Cardiovascular disease

Last updated

Cardiovascular disease
Cardiac amyloidosis very high mag movat.jpg
Micrograph of a heart with fibrosis (yellow) and amyloidosis (brown). Movat's stain.
Specialty Cardiology
Symptoms Chest pain, shortness of breath, fatigue, loss of consciousness
Complications Heart failure, heart attack, stroke, aneurysm, peripheral artery disease, sudden cardiac arrest. [1]
Usual onsetOlder adults [2]
Types Coronary artery diseases, stroke, heart failure, hypertensive heart disease, rheumatic heart disease, cardiomyopathy, [3] [4] Arrhythmia
Risk factors Diabetes, [3] high blood lipids, excess weight, Smoking, excessive drug use, and excessive alcohol intake
Prevention Healthy eating, exercise, avoiding tobacco smoke, limited alcohol intake, [3] Overall lifestyle changes
TreatmentTreating high blood pressure, high blood lipids, diabetes [3]
Medication Aspirin, beta blockers, blood thinners
Deaths17.9 million / 32% (2015) [5]

Cardiovascular disease (CVD) is any disease involving the heart or blood vessels. [3] CVDs constitute a class of diseases that includes: coronary artery diseases (e.g. angina, heart attack), heart failure, hypertensive heart disease, rheumatic heart disease, cardiomyopathy, arrhythmia, congenital heart disease, valvular heart disease, carditis, aortic aneurysms, peripheral artery disease, thromboembolic disease, and venous thrombosis. [3] [4]


The underlying mechanisms vary depending on the disease. [3] It is estimated that dietary risk factors are associated with 53% of CVD deaths. [6] Coronary artery disease, stroke, and peripheral artery disease involve atherosclerosis. [3] This may be caused by high blood pressure, smoking, diabetes mellitus, lack of exercise, obesity, high blood cholesterol, poor diet, excessive alcohol consumption, [3] and poor sleep, [7] [8] among other things. High blood pressure is estimated to account for approximately 13% of CVD deaths, while tobacco accounts for 9%, diabetes 6%, lack of exercise 6%, and obesity 5%. [3] Rheumatic heart disease may follow untreated strep throat. [3]

It is estimated that up to 90% of CVD may be preventable. [9] [10] Prevention of CVD involves improving risk factors through: healthy eating, exercise, avoidance of tobacco smoke and limiting alcohol intake. [3] Treating risk factors, such as high blood pressure, blood lipids and diabetes is also beneficial. [3] Treating people who have strep throat with antibiotics can decrease the risk of rheumatic heart disease. [11] The use of aspirin in people who are otherwise healthy is of unclear benefit. [12] [13]

Cardiovascular diseases are the leading cause of death worldwide except Africa. [3] Together CVD resulted in 17.9 million deaths (32.1%) in 2015, up from 12.3 million (25.8%) in 1990. [5] [4] Deaths, at a given age, from CVD are more common and have been increasing in much of the developing world, while rates have declined in most of the developed world since the 1970s. [14] [15] Coronary artery disease and stroke account for 80% of CVD deaths in males and 75% of CVD deaths in females. [3] Most cardiovascular disease affects older adults. In the United States 11% of people between 20 and 40 have CVD, while 37% between 40 and 60, 71% of people between 60 and 80, and 85% of people over 80 have CVD. [2] The average age of death from coronary artery disease in the developed world is around 80, while it is around 68 in the developing world. [14] CVD is typically diagnosed seven to ten years earlier in men than in women. [3] :48


Disability-adjusted life year for inflammatory heart diseases per 100,000 inhabitants in 2004
.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}
.mw-parser-output .legend{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .legend-color{display:inline-block;min-width:1.25em;height:1.25em;line-height:1.25;margin:1px 0;text-align:center;border:1px solid black;background-color:transparent;color:black}.mw-parser-output .legend-text{}
No data
Less than 70
More than 770 Inflammatory heart diseases world map - DALY - WHO2004.svg
Disability-adjusted life year for inflammatory heart diseases per 100,000 inhabitants in 2004
  No data
  Less than 70
  More than 770

There are many cardiovascular diseases involving the blood vessels. They are known as vascular diseases.[ citation needed ]

There are also many cardiovascular diseases that involve the heart.

Risk factors

There are many risk factors for heart diseases: age, sex, tobacco use, physical inactivity, non-alcoholic fatty liver disease, excessive alcohol consumption, unhealthy diet, obesity, genetic predisposition and family history of cardiovascular disease, raised blood pressure (hypertension), raised blood sugar (diabetes mellitus), raised blood cholesterol (hyperlipidemia), undiagnosed celiac disease, psychosocial factors, poverty and low educational status, air pollution, and poor sleep. [3] [17] [18] [19] [20] [21] While the individual contribution of each risk factor varies between different communities or ethnic groups the overall contribution of these risk factors is very consistent. [22] Some of these risk factors, such as age, sex or family history/genetic predisposition, are immutable; however, many important cardiovascular risk factors are modifiable by lifestyle change, social change, drug treatment (for example prevention of hypertension, hyperlipidemia, and diabetes). [23] People with obesity are at increased risk of atherosclerosis of the coronary arteries. [24]


Cardiovascular disease in a person's parents increases their risk by ~3 fold, [25] and genetics is an important risk factor for cardiovascular diseases. Genetic cardiovascular disease can occur either as a consequence of single variant (Mendelian) or polygenic influences. [26] There are more than 40 inherited cardiovascular disease that can be traced to a single disease-causing DNA variant, although these conditions are rare. [26] Most common cardiovascular diseases are non-Mendelian and are thought to be due to hundreds or thousands of genetic variants (known as single nucleotide polymorphisms), each associated with a small effect. [27] [28]


Calcified heart of an older woman with cardiomegaly Calcified Heart.jpg
Calcified heart of an older woman with cardiomegaly

Age is the most important risk factor in developing cardiovascular or heart diseases, with approximately a tripling of risk with each decade of life. [29] Coronary fatty streaks can begin to form in adolescence. [30] It is estimated that 82 percent of people who die of coronary heart disease are 65 and older. [31] Simultaneously, the risk of stroke doubles every decade after age 55. [32]

Multiple explanations are proposed to explain why age increases the risk of cardiovascular/heart diseases. One of them relates to serum cholesterol level. [33] In most populations, the serum total cholesterol level increases as age increases. In men, this increase levels off around age 45 to 50 years. In women, the increase continues sharply until age 60 to 65 years. [33]

Aging is also associated with changes in the mechanical and structural properties of the vascular wall, which leads to the loss of arterial elasticity and reduced arterial compliance and may subsequently lead to coronary artery disease. [34]


Men are at greater risk of heart disease than pre-menopausal women. [29] [35] Once past menopause, it has been argued that a woman's risk is similar to a man's [35] although more recent data from the WHO and UN disputes this. [29] If a female has diabetes, she is more likely to develop heart disease than a male with diabetes. [36] Women who have high blood pressure and had complications in their pregnancy have three times the risk of developing cardiovascular disease compared to women with normal blood pressure who had no complications in pregnancy. [37] [38]

Coronary heart diseases are 2 to 5 times more common among middle-aged men than women. [33] In a study done by the World Health Organization, sex contributes to approximately 40% of the variation in sex ratios of coronary heart disease mortality. [39] Another study reports similar results finding that sex differences explains nearly half the risk associated with cardiovascular diseases [33] One of the proposed explanations for sex differences in cardiovascular diseases is hormonal difference. [33] Among women, estrogen is the predominant sex hormone. Estrogen may have protective effects on glucose metabolism and hemostatic system, and may have direct effect in improving endothelial cell function. [33] The production of estrogen decreases after menopause, and this may change the female lipid metabolism toward a more atherogenic form by decreasing the HDL cholesterol level while increasing LDL and total cholesterol levels. [33]

Among men and women, there are differences in body weight, height, body fat distribution, heart rate, stroke volume, and arterial compliance. [34] In the very elderly, age-related large artery pulsatility and stiffness are more pronounced among women than men. [34] This may be caused by the women's smaller body size and arterial dimensions which are independent of menopause. [34]


Cigarettes are the major form of smoked tobacco. [3] Risks to health from tobacco use result not only from direct consumption of tobacco, but also from exposure to second-hand smoke. [3] Approximately 10% of cardiovascular disease is attributed to smoking; [3] however, people who quit smoking by age 30 have almost as low a risk of death as never smokers. [40]

Physical inactivity

Insufficient physical activity (defined as less than 5 x 30 minutes of moderate activity per week, or less than 3 x 20 minutes of vigorous activity per week) is currently the fourth leading risk factor for mortality worldwide. [3] In 2008, 31.3% of adults aged 15 or older (28.2% men and 34.4% women) were insufficiently physically active. [3] The risk of ischemic heart disease and diabetes mellitus is reduced by almost a third in adults who participate in 150 minutes of moderate physical activity each week (or equivalent). [41] In addition, physical activity assists weight loss and improves blood glucose control, blood pressure, lipid profile and insulin sensitivity. These effects may, at least in part, explain its cardiovascular benefits. [3]


High dietary intakes of saturated fat, trans-fats and salt, and low intake of fruits, vegetables and fish are linked to cardiovascular risk, although whether all these associations indicate causes is disputed. The World Health Organization attributes approximately 1.7 million deaths worldwide to low fruit and vegetable consumption. [3] Frequent consumption of high-energy foods, such as processed foods that are high in fats and sugars, promotes obesity and may increase cardiovascular risk. [3] The amount of dietary salt consumed may also be an important determinant of blood pressure levels and overall cardiovascular risk. [3] There is moderate quality evidence that reducing saturated fat intake for at least two years reduces the risk of cardiovascular disease. [42] High trans-fat intake has adverse effects on blood lipids and circulating inflammatory markers, [43] and elimination of trans-fat from diets has been widely advocated. [44] [45] In 2018 the World Health Organization estimated that trans fats were the cause of more than half a million deaths per year. [45] There is evidence that higher consumption of sugar is associated with higher blood pressure and unfavorable blood lipids, [46] and sugar intake also increases the risk of diabetes mellitus. [47] High consumption of processed meats is associated with an increased risk of cardiovascular disease, possibly in part due to increased dietary salt intake. [19]


The relationship between alcohol consumption and cardiovascular disease is complex, and may depend on the amount of alcohol consumed. [48] There is a direct relationship between high levels of drinking alcohol and cardiovascular disease. [3] Drinking at low levels without episodes of heavy drinking may be associated with a reduced risk of cardiovascular disease, [49] but there is evidence that associations between moderate alcohol consumption and protection from stroke are non-causal. [50] At the population level, the health risks of drinking alcohol exceed any potential benefits. [3] [51]

Celiac disease

Untreated celiac disease can cause the development of many types of cardiovascular diseases, most of which improve or resolve with a gluten-free diet and intestinal healing. However, delays in recognition and diagnosis of celiac disease can cause irreversible heart damage. [20]


A lack of good sleep, in amount or quality, is documented as increasing cardiovascular risk in both adults and teens. Recommendations suggest that Infants typically need 12 or more hours of sleep per day, adolescent at least eight or nine hours, and adults seven or eight. About one-third of adult Americans get less than the recommended seven hours of sleep per night, and in a study of teenagers, just 2.2 percent of those studied got enough sleep, many of whom did not get good quality sleep. Studies have shown that short sleepers getting less than seven hours sleep per night have a 10 percent to 30 percent higher risk of cardiovascular disease. [7] [52]

Sleep disorders such as sleep-disordered breathing and insomnia, are also associated with a higher cardiometabolic risk. [53] An estimated 50 to 70 million Americans have insomnia, sleep apnea or other chronic sleep disorders.[ citation needed ]

In addition, sleep research displays differences in race and class. Short sleep and poor sleep tend to be more frequently reported in ethnic minorities than in whites. African-Americans report experiencing short durations of sleep five times more often than whites, possibly as a result of social and environmental factors. Black children and children living in disadvantaged neighborhoods have much higher rates of sleep apnea. [8]

Socioeconomic disadvantage

Cardiovascular disease has a greater impact on low- and middle-income countries compared to those with higher income. [54] Although data on the social patterns of cardiovascular disease in low- and middle-income countries is limited [54] , reports from high-income countries consistently demonstrate that low educational status or income are associated with a greater risk of cardiovascular disease. [55] Policies that have resulted in increased socio-economic inequalities have been associated with greater subsequent socio-economic differences in cardiovascular disease [54] implying a cause and effect relationship. Psychosocial factors, environmental exposures, health behaviours, and health-care access and quality contribute to socio-economic differentials in cardiovascular disease. [56] The Commission on Social Determinants of Health recommended that more equal distributions of power, wealth, education, housing, environmental factors, nutrition, and health care were needed to address inequalities in cardiovascular disease and non-communicable diseases. [57]

Air pollution

Particulate matter has been studied for its short- and long-term exposure effects on cardiovascular disease. Currently, airborne particles under 2.5 micrometers in diameter (PM2.5) are the major focus, in which gradients are used to determine CVD risk. Overall, long-term PM exposure increased rate of atherosclerosis and inflammation. In regards to short-term exposure (2 hours), every 25 μg/m3 of PM2.5 resulted in a 48% increase of CVD mortality risk. [58] In addition, after only 5 days of exposure, a rise in systolic (2.8 mmHg) and diastolic (2.7 mmHg) blood pressure occurred for every 10.5 μg/m3 of PM2.5. [58] Other research has implicated PM2.5 in irregular heart rhythm, reduced heart rate variability (decreased vagal tone), and most notably heart failure. [58] [59] PM2.5 is also linked to carotid artery thickening and increased risk of acute myocardial infarction. [58] [59]

Cardiovascular risk assessment

Existing cardiovascular disease or a previous cardiovascular event, such as a heart attack or stroke, is the strongest predictor of a future cardiovascular event. [60] Age, sex, smoking, blood pressure, blood lipids and diabetes are important predictors of future cardiovascular disease in people who are not known to have cardiovascular disease. [61] These measures, and sometimes others, may be combined into composite risk scores to estimate an individual's future risk of cardiovascular disease. [60] Numerous risk scores exist although their respective merits are debated. [62] Other diagnostic tests and biomarkers remain under evaluation but currently these lack clear-cut evidence to support their routine use. They include family history, coronary artery calcification score, high sensitivity C-reactive protein (hs-CRP), ankle–brachial pressure index, lipoprotein subclasses and particle concentration, lipoprotein(a), apolipoproteins A-I and B, fibrinogen, white blood cell count, homocysteine, N-terminal pro B-type natriuretic peptide (NT-proBNP), and markers of kidney function. [63] [64] High blood phosphorus is also linked to an increased risk. [65]

Depression and traumatic stress

There is evidence that mental health problems, in particular depression and traumatic stress, is linked to cardiovascular diseases. Whereas mental health problems are known to be associated with risk factors for cardiovascular diseases such as smoking, poor diet, and a sedentary lifestyle, these factors alone do not explain the increased risk of cardiovascular diseases seen in depression, stress, and anxiety. [66] Moreover, posttraumatic stress disorder is independently associated with increased risk for incident coronary heart disease, even after adjusting for depression and other covariates. [67]

Occupational exposure

Little is known about the relationship between work and cardiovascular disease, but links have been established between certain toxins, extreme heat and cold, exposure to tobacco smoke, and mental health concerns such as stress and depression. [68]

Non-chemical risk factors

A 2015 SBU-report looking at non-chemical factors found an association for those: [69]

  • with mentally stressful work with a lack of control over their working situation — with an effort-reward imbalance [69]
  • who experience low social support at work; who experience injustice or experience insufficient opportunities for personal development; or those who experience job insecurity [69]
  • those who work night schedules; or have long working weeks [69]
  • those who are exposed to noise [69]

Specifically the risk of stroke was also increased by exposure to ionizing radiation. [69] Hypertension develops more often in those who experience job strain and who have shift-work. [69] Differences between women and men in risk are small, however men risk having and dying of heart attacks or stroke twice as often as women during working life. [69]

Chemical risk factors

A 2017 SBU report found evidence that workplace exposure to silica dust, engine exhaust or welding fumes is associated with heart disease. [70] Associations also exist for exposure to arsenic, benzopyrenes, lead, dynamite, carbon disulphide, carbon monoxide, metalworking fluids and occupational exposure to tobacco smoke. [70] Working with the electrolytic production of aluminium or the production of paper when the sulphate pulping process is used is associated with heart disease. [70] An association was also found between heart disease and exposure to compounds which are no longer permitted in certain work environments, such as phenoxy acids containing TCDD(dioxin) or asbestos. [70]

Workplace exposure to silica dust or asbestos is also associated with pulmonary heart disease. There is evidence that workplace exposure to lead, carbon disulphide, phenoxyacids containing TCDD, as well as working in an environment where aluminum is being electrolytically produced, is associated with stroke. [70]

Somatic mutations

As of 2017, evidence suggests that certain leukemia-associated mutations in blood cells may also lead to increased risk of cardiovascular disease. Several large-scale research projects looking at human genetic data have found a robust link between the presence of these mutations, a condition known as clonal hematopoiesis, and cardiovascular disease-related incidents and mortality. [71]

Radiation therapy

Radiation treatments (RT) for cancer can increase the risk of heart disease and death, as observed in breast cancer therapy. [72] Therapeutic radiation increases the risk of a subsequent heart attack or stroke by 1.5 to 4 times; [73] the increase depends on the dose strength, volume, and location. Use of concomitant chemotherapy, e.g. anthracyclines, is an aggravating risk factor. [74] The occurrence rate of RT induced cardiovascular disease is estimated between 10% and 30%. [74]

Side-effects from radiation therapy for cardiovascular diseases have been termed radiation-induced heart disease or radiation-induced cardiovascular disease. [75] [76] Symptoms are dose-dependent and include cardiomyopathy, myocardial fibrosis, valvular heart disease, coronary artery disease, heart arrhythmia and peripheral artery disease. Radiation-induced fibrosis, vascular cell damage and oxidative stress can lead to these and other late side-effect symptoms. [75]


Density-Dependent Colour Scanning Electron Micrograph SEM (DDC-SEM) of cardiovascular calcification, showing in orange calcium phosphate spherical particles (denser material) and, in green, the extracellular matrix (less dense material) Cardiovascular calcification - Sergio Bertazzo.tif
Density-Dependent Colour Scanning Electron Micrograph SEM (DDC-SEM) of cardiovascular calcification, showing in orange calcium phosphate spherical particles (denser material) and, in green, the extracellular matrix (less dense material)

Population-based studies show that atherosclerosis, the major precursor of cardiovascular disease, begins in childhood. The Pathobiological Determinants of Atherosclerosis in Youth (PDAY) study demonstrated that intimal lesions appear in all the aortas and more than half of the right coronary arteries of youths aged 7–9 years. [78]

Obesity and diabetes mellitus are linked to cardiovascular disease, [79] as are a history of chronic kidney disease and hypercholesterolaemia. [80] In fact, cardiovascular disease is the most life-threatening of the diabetic complications and diabetics are two- to four-fold more likely to die of cardiovascular-related causes than nondiabetics. [81] [82] [83]


Screening ECGs (either at rest or with exercise) are not recommended in those without symptoms who are at low risk. [84] This includes those who are young without risk factors. [85] In those at higher risk the evidence for screening with ECGs is inconclusive. [86] Additionally echocardiography, myocardial perfusion imaging, and cardiac stress testing is not recommended in those at low risk who do not have symptoms. [87] Some biomarkers may add to conventional cardiovascular risk factors in predicting the risk of future cardiovascular disease; however, the value of some biomarkers is questionable. [88] [89] Ankle-brachial index (ABI), high-sensitivity C-reactive protein (hsCRP), and coronary artery calcium, are also of unclear benefit in those without symptoms as of 2018. [90]

The NIH recommends lipid testing in children beginning at the age of 2 if there is a family history of heart disease or lipid problems. [91] It is hoped that early testing will improve lifestyle factors in those at risk such as diet and exercise. [92]

Screening and selection for primary prevention interventions has traditionally been done through absolute risk using a variety of scores (ex. Framingham or Reynolds risk scores). [93] This stratification has separated people who receive the lifestyle interventions (generally lower and intermediate risk) from the medication (higher risk). The number and variety of risk scores available for use has multiplied, but their efficacy according to a 2016 review was unclear due to lack of external validation or impact analysis. [94] Risk stratification models often lack sensitivity for population groups and do not account for the large number of negative events among the intermediate and low risk groups. [93] As a result, future preventative screening appears to shift toward applying prevention according to randomized trial results of each intervention rather than large-scale risk assessment.


Up to 90% of cardiovascular disease may be preventable if established risk factors are avoided. [9] [95] Currently practised measures to prevent cardiovascular disease include:

Most guidelines recommend combining preventive strategies. There is some evidence that interventions aiming to reduce more than one cardiovascular risk factor may have beneficial effects on blood pressure, body mass index and waist circumference; however, evidence was limited and the authors were unable to draw firm conclusions on the effects on cardiovascular events and mortality. [127]

There is additional evidence to suggest that providing people with a cardiovascular disease risk score may reduce risk factors by a small amount compared to usual care. [128] However, there was some uncertainty as to whether providing these scores had any effect on cardiovascular disease events. It is unclear whether or not dental care in those with periodontitis affects their risk of cardiovascular disease. [129] According to a 2021 WHO study, working 55+ hours a week raises the risk of stroke by 35% and the risk of dying from heart conditions by 17%, when compared to a 35-40 hours week. [130]


A diet high in fruits and vegetables decreases the risk of cardiovascular disease and death. [131]

A 2021 review found that plant-based diets can provide a risk reduction for CVD if a healthy plant-based diet is consumed. Unhealthy plant-based diets do not provide benefits over diets including meat. [97] A similar meta-analysis and systematic review also looked into dietary patterns and found "that diets lower in animal foods and unhealthy plant foods, and higher in healthy plant foods are beneficial for CVD prevention". [98] A 2018 meta-analysis of observational studies concluded that "In most countries, a vegan diet is associated with a more favourable cardio-metabolic profile compared to an omnivorous diet." [99]

Evidence suggests that the Mediterranean diet may improve cardiovascular outcomes. [132] There is also evidence that a Mediterranean diet may be more effective than a low-fat diet in bringing about long-term changes to cardiovascular risk factors (e.g., lower cholesterol level and blood pressure). [133]

The DASH diet (high in nuts, fish, fruits and vegetables, and low in sweets, red meat and fat) has been shown to reduce blood pressure, [134] lower total and low density lipoprotein cholesterol [135] and improve metabolic syndrome; [136] but the long-term benefits have been questioned. [137] A high-fiber diet is associated with lower risks of cardiovascular disease. [138]

Worldwide, dietary guidelines recommend a reduction in saturated fat, [139] and although the role of dietary fat in cardiovascular disease is complex and controversial there is a long-standing consensus that replacing saturated fat with unsaturated fat in the diet is sound medical advice. [140] Total fat intake has not been found to be associated with cardiovascular risk. [141] [142] A 2020 systematic review found moderate quality evidence that reducing saturated fat intake for at least 2 years caused a reduction in cardiovascular events. [143] A 2015 meta-analysis of observational studies however did not find a convincing association between saturated fat intake and cardiovascular disease. [144] Variation in what is used as a substitute for saturated fat may explain some differences in findings. [140] The benefit from replacement with polyunsaturated fats appears greatest, [145] while replacement of saturated fats with carbohydrates does not appear to have a beneficial effect. [145] A diet high in trans fatty acids is associated with higher rates of cardiovascular disease, [146] and in 2015 the Food and Drug Administration (FDA) determined that there was 'no longer a consensus among qualified experts that partially hydrogenated oils (PHOs), which are the primary dietary source of industrially produced trans fatty acids (IP-TFA), are generally recognized as safe (GRAS) for any use in human food'. [147] There is conflicting evidence concerning whether dietary supplements of omega-3 fatty acids (a type of polyunsaturated essential fatty acid) added to diet improve cardiovascular risk. [148] [149]

The benefits of recommending a low-salt diet in people with high or normal blood pressure are not clear. [150] In those with heart failure, after one study was left out, the rest of the trials show a trend to benefit. [151] [152] Another review of dietary salt concluded that there is strong evidence that high dietary salt intake increases blood pressure and worsens hypertension, and that it increases the number of cardiovascular disease events; both as a result of the increased blood pressure and probably through other mechanisms. [153] [154] Moderate evidence was found that high salt intake increases cardiovascular mortality; and some evidence was found for an increase in overall mortality, strokes, and left ventricular hypertrophy. [153]

Intermittent fasting

Overall, the current body of scientific evidence is uncertain on whether intermittent fasting could prevent cardiovascular disease. [155] Intermittent fasting may help people lose more weight than regular eating patterns, but was not different from energy restriction diets. [155]


Blood pressure medication reduces cardiovascular disease in people at risk, [114] irrespective of age, [156] the baseline level of cardiovascular risk, [157] or baseline blood pressure. [158] The commonly-used drug regimens have similar efficacy in reducing the risk of all major cardiovascular events, although there may be differences between drugs in their ability to prevent specific outcomes. [159] Larger reductions in blood pressure produce larger reductions in risk, [159] and most people with high blood pressure require more than one drug to achieve adequate reduction in blood pressure. [160] Adherence to medications is often poor, and while mobile phone text messaging has been tried to improve adherence, there is insufficient evidence that it alters secondary prevention of cardiovascular disease. [161]

Statins are effective in preventing further cardiovascular disease in people with a history of cardiovascular disease. [162] As the event rate is higher in men than in women, the decrease in events is more easily seen in men than women. [162] In those at risk, but without a history of cardiovascular disease (primary prevention), statins decrease the risk of death and combined fatal and non-fatal cardiovascular disease. [163] The benefit, however, is small. [164] A United States guideline recommends statins in those who have a 12% or greater risk of cardiovascular disease over the next ten years. [165] Niacin, fibrates and CETP Inhibitors, while they may increase HDL cholesterol do not affect the risk of cardiovascular disease in those who are already on statins. [166] Fibrates lower the risk of cardiovascular and coronary events, but there is no evidence to suggest that they reduce all-cause mortality. [167]

Anti-diabetic medication may reduce cardiovascular risk in people with Type 2 diabetes, although evidence is not conclusive. [168] A meta-analysis in 2009 including 27,049 participants and 2,370 major vascular events showed a 15% relative risk reduction in cardiovascular disease with more-intensive glucose lowering over an average follow-up period of 4.4 years, but an increased risk of major hypoglycemia. [169]

Aspirin has been found to be of only modest benefit in those at low risk of heart disease, as the risk of serious bleeding is almost equal to the protection against cardiovascular problems. [170] In those at very low risk, including those over the age of 70, it is not recommended. [171] [172] The United States Preventive Services Task Force recommends against use of aspirin for prevention in women less than 55 and men less than 45 years old; however, it is recommended for some older people. [173]

The use of vasoactive agents for people with pulmonary hypertension with left heart disease or hypoxemic lung diseases may cause harm and unnecessary expense. [174]

Antibiotics for secondary prevention of coronary heart disease

Antibiotics may help patients with coronary disease to reduce the risk of heart attacks and strokes. [175] However, evidence in 2021 suggests that antibiotics for secondary prevention of coronary heart disease are harmful, with increased mortality and occurrence of stroke; [175] the use of antibiotics is not supported for preventing secondary coronary heart disease.

Physical activity

Exercise-based cardiac rehabilitation following a heart attack reduces the risk of death from cardiovascular disease and leads to less hospitalizations. [176] There have been few high-quality studies of the benefits of exercise training in people with increased cardiovascular risk but no history of cardiovascular disease. [177]

A systematic review estimated that inactivity is responsible for 6% of the burden of disease from coronary heart disease worldwide. [178] The authors estimated that 121,000 deaths from coronary heart disease could have been averted in Europe in 2008 if people had not been physically inactive. Low-quality evidence from a limited number of studies suggest that yoga has beneficial effects on blood pressure and cholesterol. [179] Tentative evidence suggests that home-based exercise programs may be more efficient at improving exercise adherence. [180]

Dietary supplements

While a healthy diet is beneficial, the effect of antioxidant supplementation (vitamin E, vitamin C, etc.) or vitamins has not been shown to protect against cardiovascular disease and in some cases may possibly result in harm. [181] [182] [183] [184] Mineral supplements have also not been found to be useful. [185] Niacin, a type of vitamin B3, may be an exception with a modest decrease in the risk of cardiovascular events in those at high risk. [186] [187] Magnesium supplementation lowers high blood pressure in a dose-dependent manner. [188] Magnesium therapy is recommended for people with ventricular arrhythmia associated with torsades de pointes who present with long QT syndrome, and for the treatment of people with digoxin intoxication-induced arrhythmias. [189] There is no evidence that omega-3 fatty acid supplementation is beneficial. [190] A 2022 review found that some dietary supplements, including micronutrients, may reduce risk factors for cardiovascular disease. [191]


Cardiovascular disease is treatable with initial treatment primarily focused on diet and lifestyle interventions. [3] Influenza may make heart attacks and strokes more likely and therefore influenza vaccination may decrease the chance of cardiovascular events and death in people with heart disease. [192]

Proper CVD management necessitates a focus on MI and stroke cases due to their combined high mortality rate, keeping in mind the cost-effectiveness of any intervention, especially in developing countries with low or middle-income levels. [93] Regarding MI, strategies using aspirin, atenolol, streptokinase or tissue plasminogen activator have been compared for quality-adjusted life-year (QALY) in regions of low and middle income. The costs for a single QALY for aspirin and atenolol were less than US$25, streptokinase was about $680, and t-PA was $16,000. [193] Aspirin, ACE inhibitors, beta-blockers, and statins used together for secondary CVD prevention in the same regions showed single QALY costs of $350. [193]

There are also surgical or procedural interventions that can save someone's life or prolong it. For heart valve problems, a person could have surgery to replace the valve. For arrhythmias, a pacemaker can be put in place to help reduce abnormal heart rhythms and for a heart attack, there are multiple options two of these are a coronary angioplasty and a coronary artery bypass surgery. [194]

There is probably no additional benefit in terms of mortality and serious adverse events when blood pressure targets were lowered to ≤ 135/85 mmHg from ≤ 140 to 160/90 to 100 mmHg. [195]


Cardiovascular diseases deaths per million persons in 2012
5,272-10233 Cardiovascular diseases world map-Deaths per million persons-WHO2012.svg
Cardiovascular diseases deaths per million persons in 2012
Disability-adjusted life year for cardiovascular diseases per 100,000 inhabitants in 2004
no data
>7900 Cardiovascular diseases world map - DALY - WHO2004.svg
Disability-adjusted life year for cardiovascular diseases per 100,000 inhabitants in 2004
  no data

Cardiovascular diseases are the leading cause of death worldwide and in all regions except Africa. [3] In 2008, 30% of all global death was attributed to cardiovascular diseases. Death caused by cardiovascular diseases are also higher in low- and middle-income countries as over 80% of all global deaths caused by cardiovascular diseases occurred in those countries. It is also estimated that by 2030, over 23 million people will die from cardiovascular diseases each year.

It is estimated that 60% of the world's cardiovascular disease burden will occur in the South Asian subcontinent despite only accounting for 20% of the world's population. This may be secondary to a combination of genetic predisposition and environmental factors. Organizations such as the Indian Heart Association are working with the World Heart Federation to raise awareness about this issue. [196]


There is evidence that cardiovascular disease existed in pre-history, [197] and research into cardiovascular disease dates from at least the 18th century. [198] The causes, prevention, and/or treatment of all forms of cardiovascular disease remain active fields of biomedical research, with hundreds of scientific studies being published on a weekly basis.

Recent areas of research include the link between inflammation and atherosclerosis [199] the potential for novel therapeutic interventions, [200] and the genetics of coronary heart disease. [201]

Related Research Articles

<span class="mw-page-title-main">Coronary artery disease</span> Reduction of blood flow to the heart

Coronary artery disease (CAD), also called coronary heart disease (CHD), ischemic heart disease (IHD), myocardial ischemia, or simply heart disease, involves the reduction of blood flow to the cardiac muscle due to build-up of atherosclerotic plaque in the arteries of the heart. It is the most common of the cardiovascular diseases. Types include stable angina, unstable angina, and myocardial infarction.

<span class="mw-page-title-main">Fat</span> Esters of fatty acid or triglycerides

In nutrition, biology, and chemistry, fat usually means any ester of fatty acids, or a mixture of such compounds, most commonly those that occur in living beings or in food.

Omega−3 fatty acids, also called Omega−3 oils, ω−3 fatty acids or n−3 fatty acids, are polyunsaturated fatty acids (PUFAs) characterized by the presence of a double bond, three atoms away from the terminal methyl group in their chemical structure. They are widely distributed in nature, being important constituents of animal lipid metabolism, and they play an important role in the human diet and in human physiology. The three types of omega−3 fatty acids involved in human physiology are α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). ALA can be found in plants, while DHA and EPA are found in algae and fish. Marine algae and phytoplankton are primary sources of omega−3 fatty acids. DHA and EPA accumulate in fish that eat these algae. Common sources of plant oils containing ALA include walnuts, edible seeds, and flaxseeds as well as hempseed oil, while sources of EPA and DHA include fish and fish oils, and algae oil.

<span class="mw-page-title-main">Type 2 diabetes</span> Type of diabetes mellitus with high blood sugar and insulin resistance

Type 2 diabetes (T2D), formerly known as adult-onset diabetes, is a form of diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. Common symptoms include increased thirst, frequent urination, fatigue and unexplained weight loss. Symptoms may also include increased hunger, having a sensation of pins and needles, and sores (wounds) that do not heal. Often symptoms come on slowly. Long-term complications from high blood sugar include heart disease, strokes, diabetic retinopathy which can result in blindness, kidney failure, and poor blood flow in the limbs which may lead to amputations. The sudden onset of hyperosmolar hyperglycemic state may occur; however, ketoacidosis is uncommon.

A saturated fat is a type of fat in which the fatty acid chains have all single bonds. A fat known as a glyceride is made of two kinds of smaller molecules: a short glycerol backbone and fatty acids that each contain a long linear or branched chain of carbon (C) atoms. Along the chain, some carbon atoms are linked by single bonds (-C-C-) and others are linked by double bonds (-C=C-). A double bond along the carbon chain can react with a pair of hydrogen atoms to change into a single -C-C- bond, with each H atom now bonded to one of the two C atoms. Glyceride fats without any carbon chain double bonds are called saturated because they are "saturated with" hydrogen atoms, having no double bonds available to react with more hydrogen.

<span class="mw-page-title-main">Mediterranean diet</span> Diet inspired by the Mediterranean region

The Mediterranean diet is a diet inspired by the eating habits and traditional food typical of southern Spain, southern Italy, and Crete, and formulated in the early 1960s. It is distinct from Mediterranean cuisine, which covers the actual cuisines of the Mediterranean countries, and from the Atlantic diet of northwestern Spain and Portugal. While inspired by a specific time and place, the "Mediterranean diet" was later refined based on the results of multiple scientific studies.

<span class="mw-page-title-main">Hypercholesterolemia</span> High levels of cholesterol in the blood

Hypercholesterolemia, also called high cholesterol, is the presence of high levels of cholesterol in the blood. It is a form of hyperlipidemia, hyperlipoproteinemia, and dyslipidemia.

<span class="mw-page-title-main">Plant-based diet</span> Diet consisting mostly or entirely of plant-based foods

A plant-based diet is a diet consisting mostly or entirely of plant-based foods. Plant-based diets encompass a wide range of dietary patterns that contain low amounts of animal products and high amounts of fiber-rich plant products such as vegetables, fruits, whole grains, legumes, nuts and seeds. They do not need to be vegan or vegetarian, but are defined in terms of low frequency of animal food consumption.

<span class="mw-page-title-main">Women's Health Initiative</span> Long-term U.S. health study

The Women's Health Initiative (WHI) was a series of clinical studies initiated by the U.S. National Institutes of Health (NIH) in 1991, to address major health issues causing morbidity and mortality in postmenopausal women. It consisted of three clinical trials (CT) and an observational study (OS). In particular, randomized controlled trials were designed and funded that addressed cardiovascular disease, cancer, and osteoporosis.

<span class="mw-page-title-main">Healthy diet</span> Type of diet

A healthy diet is a diet that maintains or improves overall health. A healthy diet provides the body with essential nutrition: fluid, macronutrients such as protein, micronutrients such as vitamins, and adequate fibre and food energy.

The lipid hypothesis is a medical theory postulating a link between blood cholesterol levels and the occurrence of cardiovascular disease. A summary from 1976 described it as: "measures used to lower the plasma lipids in patients with hyperlipidemia will lead to reductions in new events of coronary heart disease". It states, more concisely, that "decreasing blood cholesterol [...] significantly reduces coronary heart disease".

The Dietary Approaches to Stop Hypertension or the DASH diet is a diet to control hypertension promoted by the U.S.-based National Heart, Lung, and Blood Institute, part of the National Institutes of Health (NIH), an agency of the United States Department of Health and Human Services. The DASH diet is rich in fruits, vegetables, whole grains, and low-fat dairy foods. It includes meat, fish, poultry, nuts, and beans, and is limited in sugar-sweetened foods and beverages, red meat, and added fats. In addition to its effect on blood pressure, it is designed to be a well-balanced approach to eating for the general public. DASH is recommended by the United States Department of Agriculture (USDA) as a healthy eating plan. The DASH diet is one of three healthy diets recommended in the 2015–20 U.S. Dietary Guidelines, which also include the Mediterranean diet and a vegetarian diet. The American Heart Association (AHA) considers the DASH diet "specific and well-documented across age, sex and ethnically diverse groups."

Cardiac rehabilitation (CR) is defined by the World Health Organization (WHO) as "the sum of activity and interventions required to ensure the best possible physical, mental, and social conditions so that patients with chronic or post-acute cardiovascular disease may, by their own efforts, preserve or resume their proper place in society and lead an active life". CR is a comprehensive model of care delivering established core components, including structured exercise, patient education, psychosocial counselling, risk factor reduction and behaviour modification, with a goal of optimizing patient's quality of life and reducing the risk of future heart problems.

<span class="mw-page-title-main">Myocardial infarction</span> Interruption of blood supply to a part of the heart

A myocardial infarction (MI), commonly known as a heart attack, occurs when blood flow decreases or stops in one of the coronary arteries of the heart, causing infarction to the heart muscle. The most common symptom is chest pain or discomfort which may travel into the shoulder, arm, back, neck or jaw. Often such pain occurs in the center or left side of the chest and lasts for more than a few minutes. The discomfort may occasionally feel like heartburn.

Canadian health claims by Health Canada, the department of the Government of Canada responsible for national health, has allowed five scientifically verified disease risk reduction claims to be used on food labels and on food advertising. Other countries, including the United States and Great Britain, have approved similar health claims on food labels.

<span class="mw-page-title-main">Seven Countries Study</span>

The Seven Countries Study is an epidemiological longitudinal study directed by Ancel Keys at what is today the University of Minnesota Laboratory of Physiological Hygiene & Exercise Science (LPHES). Begun in 1956 with a yearly grant of US$200,000 from the U.S. Public Health Service, the study was first published in 1978 and then followed up on its subjects every five years thereafter.

<span class="mw-page-title-main">Health effects of salt</span> Conditions associated with the consumption of either too much or too little salt

The health effects of salt are the conditions associated with the consumption of either too much or too little salt. Salt is a mineral composed primarily of sodium chloride (NaCl) and is used in food for both preservation and flavor. Sodium ions are needed in small quantities by most living things, as are chloride ions. Salt is involved in regulating the water content of the body. The sodium ion itself is used for electrical signaling in the nervous system.

<span class="mw-page-title-main">Frank Hu</span> Nutrition researcher

Frank B. Hu is a Chinese American nutrition and diabetes researcher. He is Chair of the Department of Nutrition and the Fredrick J. Stare Professor of Nutrition and Epidemiology at the Harvard T.H. Chan School of Public Health, and Professor of Medicine at the Harvard Medical School.

Occupational cardiovascular diseases (CVD) are diseases of the heart or blood vessels caused by working conditions, making them a form of occupational illness. These diseases include coronary heart disease, stroke, cardiomyopathy, arrythmia, and heart valve or heart chamber problems. Cardiovascular disease is the leading cause of death in the United States and worldwide. In the United States, cardiovascular diseases account for one out of four deaths. The 6th International Conference on Work Environment and Cardiovascular Diseases found that within the working age population about 10-20% of cardiovascular disease deaths can be attributed to work. Ten workplace stressors and risk factors were estimated to be associated with 120,000 U.S. deaths each year and account for 5-8% of health care costs.

Cardiovascular disease in women is an integral area of research in the ongoing studies of women's health. Cardiovascular disease (CVD) is an umbrella term for a wide range of diseases affecting the heart and blood vessels, including but not limited to, coronary artery disease, stroke, cardiomyopathy, myocardial infarctions, and aortic aneurysms.


  1. "Heart disease". Mayo Clinic. 2022-08-25.
  2. 1 2 Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. (January 2013). "Heart disease and stroke statistics--2013 update: a report from the American Heart Association". Circulation. 127 (1): e6–e245. doi:10.1161/cir.0b013e31828124ad. PMC   5408511 . PMID   23239837.
  3. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Shanthi M, Pekka P, Norrving B (2011). Global Atlas on Cardiovascular Disease Prevention and Control (PDF). World Health Organization in collaboration with the World Heart Federation and the World Stroke Organization. pp. 3–18. ISBN   978-92-4-156437-3. Archived (PDF) from the original on 2014-08-17.
  4. 1 2 3 Naghavi M, Wang H, Lozano R, Davis A, Liang X, Zhou M, et al. (GBD 2013 Mortality and Causes of Death Collaborators) (January 2015). "Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013". Lancet. 385 (9963): 117–71. doi:10.1016/S0140-6736(14)61682-2. PMC   4340604 . PMID   25530442.
  5. 1 2 Wang H, Naghavi M, Allen C, Barber RM, Bhutta ZA, Carter A, et al. (GBD 2015 Mortality and Causes of Death Collaborators) (October 2016). "Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015". Lancet. 388 (10053): 1459–1544. doi:10.1016/S0140-6736(16)31012-1. PMC   5388903 . PMID   27733281.
  6. Petersen KS, Kris-Etherton PM (2021-11-28). "Diet quality assessment and the relationship between diet quality and cardiovascular disease risk". Nutrients. 13 (12): 4305. doi: 10.3390/nu13124305 . ISSN   2072-6643. PMC   8706326 . PMID   34959857.
  7. 1 2 Jackson CL, Redline S, Emmons KM (March 2015). "Sleep as a potential fundamental contributor to disparities in cardiovascular health". Annual Review of Public Health. 36 (1): 417–40. doi:10.1146/annurev-publhealth-031914-122838. PMC   4736723 . PMID   25785893.
  8. 1 2 Wang R, Dong Y, Weng J, Kontos EZ, Chervin RD, Rosen CL, et al. (January 2017). "Associations among Neighborhood, Race, and Sleep Apnea Severity in Children. A Six-City Analysis". Annals of the American Thoracic Society. 14 (1): 76–84. doi:10.1513/AnnalsATS.201609-662OC. PMC   5291481 . PMID   27768852.
  9. 1 2 McGill HC, McMahan CA, Gidding SS (March 2008). "Preventing heart disease in the 21st century: implications of the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) study". Circulation. 117 (9): 1216–27. doi: 10.1161/CIRCULATIONAHA.107.717033 . PMID   18316498.
  10. O'Donnell MJ, Chin SL, Rangarajan S, Xavier D, Liu L, Zhang H, et al. (August 2016). "Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): a case-control study". Lancet. 388 (10046): 761–75. doi:10.1016/S0140-6736(16)30506-2. PMID   27431356. S2CID   39752176.
  11. Spinks A, Glasziou PP, Del Mar CB (2021-12-09). "Antibiotics for treatment of sore throat in children and adults". The Cochrane Database of Systematic Reviews. 2021 (12): CD000023. doi:10.1002/14651858.CD000023.pub5. ISSN   1469-493X. PMC   8655103 . PMID   34881426.
  12. Sutcliffe P, Connock M, Gurung T, Freeman K, Johnson S, Ngianga-Bakwin K, et al. (2013). "Aspirin in primary prevention of cardiovascular disease and cancer: a systematic review of the balance of evidence from reviews of randomized trials". PLOS ONE. 8 (12): e81970. Bibcode:2013PLoSO...881970S. doi: 10.1371/journal.pone.0081970 . PMC   3855368 . PMID   24339983.
  13. Sutcliffe P, Connock M, Gurung T, Freeman K, Johnson S, Kandala NB, et al. (September 2013). "Aspirin for prophylactic use in the primary prevention of cardiovascular disease and cancer: a systematic review and overview of reviews". Health Technology Assessment . 17 (43): 1–253. doi:10.3310/hta17430. PMC   4781046 . PMID   24074752.
  14. 1 2 Institute of Medicine of the National Academies (2010). "Epidemiology of Cardiovascular Disease". In Fuster V, Kelly BB (eds.). Promoting cardiovascular health in the developing world : a critical challenge to achieve global health. Washington, DC: National Academies Press. ISBN   978-0-309-14774-3. Archived from the original on 2017-09-08.
  15. Moran AE, Forouzanfar MH, Roth GA, Mensah GA, Ezzati M, Murray CJ, et al. (April 2014). "Temporal trends in ischemic heart disease mortality in 21 world regions, 1980 to 2010: the Global Burden of Disease 2010 study". Circulation. 129 (14): 1483–92. doi:10.1161/circulationaha.113.004042. PMC   4181359 . PMID   24573352.
  16. 1 2 "WHO Disease and injury country estimates". World Health Organization. 2009. Archived from the original on 2009-11-11.
  17. Fuster V, Kelly BB, eds. (2010). Promoting Cardiovascular Health in the Developing World: A Critical Challenge to Achieve Global Health. Washington, DC: National Academies Press. ISBN   978-0-309-14774-3.
  18. Finks SW, Airee A, Chow SL, Macaulay TE, Moranville MP, Rogers KC, et al. (April 2012). "Key articles of dietary interventions that influence cardiovascular mortality". Pharmacotherapy. 32 (4): e54-87. doi: 10.1002/j.1875-9114.2011.01087.x . PMID   22392596. S2CID   36437057.
  19. 1 2 Micha R, Michas G, Mozaffarian D (December 2012). "Unprocessed red and processed meats and risk of coronary artery disease and type 2 diabetes--an updated review of the evidence". Current Atherosclerosis Reports. 14 (6): 515–24. doi:10.1007/s11883-012-0282-8. PMC   3483430 . PMID   23001745.
  20. 1 2 Ciaccio EJ, Lewis SK, Biviano AB, Iyer V, Garan H, Green PH (August 2017). "Cardiovascular involvement in celiac disease". World Journal of Cardiology (Review). 9 (8): 652–666. doi: 10.4330/wjc.v9.i8.652 . PMC   5583538 . PMID   28932354.
  21. Duell PB, Welty FK, Miller M, Chait A, Hammond G, Ahmad Z, et al. (April 2022). "Nonalcoholic Fatty Liver Disease and Cardiovascular Risk: A Scientific Statement From the American Heart Association". Arteriosclerosis, Thrombosis, and Vascular Biology. 42 (6): e168–e185. doi: 10.1161/ATV.0000000000000153 . PMID   35418240. S2CID   248155592.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  22. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. (2004). "Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study". Lancet. 364 (9438): 937–52. doi:10.1016/S0140-6736(04)17018-9. hdl: 10983/21615 . PMID   15364185. S2CID   30811593.
  23. McPhee S (2012). Current medical diagnosis & treatment . New York: McGraw-Hill Medical. pp.  430. ISBN   978-0-07-176372-1.
  24. Eckel RH (November 1997). "Obesity and heart disease: a statement for healthcare professionals from the Nutrition Committee, American Heart Association". Circulation. 96 (9): 3248–50. doi:10.1161/01.CIR.96.9.3248. PMID   9386201.
  25. Kathiresan S, Srivastava D (March 2012). "Genetics of human cardiovascular disease". Cell. 148 (6): 1242–57. doi: 10.1016/j.cell.2012.03.001 . PMC   3319439 . PMID   22424232.
  26. 1 2 Semsarian C, Ingles J, Ross SB, Dunwoodie SL, Bagnall RD, Kovacic JC (2021-05-25). "Precision Medicine in Cardiovascular Disease: Genetics and Impact on Phenotypes: JACC Focus Seminar 1/5". Journal of the American College of Cardiology. 77 (20): 2517–2530. doi: 10.1016/j.jacc.2020.12.071 . ISSN   0735-1097. PMID   34016265. S2CID   235073575.
  27. Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, Kanoni S, et al. (October 2015). "A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease" (PDF). Nature Genetics. 47 (10): 1121–1130. doi:10.1038/ng.3396. PMC   4589895 . PMID   26343387 via University of Dundee.
  28. MacRae CA, Vasan RS (June 2016). "The Future of Genetics and Genomics: Closing the Phenotype Gap in Precision Medicine". Circulation. 133 (25): 2634–9. doi: 10.1161/CIRCULATIONAHA.116.022547 . PMC   6188655 . PMID   27324359.
  29. 1 2 3 Finegold JA, Asaria P, Francis DP (September 2013). "Mortality from ischaemic heart disease by country, region, and age: statistics from World Health Organisation and United Nations". International Journal of Cardiology. 168 (2): 934–45. doi:10.1016/j.ijcard.2012.10.046. PMC   3819990 . PMID   23218570.
  30. D'Adamo E, Guardamagna O, Chiarelli F, Bartuli A, Liccardo D, Ferrari F, et al. (2015). "Atherogenic dyslipidemia and cardiovascular risk factors in obese children". International Journal of Endocrinology. 2015: 912047. doi: 10.1155/2015/912047 . PMC   4309297 . PMID   25663838.
  31. "Understand Your Risk of Heart Attack". American Heart Association.
  32. Mackay J, Mensah G, Mendis S, Greenland K (January 2004). The Atlas of Heart Disease and Stroke. World Health Organization and U. S. Centers for Disease Control and Prevention. hdl:10665/43007. ISBN   978-92-4-156276-8.
  33. 1 2 3 4 5 6 7 Jousilahti P, Vartiainen E, Tuomilehto J, Puska P (March 1999). "Sex, age, cardiovascular risk factors, and coronary heart disease: a prospective follow-up study of 14 786 middle-aged men and women in Finland". Circulation. 99 (9): 1165–72. doi: 10.1161/01.cir.99.9.1165 . PMID   10069784.
  34. 1 2 3 4 Jani B, Rajkumar C (June 2006). "Ageing and vascular ageing". Postgraduate Medical Journal. 82 (968): 357–62. doi:10.1136/pgmj.2005.036053. PMC   2563742 . PMID   16754702.
  35. 1 2 "Cardiovascular disease risk factors". World Heart Federation. 2012. Archived from the original on 2012-05-10.
  36. "Diabetes raises women's risk of heart disease more than for men". May 22, 2014. Archived from the original on May 23, 2014. Retrieved May 23, 2014.
  37. "Pregnancy complications increase the risk of heart attacks and stroke in women with high blood pressure". NIHR Evidence (Plain English summary). National Institute for Health and Care Research. 2023-11-21. doi:10.3310/nihrevidence_60660. S2CID   265356623.
  38. Al Khalaf S, Chappell LC, Khashan AS, McCarthy FP, O'Reilly ÉJ (July 2023). "Association Between Chronic Hypertension and the Risk of 12 Cardiovascular Diseases Among Parous Women: The Role of Adverse Pregnancy Outcomes". Hypertension. 80 (7): 1427–1438. doi: 10.1161/HYPERTENSIONAHA.122.20628 . PMID   37170819.
  39. Jackson R, Chambles L, Higgins M, Kuulasmaa K, Wijnberg L, Williams D (WHO MONICA Project, and ARIC Study.) Sex difference in ischaemic heart disease mortality and risk factors in 46 communities: an ecologic analysis. Cardiovasc Risk Factors. 1999; 7:43–54.
  40. Doll R, Peto R, Boreham J, Sutherland I (June 2004). "Mortality in relation to smoking: 50 years' observations on male British doctors". BMJ. 328 (7455): 1519. doi:10.1136/bmj.38142.554479.AE. PMC   437139 . PMID   15213107.
  41. World Health Organization, UNAIDS (2007). Prevention of Cardiovascular Disease. World Health Organization. pp. 3–. ISBN   978-92-4-154726-0. Archived from the original on 27 April 2016.
  42. Hooper L, Martin N, Jimoh OF, Kirk C, Foster E, Abdelhamid AS (August 2020). "Reduction in saturated fat intake for cardiovascular disease". The Cochrane Database of Systematic Reviews. 2020 (8): CD011737. doi:10.1002/14651858.CD011737.pub3. PMC   8092457 . PMID   32827219.
  43. Booker CS, Mann JI (July 2008). "Trans fatty acids and cardiovascular health: translation of the evidence base". Nutrition, Metabolism, and Cardiovascular Diseases. 18 (6): 448–56. doi:10.1016/j.numecd.2008.02.005. PMID   18468872.
  44. Remig V, Franklin B, Margolis S, Kostas G, Nece T, Street JC (April 2010). "Trans fats in America: a review of their use, consumption, health implications, and regulation". Journal of the American Dietetic Association. 110 (4): 585–92. doi:10.1016/j.jada.2009.12.024. hdl: 2097/6377 . PMID   20338284.
  45. 1 2 "WHO plan to eliminate industrially-produced trans-fatty acids from global food supply" (Press release). World Health Organization. 14 May 2018.
  46. Te Morenga LA, Howatson AJ, Jones RM, Mann J (July 2014). "Dietary sugars and cardiometabolic risk: systematic review and meta-analyses of randomized controlled trials of the effects on blood pressure and lipids". The American Journal of Clinical Nutrition. 100 (1): 65–79. doi: 10.3945/ajcn.113.081521 . PMID   24808490.
  47. Howard BV, Wylie-Rosett, J (Jul 23, 2002). "Sugar and cardiovascular disease: A statement for healthcare professionals from the Committee on Nutrition of the Council on Nutrition, Physical Activity, and Metabolism of the American Heart Association". Circulation. 106 (4): 523–7. doi: 10.1161/01.cir.0000019552.77778.04 . PMID   12135957. S2CID   1589727.
  48. Bell S, Daskalopoulou M, Rapsomaniki E, George J, Britton A, Bobak M, et al. (March 2017). "Association between clinically recorded alcohol consumption and initial presentation of 12 cardiovascular diseases: population based cohort study using linked health records". BMJ. 356: j909. doi:10.1136/bmj.j909. PMC   5594422 . PMID   28331015.
  49. Mukamal KJ, Chen CM, Rao SR, Breslow RA (March 2010). "Alcohol consumption and cardiovascular mortality among U.S. adults, 1987 to 2002". Journal of the American College of Cardiology. 55 (13): 1328–35. doi:10.1016/j.jacc.2009.10.056. PMC   3865979 . PMID   20338493.
  50. Millwood IY, Walters RG, Mei XW, Guo Y, Yang L, Bian Z, et al. (May 2019). "Conventional and genetic evidence on alcohol and vascular disease aetiology: a prospective study of 500 000 men and women in China". Lancet. 393 (10183): 1831–1842. doi:10.1016/S0140-6736(18)31772-0. PMC   6497989 . PMID   30955975.
  51. World Health Organization (2011). Global Status Report on Alcohol and Health. World Health Organization. ISBN   978-92-4-156415-1. Archived from the original on 2016-05-07.
  52. Cespedes Feliciano EM, Quante M, Rifas-Shiman SL, Redline S, Oken E, Taveras EM (July 2018). "Objective Sleep Characteristics and Cardiometabolic Health in Young Adolescents". Pediatrics. 142 (1): e20174085. doi:10.1542/peds.2017-4085. PMC   6260972 . PMID   29907703 . Retrieved 28 June 2021.
  53. St-Onge MP, Grandner MA, Brown D, Conroy MB, Jean-Louis G, Coons M, et al. (November 2016). "Sleep Duration and Quality: Impact on Lifestyle Behaviors and Cardiometabolic Health: A Scientific Statement From the American Heart Association". Circulation (Review). 134 (18): e367–e386. doi:10.1161/CIR.0000000000000444. PMC   5567876 . PMID   27647451.
  54. 1 2 3 Di Cesare M, Khang YH, Asaria P, Blakely T, Cowan MJ, Farzadfar F, et al. (February 2013). "Inequalities in non-communicable diseases and effective responses". Lancet. 381 (9866): 585–97. doi:10.1016/S0140-6736(12)61851-0. hdl: 10906/80012 . PMID   23410608. S2CID   41892834.
  55. Mackenbach JP, Cavelaars AE, Kunst AE, Groenhof F (July 2000). "Socioeconomic inequalities in cardiovascular disease mortality; an international study". European Heart Journal. 21 (14): 1141–51. doi: 10.1053/euhj.1999.1990 . PMID   10924297. S2CID   8747779.
  56. Clark AM, DesMeules M, Luo W, Duncan AS, Wielgosz A (November 2009). "Socioeconomic status and cardiovascular disease: risks and implications for care". Nature Reviews. Cardiology. 6 (11): 712–22. doi:10.1038/nrcardio.2009.163. PMID   19770848. S2CID   21835944.
  57. World Health Organization (2008). Closing the Gap in a Generation: Health Equity Through Action on the Social Determinants of Health : Commission on Social Determinants of Health Final Report. World Health Organization. pp. 26–. ISBN   978-92-4-156370-3. Archived from the original on 2016-05-01.
  58. 1 2 3 4 Franchini M, Mannucci PM (March 2012). "Air pollution and cardiovascular disease". Thrombosis Research. 129 (3): 230–4. doi:10.1016/j.thromres.2011.10.030. PMID   22113148.
  59. 1 2 Sun Q, Hong X, Wold LE (June 2010). "Cardiovascular effects of ambient particulate air pollution exposure". Circulation. 121 (25): 2755–65. doi:10.1161/CIRCULATIONAHA.109.893461. PMC   2924678 . PMID   20585020.
  60. 1 2 Tunstall-Pedoe H (March 2011). "Cardiovascular Risk and Risk Scores: ASSIGN, Framingham, QRISK and others: how to choose". Heart. 97 (6): 442–4. doi:10.1136/hrt.2010.214858. PMID   21339319. S2CID   6420111.
  61. World Health Organization (2007). Prevention of Cardiovascular Disease: Guidelines for Assessment and Management of Cardiovascular Risk. World Health Organization. ISBN   978-92-4-154717-8. Archived from the original on 2016-05-06.
  62. van Staa TP, Gulliford M, Ng ES, Goldacre B, Smeeth L (2014). "Prediction of cardiovascular risk using Framingham, ASSIGN and QRISK2: how well do they predict individual rather than population risk?". PLOS ONE. 9 (10): e106455. Bibcode:2014PLoSO...9j6455V. doi: 10.1371/journal.pone.0106455 . PMC   4182667 . PMID   25271417. Open Access logo PLoS transparent.svg
  63. Hlatky MA, Greenland P, Arnett DK, Ballantyne CM, Criqui MH, Elkind MS, et al. (May 2009). "Criteria for evaluation of novel markers of cardiovascular risk: a scientific statement from the American Heart Association". Circulation. 119 (17): 2408–16. doi:10.1161/CIRCULATIONAHA.109.192278. PMC   2956982 . PMID   19364974.
  64. Eckel RH, Cornier MA (August 2014). "Update on the NCEP ATP-III emerging cardiometabolic risk factors". BMC Medicine. 12 (1): 115. doi: 10.1186/1741-7015-12-115 . PMC   4283079 . PMID   25154373. Open Access logo PLoS transparent.svg
  65. Bai W, Li J, Liu J (October 2016). "Serum phosphorus, cardiovascular and all-cause mortality in the general population: A meta-analysis". Clinica Chimica Acta; International Journal of Clinical Chemistry. 461: 76–82. doi:10.1016/j.cca.2016.07.020. PMID   27475981.
  66. Cohen BE, Edmondson D, Kronish IM (November 2015). "State of the Art Review: Depression, Stress, Anxiety, and Cardiovascular Disease". American Journal of Hypertension. 28 (11): 1295–302. doi:10.1093/ajh/hpv047. PMC   4612342 . PMID   25911639.
  67. Edmondson D, Kronish IM, Shaffer JA, Falzon L, Burg MM (November 2013). "Posttraumatic stress disorder and risk for coronary heart disease: a meta-analytic review". American Heart Journal. 166 (5): 806–14. doi:10.1016/j.ahj.2013.07.031. PMC   3815706 . PMID   24176435.
  68. "NIOSH Program Portfolio : Cancer, Reproductive, and Cardiovascular Diseases : Program Description". CDC. Archived from the original on 2016-05-15. Retrieved 2016-06-07.
  69. 1 2 3 4 5 6 7 8 Swedish Agency for Health Technology Assessment and Assessment of Social Services (SBU) (2015-08-26). "Occupational Exposures and Cardiovascular Disease". Archived from the original on 2017-06-14. Retrieved 2017-06-01.
  70. 1 2 3 4 5 Swedish Agency for Health Technology Assessment and Assessment of Social Services (SBU). "Occupational health and safety – chemical exposure". Archived from the original on 2017-06-06. Retrieved 2017-06-01.
  71. Jan M, Ebert BL, Jaiswal S (January 2017). "Clonal hematopoiesis". Seminars in Hematology. 54 (1): 43–50. doi: 10.1053/j.seminhematol.2016.10.002 . PMC   8045769 . PMID   28088988.
  72. Taylor CW, Nisbet A, McGale P, Darby SC (December 2007). "Cardiac exposures in breast cancer radiotherapy: 1950s-1990s". International Journal of Radiation Oncology, Biology, Physics. 69 (5): 1484–95. doi:10.1016/j.ijrobp.2007.05.034. PMID   18035211.
  73. Weintraub NL, Jones WK, Manka D (March 2010). "Understanding radiation-induced vascular disease". Journal of the American College of Cardiology. 55 (12): 1237–1239. doi:10.1016/j.jacc.2009.11.053. PMC   3807611 . PMID   20298931.
  74. 1 2 Benveniste MF, Gomez D, Carter BW, Betancourt Cuellar SL, Shroff GS, Benveniste AP, et al. (March 7, 2019). "Recognizing Radiation Therapy–related Complications in the Chest". RadioGraphics. 39 (2): 353. doi:10.1148/rg.2019180061. PMID   30844346. S2CID   73477338 . Retrieved 24 August 2023.
  75. 1 2 Klee NS, McCarthy CG, Martinez-Quinones P, Webb RC (November 2017). "Out of the frying pan and into the fire: damage-associated molecular patterns and cardiovascular toxicity following cancer therapy". Therapeutic Advances in Cardiovascular Disease. 11 (11): 297–317. doi:10.1177/1753944717729141. PMC   5933669 . PMID   28911261.
  76. Belzile-Dugas E, Eisenberg MJ (September 2021). "Radiation-Induced Cardiovascular Disease: Review of an Underrecognized Pathology". J Am Heart Assoc. 10 (18): e021686. doi:10.1161/JAHA.121.021686. PMC   8649542 . PMID   34482706.
  77. Bertazzo S, Gentleman E, Cloyd KL, Chester AH, Yacoub MH, Stevens MM (June 2013). "Nano-analytical electron microscopy reveals fundamental insights into human cardiovascular tissue calcification". Nature Materials. 12 (6): 576–83. Bibcode:2013NatMa..12..576B. doi:10.1038/nmat3627. PMC   5833942 . PMID   23603848.
  78. Vanhecke TE, Miller WM, Franklin BA, Weber JE, McCullough PA (October 2006). "Awareness, knowledge, and perception of heart disease among adolescents". European Journal of Cardiovascular Prevention and Rehabilitation. 13 (5): 718–23. doi:10.1097/01.hjr.0000214611.91490.5e. PMID   17001210. S2CID   36312234.
  79. Highlander P, Shaw GP (February 2010). "Current pharmacotherapeutic concepts for the treatment of cardiovascular disease in diabetics". Therapeutic Advances in Cardiovascular Disease. 4 (1): 43–54. doi:10.1177/1753944709354305. PMID   19965897. S2CID   23913203.
  80. NPS Medicinewise (1 March 2011). "NPS Prescribing Practice Review 53: Managing lipids". Archived from the original on 19 March 2011. Retrieved 1 August 2011.
  81. Kvan E, Pettersen KI, Sandvik L, Reikvam A (October 2007). "High mortality in diabetic patients with acute myocardial infarction: cardiovascular co-morbidities contribute most to the high risk". International Journal of Cardiology. 121 (2): 184–8. doi:10.1016/j.ijcard.2006.11.003. PMID   17184858.
  82. Norhammar A, Malmberg K, Diderholm E, Lagerqvist B, Lindahl B, Rydén L, et al. (February 2004). "Diabetes mellitus: the major risk factor in unstable coronary artery disease even after consideration of the extent of coronary artery disease and benefits of revascularization". Journal of the American College of Cardiology. 43 (4): 585–91. doi: 10.1016/j.jacc.2003.08.050 . PMID   14975468.
  83. DECODE, European Diabetes Epidemiology Group (August 1999). "Glucose tolerance and mortality: comparison of WHO and American Diabetes Association diagnostic criteria. The DECODE study group. European Diabetes Epidemiology Group. Diabetes Epidemiology: Collaborative analysis Of Diagnostic criteria in Europe". Lancet. 354 (9179): 617–21. doi:10.1016/S0140-6736(98)12131-1. PMID   10466661. S2CID   54227479.
  84. Curry SJ, Krist AH, Owens DK, Barry MJ, Caughey AB, Davidson KW, et al. (June 2018). "Screening for Cardiovascular Disease Risk With Electrocardiography: US Preventive Services Task Force Recommendation Statement". JAMA. 319 (22): 2308–2314. doi: 10.1001/jama.2018.6848 . PMID   29896632.
  85. Maron BJ, Friedman RA, Kligfield P, Levine BD, Viskin S, Chaitman BR, et al. (October 2014). "Assessment of the 12-lead ECG as a screening test for detection of cardiovascular disease in healthy general populations of young people (12-25 Years of Age): a scientific statement from the American Heart Association and the American College of Cardiology". Circulation. 130 (15): 1303–34. doi: 10.1161/CIR.0000000000000025 . PMID   25223981.
  86. Moyer VA (October 2012). "Screening for coronary heart disease with electrocardiography: U.S. Preventive Services Task Force recommendation statement". Annals of Internal Medicine. 157 (7): 512–8. doi: 10.7326/0003-4819-157-7-201210020-00514 . PMID   22847227.
  87. Chou R (March 2015). "Cardiac screening with electrocardiography, stress echocardiography, or myocardial perfusion imaging: advice for high-value care from the American College of Physicians". Annals of Internal Medicine. 162 (6): 438–47. doi:10.7326/M14-1225. PMID   25775317. S2CID   207538193.
  88. Wang TJ, Gona P, Larson MG, Tofler GH, Levy D, Newton-Cheh C, et al. (December 2006). "Multiple biomarkers for the prediction of first major cardiovascular events and death". The New England Journal of Medicine. 355 (25): 2631–9. doi: 10.1056/NEJMoa055373 . PMID   17182988. S2CID   196411135.
  89. Spence JD (November 2006). "Technology Insight: ultrasound measurement of carotid plaque--patient management, genetic research, and therapy evaluation". Nature Clinical Practice. Neurology. 2 (11): 611–9. doi:10.1038/ncpneuro0324. PMID   17057748. S2CID   26077254.
  90. Curry SJ, Krist AH, Owens DK, Barry MJ, Caughey AB, Davidson KW, et al. (July 2018). "Risk Assessment for Cardiovascular Disease With Nontraditional Risk Factors: US Preventive Services Task Force Recommendation Statement". JAMA. 320 (3): 272–280. doi: 10.1001/jama.2018.8359 . PMID   29998297.
  91. Expert Panel on Integrated Guidelines for Cardiovascular Health Risk Reduction in Children Adolescents (December 2011). "Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report". Pediatrics. 128 (Supplement 5): S213-56. doi:10.1542/peds.2009-2107C. PMC   4536582 . PMID   22084329.
  92. Saenger AK (August 2012). "Universal lipid screening in children and adolescents: a baby step toward primordial prevention?". Clinical Chemistry. 58 (8): 1179–81. doi: 10.1373/clinchem.2012.182287 . PMID   22510399.
  93. 1 2 3 Mann DL, Zipes DP, Libby P, Bonow RO, Braunwald E (2014). Braunwald's heart disease : a textbook of cardiovascular medicine (Tenth ed.). Philadelphia. ISBN   978-1-4557-5133-4. OCLC   890409638.{{cite book}}: CS1 maint: location missing publisher (link)
  94. Damen JA, Hooft L, Schuit E, Debray TP, Collins GS, Tzoulaki I, et al. (May 2016). "Prediction models for cardiovascular disease risk in the general population: systematic review". BMJ. 353: i2416. doi:10.1136/bmj.i2416. PMC   4868251 . PMID   27184143.
  95. McNeal CJ, Dajani T, Wilson D, Cassidy-Bushrow AE, Dickerson JB, Ory M (January 2010). "Hypercholesterolemia in youth: opportunities and obstacles to prevent premature atherosclerotic cardiovascular disease". Current Atherosclerosis Reports. 12 (1): 20–8. doi:10.1007/s11883-009-0072-0. PMID   20425267. S2CID   37833889.
  96. 1 2 3 "Heart Attack—Prevention". NHS Direct. 28 November 2019.
  97. 1 2 Quek J, Lim G, Lim WH, Ng CH, So WZ, Toh J, et al. (2021-11-05). "The Association of Plant-Based Diet With Cardiovascular Disease and Mortality: A Meta-Analysis and Systematic Review of Prospect Cohort Studies". Frontiers in Cardiovascular Medicine. 8: 756810. doi: 10.3389/fcvm.2021.756810 . ISSN   2297-055X. PMC   8604150 . PMID   34805312.
  98. 1 2 Gan ZH, Cheong HC, Tu YK, Kuo PH (2021-11-05). "Association between Plant-Based Dietary Patterns and Risk of Cardiovascular Disease: A Systematic Review and Meta-Analysis of Prospective Cohort Studies". Nutrients. 13 (11): 3952. doi: 10.3390/nu13113952 . ISSN   2072-6643. PMC   8624676 . PMID   34836208.
  99. 1 2 Benatar JR, Stewart RA (2018). "Cardiometabolic risk factors in vegans; A meta-analysis of observational studies". PLOS ONE. 13 (12): e0209086. Bibcode:2018PLoSO..1309086B. doi: 10.1371/journal.pone.0209086 . ISSN   1932-6203. PMC   6301673 . PMID   30571724.
  100. Frank M. Sacks, Alice H. Lichtenstein, Jason H.Y. Wu, Lawrence J. Appel, Mark A. Creager, Penny M. Kris-Etherton, Michael Miller, Eric B. Rimm, Lawrence L. Rudel, Jennifer G. Robinson, Neil J. Stone, and Linda V. Van Horn: Dietary Fats and Cardiovascular Disease: A Presidential Advisory From the American Heart Association, 15 Jun 2017, 2017;136:e1–e23,
  101. McTigue KM, Hess R, Ziouras J (September 2006). "Obesity in older adults: a systematic review of the evidence for diagnosis and treatment". Obesity. 14 (9): 1485–97. doi: 10.1038/oby.2006.171 . PMID   17030958. S2CID   45241607.
  102. Semlitsch T, Krenn C, Jeitler K, Berghold A, Horvath K, Siebenhofer A (February 2021). "Long-term effects of weight-reducing diets in people with hypertension". The Cochrane Database of Systematic Reviews. 2021 (2): CD008274. doi:10.1002/14651858.CD008274.pub4. PMC   8093137 . PMID   33555049.
  103. Kwok CS, Pradhan A, Khan MA, Anderson SG, Keavney BD, Myint PK, et al. (April 2014). "Bariatric surgery and its impact on cardiovascular disease and mortality: a systematic review and meta-analysis". International Journal of Cardiology. 173 (1): 20–8. doi:10.1016/j.ijcard.2014.02.026. hdl: 2164/3181 . PMID   24636546.
  104. Ronksley PE, Brien SE, Turner BJ, Mukamal KJ, Ghali WA (February 2011). "Association of alcohol consumption with selected cardiovascular disease outcomes: a systematic review and meta-analysis". BMJ. 342: d671. doi:10.1136/bmj.d671. PMC   3043109 . PMID   21343207.
  105. 1 2 3 Mostofsky E, Chahal HS, Mukamal KJ, Rimm EB, Mittleman MA (March 2016). "Alcohol and Immediate Risk of Cardiovascular Events: A Systematic Review and Dose-Response Meta-Analysis". Circulation. 133 (10): 979–87. doi:10.1161/CIRCULATIONAHA.115.019743. PMC   4783255 . PMID   26936862.
  106. Holmes MV, Dale CE, Zuccolo L, Silverwood RJ, Guo Y, Ye Z, et al. (July 2014). "Association between alcohol and cardiovascular disease: Mendelian randomisation analysis based on individual participant data". BMJ. 349: g4164. doi:10.1136/bmj.g4164. PMC   4091648 . PMID   25011450.
  107. Klatsky AL (May 2009). "Alcohol and cardiovascular diseases". Expert Review of Cardiovascular Therapy. 7 (5): 499–506. doi:10.1586/erc.09.22. PMID   19419257. S2CID   23782870.
  108. McMahan CA, Gidding SS, Malcom GT, Tracy RE, Strong JP, McGill HC (October 2006). "Pathobiological determinants of atherosclerosis in youth risk scores are associated with early and advanced atherosclerosis". Pediatrics. 118 (4): 1447–55. doi:10.1542/peds.2006-0970. PMID   17015535. S2CID   37741456.
  109. Raitakari OT, Rönnemaa T, Järvisalo MJ, Kaitosaari T, Volanen I, Kallio K, et al. (December 2005). "Endothelial function in healthy 11-year-old children after dietary intervention with onset in infancy: the Special Turku Coronary Risk Factor Intervention Project for children (STRIP)". Circulation. 112 (24): 3786–94. doi: 10.1161/CIRCULATIONAHA.105.583195 . PMID   16330680.
  110. Chou R, Dana T, Blazina I, Daeges M, Jeanne TL (November 2016). "Statins for Prevention of Cardiovascular Disease in Adults: Evidence Report and Systematic Review for the US Preventive Services Task Force". JAMA. 316 (19): 2008–2024. doi: 10.1001/jama.2015.15629 . PMID   27838722.
  111. Critchley J, Capewell S (2004-01-01). Critchley JA (ed.). "Smoking cessation for the secondary prevention of coronary heart disease". The Cochrane Database of Systematic Reviews (1): CD003041. doi:10.1002/14651858.CD003041.pub2. PMID   14974003. (Retracted, see doi:10.1002/14651858.cd003041.pub3)
  112. "Chapter 4: Active Adults". Archived from the original on 2017-03-13.
  113. "Physical activity guidelines for adults". NHS Choices. 2018-04-26. Archived from the original on 2017-02-19.
  114. 1 2 Ettehad D, Emdin CA, Kiran A, Anderson SG, Callender T, Emberson J, et al. (March 2016). "Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis". Lancet. 387 (10022): 957–967. doi: 10.1016/S0140-6736(15)01225-8 . PMID   26724178.
  115. "Many more people could benefit from blood pressure-lowering medication". Retrieved 14 June 2021.
  116. "expert reaction to study looking at pharmacological blood pressure lowering for primary and secondary prevention of cardiovascular disease across different levels of blood pressure | Science Media Centre" . Retrieved 14 June 2021.
  117. Adler A, Agodoa L, Algra A, Asselbergs FW, Beckett NS, Berge E, et al. (May 2021). "Pharmacological blood pressure lowering for primary and secondary prevention of cardiovascular disease across different levels of blood pressure: an individual participant-level data meta-analysis". Lancet. 397 (10285): 1625–1636. doi:10.1016/S0140-6736(21)00590-0. PMC   8102467 . PMID   33933205. CC-BY icon.svg Available under CC BY 4.0.
  118. Linden W, Stossel C, Maurice J (April 1996). "Psychosocial interventions for patients with coronary artery disease: a meta-analysis". Archives of Internal Medicine. 156 (7): 745–52. doi:10.1001/archinte.1996.00440070065008. PMID   8615707. S2CID   45312858.
  119. Thompson DR, Ski CF (December 2013). "Psychosocial interventions in cardiovascular disease--what are they?" (PDF). European Journal of Preventive Cardiology. 20 (6): 916–7. doi:10.1177/2047487313494031. PMID   24169589. S2CID   35497445.
  120. Wei J, Rooks C, Ramadan R, Shah AJ, Bremner JD, Quyyumi AA, et al. (July 2014). "Meta-analysis of mental stress-induced myocardial ischemia and subsequent cardiac events in patients with coronary artery disease". The American Journal of Cardiology. 114 (2): 187–92. doi:10.1016/j.amjcard.2014.04.022. PMC   4126399 . PMID   24856319.
  121. Pelliccia F, Greco C, Vitale C, Rosano G, Gaudio C, Kaski JC (August 2014). "Takotsubo syndrome (stress cardiomyopathy): an intriguing clinical condition in search of its identity". The American Journal of Medicine. 127 (8): 699–704. doi:10.1016/j.amjmed.2014.04.004. hdl:11573/562721. PMID   24754972.
  122. Marshall IJ, Wolfe CD, McKevitt C (July 2012). "Lay perspectives on hypertension and drug adherence: systematic review of qualitative research". BMJ. 345: e3953. doi:10.1136/bmj.e3953. PMC   3392078 . PMID   22777025.
  123. Dickinson HO, Mason JM, Nicolson DJ, Campbell F, Beyer FR, Cook JV, et al. (February 2006). "Lifestyle interventions to reduce raised blood pressure: a systematic review of randomized controlled trials". Journal of Hypertension. 24 (2): 215–33. doi:10.1097/01.hjh.0000199800.72563.26. PMID   16508562. S2CID   9125890.
  124. Abbott RA, Whear R, Rodgers LR, Bethel A, Thompson Coon J, Kuyken W, et al. (May 2014). "Effectiveness of mindfulness-based stress reduction and mindfulness based cognitive therapy in vascular disease: A systematic review and meta-analysis of randomised controlled trials". Journal of Psychosomatic Research. 76 (5): 341–51. doi: 10.1016/j.jpsychores.2014.02.012 . hdl: 10871/19935 . PMID   24745774.
  125. U.S. National Library of Medicine. (2021, March 24). Heart Disease Prevention. MedlinePlus.
  126. U.S. Department of Health and Human Services. (n.d.). Cardiovascular Disease. National Center for Complementary and Integrative Health.
  127. Uthman OA, Hartley L, Rees K, Taylor F, Ebrahim S, Clarke A (August 2015). "Multiple risk factor interventions for primary prevention of cardiovascular disease in low- and middle-income countries" (PDF). The Cochrane Database of Systematic Reviews. 2015 (8): CD011163. doi:10.1002/14651858.CD011163.pub2. PMC   6999125 . PMID   26272648.
  128. Karmali KN, Persell SD, Perel P, Lloyd-Jones DM, Berendsen MA, Huffman MD (March 2017). "Risk scoring for the primary prevention of cardiovascular disease". The Cochrane Database of Systematic Reviews. 3 (6): CD006887. doi:10.1002/14651858.CD006887.pub4. PMC   6464686 . PMID   28290160.
  129. Ye Z, Cao Y, Miao C, Liu W, Dong L, Lv Z, et al. (2022-10-04). "Periodontal therapy for primary or secondary prevention of cardiovascular disease in people with periodontitis". The Cochrane Database of Systematic Reviews. 2022 (10): CD009197. doi:10.1002/14651858.CD009197.pub5. ISSN   1469-493X. PMC   9531722 . PMID   36194420.
  130. Pega F, Náfrádi B, Momen NC, Ujita Y, Streicher KN, Prüss-Üstün AM, et al. (2021-09-01). "Global, regional, and national burdens of ischemic heart disease and stroke attributable to exposure to long working hours for 194 countries, 2000–2016: A systematic analysis from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury". Environment International. 154: 106595. Bibcode:2021EnInt.15406595P. doi: 10.1016/j.envint.2021.106595 . ISSN   0160-4120. PMC   8204267 . PMID   34011457.
  131. Wang X, Ouyang Y, Liu J, Zhu M, Zhao G, Bao W, et al. (July 2014). "Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies". BMJ. 349: g4490. doi:10.1136/bmj.g4490. PMC   4115152 . PMID   25073782.
  132. Walker C, Reamy BV (April 2009). "Diets for cardiovascular disease prevention: what is the evidence?". American Family Physician. 79 (7): 571–8. PMID   19378874.
  133. Nordmann AJ, Suter-Zimmermann K, Bucher HC, Shai I, Tuttle KR, Estruch R, et al. (September 2011). "Meta-analysis comparing Mediterranean to low-fat diets for modification of cardiovascular risk factors". The American Journal of Medicine. 124 (9): 841–51.e2. doi:10.1016/j.amjmed.2011.04.024. PMID   21854893. Archived from the original on 2013-12-20.
  134. Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, et al. (January 2001). "Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group". The New England Journal of Medicine. 344 (1): 3–10. doi: 10.1056/NEJM200101043440101 . PMID   11136953.
  135. Obarzanek E, Sacks FM, Vollmer WM, Bray GA, Miller ER, Lin PH, et al. (July 2001). "Effects on blood lipids of a blood pressure-lowering diet: the Dietary Approaches to Stop Hypertension (DASH) Trial". The American Journal of Clinical Nutrition. 74 (1): 80–9. doi: 10.1093/ajcn/74.1.80 . PMID   11451721.
  136. Azadbakht L, Mirmiran P, Esmaillzadeh A, Azizi T, Azizi F (December 2005). "Beneficial effects of a Dietary Approaches to Stop Hypertension eating plan on features of the metabolic syndrome". Diabetes Care. 28 (12): 2823–31. doi: 10.2337/diacare.28.12.2823 . PMID   16306540.
  137. Logan AG (March 2007). "DASH Diet: time for a critical appraisal?". American Journal of Hypertension. 20 (3): 223–4. doi: 10.1016/j.amjhyper.2006.10.006 . PMID   17324730.
  138. Hajishafiee M, Saneei P, Benisi-Kohansal S, Esmaillzadeh A (July 2016). "Cereal Fibre Intake and Risk of Mortality From All Causes, CVD, Cancer and Inflammatory Diseases: A Systematic Review and Meta-Analysis of Prospective Cohort Studies". The British Journal of Nutrition. 116 (2): 343–52. doi: 10.1017/S0007114516001938 . PMID   27193606.
  139. Ramsden CE, Zamora D, Leelarthaepin B, Majchrzak-Hong SF, Faurot KR, Suchindran CM, et al. (February 2013). "Use of dietary linoleic acid for secondary prevention of coronary heart disease and death: evaluation of recovered data from the Sydney Diet Heart Study and updated meta-analysis". BMJ. 346: e8707. doi:10.1136/bmj.e8707. PMC   4688426 . PMID   23386268.
  140. 1 2 Lichtenstein AH (November 2019). "Dietary Fat and Cardiovascular Disease: Ebb and Flow Over the Last Half Century". Advances in Nutrition. 10 (Suppl_4): S332–S339. doi:10.1093/advances/nmz024. PMC   6855944 . PMID   31728492.
  141. Food and Agriculture Organization of the United Nations (2010). Fats and fatty acids in human nutrition: report of an expert consultation, 10-14 November 2008, Geneva. Rome: Food and Agriculture Organization of the United Nations. ISBN   978-92-5-106733-8. OCLC   712123395. Archived from the original on 2014-12-28.
  142. Willett WC (July 2012). "Dietary fats and coronary heart disease". Journal of Internal Medicine. 272 (1): 13–24. doi:10.1111/j.1365-2796.2012.02553.x. PMID   22583051. S2CID   43493760.
  143. Hooper L, Martin N, Jimoh OF, Kirk C, Foster E, Abdelhamid AS (21 August 2020). "Reduction in saturated fat intake for cardiovascular disease". The Cochrane Database of Systematic Reviews. 2020 (8): CD011737. doi: 10.1002/14651858.CD011737.pub3 . ISSN   1469-493X. PMC   8092457 . PMID   32827219.
  144. de Souza RJ, Mente A, Maroleanu A, Cozma AI, Ha V, Kishibe T, et al. (August 2015). "Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies". BMJ. 351 (h3978): h3978. doi:10.1136/bmj.h3978. PMC   4532752 . PMID   26268692.
  145. 1 2 Sacks FM, Lichtenstein AH, Wu JH, Appel LJ, Creager MA, Kris-Etherton PM, et al. (July 2017). "Dietary Fats and Cardiovascular Disease: A Presidential Advisory From the American Heart Association". Circulation. 136 (3): e1–e23. doi: 10.1161/CIR.0000000000000510 . PMID   28620111. S2CID   367602.
  146. Chowdhury R, Warnakula S, Kunutsor S, Crowe F, Ward HA, Johnson L, et al. (March 2014). "Association of dietary, circulating, and supplement fatty acids with coronary risk: a systematic review and meta-analysis". Annals of Internal Medicine. 160 (6): 398–406. doi:10.7326/M13-1788. PMID   24723079. S2CID   52013596.
  147. Food Drug Administration H (May 2018). "Final Determination Regarding Partially Hydrogenated Oils. Notification; declaratory order; extension of compliance date". Federal Register. 83 (98): 23358–9. PMID   30019869.
  148. Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, et al. (February 2020). "Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease". The Cochrane Database of Systematic Reviews. 2020 (3): CD003177. doi:10.1002/14651858.CD003177.pub5. PMC   7049091 . PMID   32114706.
  149. Aung T, Halsey J, Kromhout D, Gerstein HC, Marchioli R, Tavazzi L, et al. (March 2018). "Associations of Omega-3 Fatty Acid Supplement Use With Cardiovascular Disease Risks: Meta-analysis of 10 Trials Involving 77 917 Individuals". JAMA Cardiology. 3 (3): 225–234. doi:10.1001/jamacardio.2017.5205. PMC   5885893 . PMID   29387889.
  150. Adler AJ, Taylor F, Martin N, Gottlieb S, Taylor RS, Ebrahim S (December 2014). "Reduced dietary salt for the prevention of cardiovascular disease". The Cochrane Database of Systematic Reviews. 2014 (12): CD009217. doi:10.1002/14651858.CD009217.pub3. PMC   6483405 . PMID   25519688.
  151. He FJ, MacGregor GA (July 2011). "Salt reduction lowers cardiovascular risk: meta-analysis of outcome trials" (PDF). Lancet. 378 (9789): 380–2. doi:10.1016/S0140-6736(11)61174-4. PMID   21803192. S2CID   43795786. Archived from the original (PDF) on 2013-12-20. Retrieved 2013-08-23.
  152. Paterna S, Gaspare P, Fasullo S, Sarullo FM, Di Pasquale P (February 2008). "Normal-sodium diet compared with low-sodium diet in compensated congestive heart failure: is sodium an old enemy or a new friend?" (PDF). Clinical Science. 114 (3): 221–30. doi:10.1042/CS20070193. PMID   17688420. S2CID   2248777.
  153. 1 2 Bochud M, Marques-Vidal P, Burnier M, Paccaud F (2012). "Dietary Salt Intake and Cardiovascular Disease: Summarizing the Evidence". Public Health Reviews. 33 (2): 530–52. doi: 10.1007/BF03391649 . Archived from the original on 2013-12-21.
  154. Cook NR, Cutler JA, Obarzanek E, Buring JE, Rexrode KM, Kumanyika SK, et al. (April 2007). "Long term effects of dietary sodium reduction on cardiovascular disease outcomes: observational follow-up of the trials of hypertension prevention (TOHP)". BMJ. 334 (7599): 885–8. doi:10.1136/bmj.39147.604896.55. PMC   1857760 . PMID   17449506.
  155. 1 2 Allaf M, Elghazaly H, Mohamed OG, Fareen MF, Zaman S, Salmasi AM, et al. (Cochrane Heart Group) (January 2021). "Intermittent fasting for the prevention of cardiovascular disease". The Cochrane Database of Systematic Reviews. 1 (3): CD013496. doi:10.1002/14651858.CD013496.pub2. PMC   8092432 . PMID   33512717.
  156. Turnbull F, Neal B, Ninomiya T, Algert C, Arima H, Barzi F, et al. (May 2008). "Effects of different regimens to lower blood pressure on major cardiovascular events in older and younger adults: meta-analysis of randomised trials". BMJ. 336 (7653): 1121–3. doi:10.1136/bmj.39548.738368.BE. PMC   2386598 . PMID   18480116.
  157. Blood Pressure Lowering Treatment Trialists' Collaboration (August 2014). "Blood pressure-lowering treatment based on cardiovascular risk: a meta-analysis of individual patient data". Lancet. 384 (9943): 591–598. doi:10.1016/S0140-6736(14)61212-5. PMID   25131978. S2CID   19951800.
  158. Czernichow S, Zanchetti A, Turnbull F, Barzi F, Ninomiya T, Kengne AP, et al. (January 2011). "The effects of blood pressure reduction and of different blood pressure-lowering regimens on major cardiovascular events according to baseline blood pressure: meta-analysis of randomized trials". Journal of Hypertension. 29 (1): 4–16. doi:10.1097/HJH.0b013e32834000be. PMID   20881867. S2CID   10374187.
  159. 1 2 Turnbull F (November 2003). "Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials". Lancet (Submitted manuscript). 362 (9395): 1527–35. doi:10.1016/s0140-6736(03)14739-3. PMID   14615107. S2CID   10730075.
  160. Go AS, Bauman MA, Coleman King SM, Fonarow GC, Lawrence W, Williams KA, et al. (April 2014). "An effective approach to high blood pressure control: a science advisory from the American Heart Association, the American College of Cardiology, and the Centers for Disease Control and Prevention". Hypertension. 63 (4): 878–85. doi: 10.1161/HYP.0000000000000003 . PMC   10280688 . PMID   24243703.
  161. Adler AJ, Martin N, Mariani J, Tajer CD, Owolabi OO, Free C, et al. (Cochrane Heart Group) (April 2017). "Mobile phone text messaging to improve medication adherence in secondary prevention of cardiovascular disease". The Cochrane Database of Systematic Reviews. 2017 (4): CD011851. doi:10.1002/14651858.CD011851.pub2. PMC   6478182 . PMID   28455948.
  162. 1 2 Gutierrez J, Ramirez G, Rundek T, Sacco RL (June 2012). "Statin therapy in the prevention of recurrent cardiovascular events: a sex-based meta-analysis". Archives of Internal Medicine. 172 (12): 909–19. doi: 10.1001/archinternmed.2012.2145 . PMID   22732744.
  163. Taylor F, Huffman MD, Macedo AF, Moore TH, Burke M, Davey Smith G, et al. (January 2013). "Statins for the primary prevention of cardiovascular disease" (PDF). The Cochrane Database of Systematic Reviews. 1 (1): CD004816. doi:10.1002/14651858.CD004816.pub5. PMC   6481400 . PMID   23440795.
  164. "Statins in primary cardiovascular prevention?". Prescrire International. 27 (195): 183. July–August 2018. Retrieved 4 August 2018.
  165. Downs JR, O'Malley PG (August 2015). "Management of dyslipidemia for cardiovascular disease risk reduction: synopsis of the 2014 U.S. Department of Veterans Affairs and U.S. Department of Defense clinical practice guideline". Annals of Internal Medicine. 163 (4): 291–7. doi: 10.7326/m15-0840 . PMID   26099117.
  166. Keene D, Price C, Shun-Shin MJ, Francis DP (July 2014). "Effect on cardiovascular risk of high density lipoprotein targeted drug treatments niacin, fibrates, and CETP inhibitors: meta-analysis of randomised controlled trials including 117,411 patients". BMJ. 349: g4379. doi:10.1136/bmj.g4379. PMC   4103514 . PMID   25038074.
  167. Jakob T, Nordmann AJ, Schandelmaier S, Ferreira-González I, Briel M, et al. (Cochrane Heart Group) (November 2016). "Fibrates for primary prevention of cardiovascular disease events". The Cochrane Database of Systematic Reviews. 11 (3): CD009753. doi:10.1002/14651858.CD009753.pub2. PMC   6464497 . PMID   27849333.
  168. Holman RR, Sourij H, Califf RM (June 2014). "Cardiovascular outcome trials of glucose-lowering drugs or strategies in type 2 diabetes". Lancet. 383 (9933): 2008–17. doi:10.1016/s0140-6736(14)60794-7. PMID   24910232. S2CID   5064731.
  169. Turnbull FM, Abraira C, Anderson RJ, Byington RP, Chalmers JP, Duckworth WC, et al. (November 2009). "Intensive glucose control and macrovascular outcomes in type 2 diabetes". Diabetologia. 52 (11): 2288–98. doi: 10.1007/s00125-009-1470-0 . PMID   19655124.
  170. Berger JS, Lala A, Krantz MJ, Baker GS, Hiatt WR (July 2011). "Aspirin for the prevention of cardiovascular events in patients without clinical cardiovascular disease: a meta-analysis of randomized trials". American Heart Journal. 162 (1): 115–24.e2. doi:10.1016/j.ahj.2011.04.006. PMID   21742097.
  171. "Final Recommendation Statement Aspirin for the Prevention of Cardiovascular Disease: Preventive Medication". March 2009. Archived from the original on 10 January 2015. Retrieved 15 January 2015.
  172. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al. (March 2019). "2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines". Journal of the American College of Cardiology. 74 (10): e177–e232. doi: 10.1016/j.jacc.2019.03.010 . PMC   7685565 . PMID   30894318.
  173. US Preventive Services Task Force (March 2009). "Aspirin for the prevention of cardiovascular disease: U.S. Preventive Services Task Force recommendation statement". Annals of Internal Medicine. 150 (6): 396–404. doi: 10.7326/0003-4819-150-6-200903170-00008 . PMID   19293072.
  174. American College of Chest Physicians, American Thoracic Society (September 2013), "Five Things Physicians and Patients Should Question", Choosing Wisely: an initiative of the ABIM Foundation , American College of Chest Physicians and American Thoracic Society, archived from the original on 3 November 2013, retrieved 6 January 2013
  175. 1 2 Sethi NJ, Safi S, Korang SK, Hróbjartsson A, Skoog M, Gluud C, et al. (Cochrane Heart Group) (February 2021). "Antibiotics for secondary prevention of coronary heart disease". The Cochrane Database of Systematic Reviews. 2 (5): CD003610. doi:10.1002/14651858.CD003610.pub4. PMC   8094925 . PMID   33704780.
  176. Dibben G, Faulkner J, Oldridge N, Rees K, Thompson DR, Zwisler AD, et al. (6 November 2021). "Exercise-based cardiac rehabilitation for coronary heart disease". The Cochrane Database of Systematic Reviews. 2021 (11): CD001800. doi: 10.1002/14651858.CD001800.pub4 . ISSN   1469-493X. PMC   8571912 . PMID   34741536.
  177. Seron P, Lanas F, Pardo Hernandez H, Bonfill Cosp X (August 2014). "Exercise for people with high cardiovascular risk". The Cochrane Database of Systematic Reviews. 2014 (8): CD009387. doi:10.1002/14651858.CD009387.pub2. PMC   6669260 . PMID   25120097.
  178. Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT (July 2012). "Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy". Lancet. 380 (9838): 219–29. doi:10.1016/S0140-6736(12)61031-9. PMC   3645500 . PMID   22818936.
  179. Hartley L, Dyakova M, Holmes J, Clarke A, Lee MS, Ernst E, et al. (May 2014). "Yoga for the primary prevention of cardiovascular disease" (PDF). The Cochrane Database of Systematic Reviews. 2014 (5): CD010072. doi:10.1002/14651858.CD010072.pub2. PMC   10075056 . PMID   24825181.
  180. Ashworth NL, Chad KE, Harrison EL, Reeder BA, Marshall SC (January 2005). "Home versus center based physical activity programs in older adults". The Cochrane Database of Systematic Reviews. 2005 (1): CD004017. doi:10.1002/14651858.cd004017.pub2. PMC   6464851 . PMID   15674925.
  181. Al-Khudairy L, Flowers N, Wheelhouse R, Ghannam O, Hartley L, Stranges S, et al. (March 2017). "Vitamin C supplementation for the primary prevention of cardiovascular disease". The Cochrane Database of Systematic Reviews. 2017 (3): CD011114. doi:10.1002/14651858.CD011114.pub2. PMC   6464316 . PMID   28301692.
  182. Bhupathiraju SN, Tucker KL (August 2011). "Coronary heart disease prevention: nutrients, foods, and dietary patterns". Clinica Chimica Acta; International Journal of Clinical Chemistry. 412 (17–18): 1493–514. doi:10.1016/j.cca.2011.04.038. PMC   5945285 . PMID   21575619.
  183. Myung SK, Ju W, Cho B, Oh SW, Park SM, Koo BK, et al. (January 2013). "Efficacy of vitamin and antioxidant supplements in prevention of cardiovascular disease: systematic review and meta-analysis of randomised controlled trials". BMJ. 346: f10. doi:10.1136/bmj.f10. PMC   3548618 . PMID   23335472.
  184. Kim J, Choi J, Kwon SY, McEvoy JW, Blaha MJ, Blumenthal RS, et al. (July 2018). "Association of Multivitamin and Mineral Supplementation and Risk of Cardiovascular Disease: A Systematic Review and Meta-Analysis". Circulation: Cardiovascular Quality and Outcomes. 11 (7): e004224. doi: 10.1161/CIRCOUTCOMES.117.004224 . PMID   29991644. S2CID   51615818.
  185. Fortmann SP, Burda BU, Senger CA, Lin JS, Whitlock EP (December 2013). "Vitamin and mineral supplements in the primary prevention of cardiovascular disease and cancer: An updated systematic evidence review for the U.S. Preventive Services Task Force". Annals of Internal Medicine. 159 (12): 824–34. doi: 10.7326/0003-4819-159-12-201312170-00729 . PMID   24217421.
  186. Bruckert E, Labreuche J, Amarenco P (June 2010). "Meta-analysis of the effect of nicotinic acid alone or in combination on cardiovascular events and atherosclerosis". Atherosclerosis. 210 (2): 353–61. doi:10.1016/j.atherosclerosis.2009.12.023. PMID   20079494.
  187. Lavigne PM, Karas RH (January 2013). "The current state of niacin in cardiovascular disease prevention: a systematic review and meta-regression". Journal of the American College of Cardiology. 61 (4): 440–446. doi: 10.1016/j.jacc.2012.10.030 . PMID   23265337.
  188. Jee SH, Miller ER, Guallar E, Singh VK, Appel LJ, Klag MJ (August 2002). "The effect of magnesium supplementation on blood pressure: a meta-analysis of randomized clinical trials". American Journal of Hypertension. 15 (8): 691–6. doi: 10.1016/S0895-7061(02)02964-3 . PMID   12160191.
  189. Zipes DP, Camm AJ, Borggrefe M, Buxton AE, Chaitman B, Fromer M, et al. (September 2006). "ACC/AHA/ESC 2006 Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: a report of the American College of Cardiology/American Heart Association Task Force and the European Society of Cardiology Committee for Practice Guidelines (writing committee to develop Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death): developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society". Circulation. 114 (10): e385-484. doi: 10.1161/CIRCULATIONAHA.106.178233 . PMID   16935995.
  190. Kwak SM, Myung SK, Lee YJ, Seo HG (May 2012). "Efficacy of omega-3 fatty acid supplements (eicosapentaenoic acid and docosahexaenoic acid) in the secondary prevention of cardiovascular disease: a meta-analysis of randomized, double-blind, placebo-controlled trials". Archives of Internal Medicine. 172 (9): 686–94. doi: 10.1001/archinternmed.2012.262 . PMID   22493407.
  191. An P, Wan S, Luo Y, Luo J, Zhang X, Zhou S, et al. (13 December 2022). "Micronutrient supplementation to reduce cardiovascular risk". Journal of the American College of Cardiology. 80 (24): 2269–2285. doi: 10.1016/j.jacc.2022.09.048 . ISSN   0735-1097. PMID   36480969. S2CID   254343574.
  192. Clar C, Oseni Z, Flowers N, Keshtkar-Jahromi M, Rees K (May 2015). "Influenza vaccines for preventing cardiovascular disease". The Cochrane Database of Systematic Reviews. 2015 (5): CD005050. doi:10.1002/14651858.CD005050.pub3. PMC   8511741 . PMID   25940444. S2CID   205176857.
  193. 1 2 Zipes DP, Libby P, Bonow RO, Mann DL, Tomaselli GF (2018). Braunwald's Heart Disease E-Book: A Textbook of Cardiovascular Medicine. Elsevier Health Sciences. p. 15. ISBN   978-0-323-55593-7.
  194. "What is Cardiovascular Disease?". 31 May 2017.
  195. Saiz LC, Gorricho J, Garjón J, Celaya C, Erviti J, Leache L (2022-11-18). "Blood pressure targets for the treatment of people with hypertension and cardiovascular disease". The Cochrane Database of Systematic Reviews. 2022 (11): CD010315. doi:10.1002/14651858.CD010315.pub5. ISSN   1469-493X. PMC   9673465 . PMID   36398903.
  196. Roo S. "Cardiac Disease Among South Asians: A Silent Epidemic". Indian Heart Association. Archived from the original on 2015-05-18. Retrieved 2018-12-31.
  197. Thompson RC, Allam AH, Lombardi GP, Wann LS, Sutherland ML, Sutherland JD, et al. (April 2013). "Atherosclerosis across 4000 years of human history: the Horus study of four ancient populations". Lancet. 381 (9873): 1211–22. doi:10.1016/s0140-6736(13)60598-x. PMID   23489753. S2CID   16928278.
  198. Alberti FB (2013-05-01). "John Hunter's Heart". The Bulletin of the Royal College of Surgeons of England. 95 (5): 168–69. doi: 10.1308/003588413X13643054409261 . ISSN   1473-6357.
  199. Ruparelia N, Chai JT, Fisher EA, Choudhury RP (March 2017). "Inflammatory processes in cardiovascular disease: a route to targeted therapies". Nature Reviews. Cardiology. 14 (3): 133–144. doi:10.1038/nrcardio.2016.185. PMC   5525550 . PMID   27905474.
  200. Tang WH, Hazen SL (January 2017). "Atherosclerosis in 2016: Advances in new therapeutic targets for atherosclerosis". Nature Reviews. Cardiology. 14 (2): 71–72. doi:10.1038/nrcardio.2016.216. PMC   5880294 . PMID   28094270.
  201. Swerdlow DI, Humphries SE (February 2017). "Genetics of CHD in 2016: Common and rare genetic variants and risk of CHD". Nature Reviews. Cardiology. 14 (2): 73–74. doi:10.1038/nrcardio.2016.209. PMID   28054577. S2CID   13738641.