2019.
  56. 1 2 3 4 5 Mebane, G.Yancey (April 1995). "Motion Sickness". Alert Diver. Divers Alert Network. Archived from the original on 16 November 2017. Retrieved 15 November 2017.
  57. Kincade, Dan (October 2003). "Motion Sickness - Updated 2003". Alert diver. Divers Alert Network. Archived from the original on 16 November 2017. Retrieved 15 November 2017.
  58. 1 2 3 4 5 6 7 8 Leigh, Dan (September 2002). "DAN Discusses Malaria and Antimalarial Drugs". Alert Diver. Divers Alert Network. Archived from the original on 15 November 2017. Retrieved 15 November 2017.
  59. Thalmann, E.D. (December 1999). "Pseudoephedrine & Enriched-Air Diving?". Alert diver. Divers Alert Network. Archived from the original on 23 May 2017. Retrieved 15 November 2016.
  60. Gowen, Laurie (2005). "Cardiovascular Medications and Diving". Divers Alert Network. Archived from the original on 15 November 2017. Retrieved 15 November 2017.First published in Alert Diver November/December 2005
  61. 1 2 3 4 5 Gowen, Laurie. "Medications for Depression and Fitness to Dive". Alert Diver. Divers Alert Network (May/June 2005). Archived from the original on 29 December 2019. Retrieved 29 December 2019 via www.diversalertnetwork.org.
  62. 1 2 3 Querido, Abraham L (31 December 2017). "Diving and antidepressants". Diving and Hyperbaric Medicine. 47 (4): 253–256. doi:10.28920/dhm47.4.253-256. PMC   6708605 . PMID   29241236.
  63. Fryer, DI (1969). Subatmospheric decompression sickness in man. England: Technivision Services. p. 343. ISBN   978-0-85102-023-5.
  64. Leigh, BC; Dunford, Richard G (2005). "Alcohol use in scuba divers treated for diving injuries: A comparison of decompression sickness and arterial gas embolism" (PDF). Alcoholism: Clinical and Experimental Research. 29 (Supplement s1): 157A. doi:10.1111/j.1530-0277.2005.tb03524.x. Archived from the original (PDF) on 5 December 2013. Presented at the Annual Meeting of the Research Society on Alcoholism, Santa Barbara, California, June 2005.