Secondary hypertension | |
---|---|
Other names | Inessential hypertension |
Specialty | Cardiology, nephrology |
Secondary hypertension (or, less commonly, inessential hypertension) is a type of hypertension which has a specific and identifiable underlying primary cause. It is much less common than essential hypertension, affecting only 5-10% of hypertensive patients. It has many different causes including obstructive sleep apnea, kidney disease, endocrine diseases, and tumors. The cause of secondary hypertension varies significantly with age. [1] It also can be a side effect of many medications.
Obstructive sleep apnea (OSA) is one of the most common causes of secondary hypertension. [2] OSA is prevalent in older adults and should be considered in cases of resistant hypertension, hypertension refractory to appropriate aggressive medical therapy. [3] OSA remains an under-diagnosed cause of secondary hypertension, likely due to the fact that many of the risk factors associated with OSA such as obesity, advanced age, and cigarette smoking are shared with primary hypertension. The intermittent hypoxia and resultant hypercapnia that is characteristic of OSA leads to activation of the sympathetic nervous system and leads to elevated blood pressure. [4] [5] As with all cases of secondary hypertension, the goal of treating patients with hypertension due to OSA is addressing the underlying cause. [6] Therefore, weight loss and noctural nasal continuous positive airway pressure (CPAP) are mainstays in treating hypertension secondary to OSA. Other approaches include the mandibular advancement splint (MAS), UPPP, tonsillectomy, adenoidectomy, or septoplasty. [7]
Obstruction of the renal arteries supplying the kidney that result in elevated blood pressure is known as renovascular hypertension. It is thought that decreased perfusion of renal tissue due to stenosis of a main or branch renal artery activates the renin–angiotensin system. [8] [9] [10] There are two main causes of renovascular hypertension: renal artery stenosis and fibromuscular dysplasia.[ citation needed ]
The normal physiological response to low blood pressure in the renal arteries is to increase cardiac output (CO) to maintain the pressure needed for glomerular filtration. Here, however, increased CO cannot solve the structural problems causing renal artery hypotension, with the result that CO remains chronically elevated.[ citation needed ]
This includes diseases such as polycystic kidney disease which is a cystic genetic disorder of the kidneys, PKD, which is characterized by the presence of multiple cysts (hence, "polycystic") in both kidneys, can also damage the liver, pancreas, and rarely, the heart and brain. [11] [12] [13] [14] It can be autosomal dominant or autosomal recessive, with the autosomal dominant form being more common and characterized by progressive cyst development and bilaterally enlarged kidneys with multiple cysts, with concurrent development of hypertension, chronic kidney disease and kidney pain. [15] Or chronic glomerulonephritis which is a disease characterized by inflammation of the glomeruli, or small blood vessels in the kidneys. [16] [17] [18]
Hypertension is common in chronic kidney disease.[ citation needed ]
Certain medications, including NSAIDs (ibuprofen/Motrin) and steroids can cause hypertension. [19] [20] [21] [22] [23] Other medications include estrogens (such as those found in oral contraceptives with high estrogenic activity), certain antidepressants (such as venlafaxine), buspirone, carbamazepine, bromocriptine, clozapine, and cyclosporine. [24] High blood pressure that is associated with the sudden withdrawal of various antihypertensive medications is called rebound hypertension. [25] [26] [27] [28] [29] [30] [31] The increases in blood pressure may result in blood pressures greater than when the medication was initiated. Depending on the severity of the increase in blood pressure, rebound hypertension may result in a hypertensive emergency. Rebound hypertension is avoided by gradually reducing the dose (also known as "dose tapering"), thereby giving the body enough time to adjust to reduction in dose. Medications commonly associated with rebound hypertension include centrally-acting antihypertensive agents, such as clonidine [32] and methyl-dopa. [31]
Other herbal or "natural products" which have been associated with hypertension include Ephedra, St John's wort, and licorice. [24]
Few women of childbearing age have high blood pressure, up to 11% develop hypertension of pregnancy. [33] While generally benign, it may herald three complications of pregnancy: pre-eclampsia, HELLP syndrome and eclampsia. Follow-up and control with medication is therefore often necessary. [34] [35]
Some renal tumors can cause hypertension. The differential diagnosis of a renal tumor in a young patient with hypertension includes juxtaglomerular cell tumor, Wilms' tumor, and renal cell carcinoma, all of which may produce renin. [36]
A variety of adrenal cortical abnormalities can cause hypertension, In primary aldosteronism there is a clear relationship between the aldosterone-induced sodium retention and the hypertension. [38]
Congenital adrenal hyperplasia, a group of autosomal recessive disorders of the enzymes responsible for steroid hormone production, can lead to secondary hypertension by creating atypically high levels of mineralocorticoid steroid hormones. These mineralocorticoids cross-react with the aldosterone receptor, activating it and raising blood pressure.[ citation needed ]
Yet another related disorder causing hypertension is glucocorticoid remediable aldosteronism, which is an autosomal dominant disorder in which the increase in aldosterone secretion produced by ACTH is no longer transient, causing of primary hyperaldosteronism, the Gene mutated will result in an aldosterone synthase that is ACTH-sensitive, which is normally not. [46] [47] [48] [49] [50] GRA appears to be the most common monogenic form of human hypertension. [51]
Compare these effects to those seen in Conn's disease, an adrenocortical tumor which causes excess release of aldosterone, [52] that leads to hypertension. [53] [54] [55]
Another adrenal related cause is Cushing's syndrome which is a disorder caused by high levels of cortisol. Cortisol is a hormone secreted by the cortex of the adrenal glands. Cushing's syndrome can be caused by taking glucocorticoid drugs, or by tumors that produce cortisol or adrenocorticotropic hormone (ACTH). [56] More than 80% of patients with Cushing's syndrome develop hypertension., [57] which is accompanied by distinct symptoms of the syndrome, such as central obesity, lipodystrophy, moon face, sweating, hirsutism and anxiety. [58]
Neuroendocrine tumors are also a well known cause of secondary hypertension. Pheochromocytoma [59] (most often located in the adrenal medulla) increases secretion of catecholamines such as epinephrine and norepinephrine, causing excessive stimulation of adrenergic receptors, which results in peripheral vasoconstriction and cardiac stimulation. This diagnosis is confirmed by demonstrating increased urinary excretion of epinephrine and norepinephrine and/or their metabolites (vanillylmandelic acid).[ citation needed ]
Another cause is an exceptionally rare neurological disease called Binswanger's disease, causing dementia; it is a rare form of multi-infarct dementia, and is one of the neurological syndromes associated with hypertension. [60]
Because of the ubiquity of arsenic in ground water supplies and its effect on cardiovascular health, low dose arsenic poisoning should be inferred as a part of the pathogenesis of idiopathic hypertension. Idiopathic and essential are both somewhat synonymous with primary hypertension. Arsenic exposure has also many of the same signs of primary hypertension such as headache, somnolence, [61] confusion, proteinuria, [62] visual disturbances, and nausea and vomiting. [63]
Due to the role of intracellular potassium in regulation of cellular pressures related to sodium, establishing potassium balance has been shown to reverse hypertension. [64]
The ABCDE mnemonic can be used to help determine a secondary cause of hypertension.
The adrenal glands are endocrine glands that produce a variety of hormones including adrenaline and the steroids aldosterone and cortisol. They are found above the kidneys. Each gland has an outer cortex which produces steroid hormones and an inner medulla. The adrenal cortex itself is divided into three main zones: the zona glomerulosa, the zona fasciculata and the zona reticularis.
Cortisol is a steroid hormone in the glucocorticoid class of hormones and a stress hormone. When used as medication, it is known as hydrocortisone.
Aldosterone is the main mineralocorticoid steroid hormone produced by the zona glomerulosa of the adrenal cortex in the adrenal gland. It is essential for sodium conservation in the kidney, salivary glands, sweat glands, and colon. It plays a central role in the homeostatic regulation of blood pressure, plasma sodium (Na+), and potassium (K+) levels. It does so primarily by acting on the mineralocorticoid receptors in the distal tubules and collecting ducts of the nephron. It influences the reabsorption of sodium and excretion of potassium (from and into the tubular fluids, respectively) of the kidney, thereby indirectly influencing water retention or loss, blood pressure, and blood volume. When dysregulated, aldosterone is pathogenic and contributes to the development and progression of cardiovascular and kidney disease. Aldosterone has exactly the opposite function of the atrial natriuretic hormone secreted by the heart.
Primary aldosteronism (PA), also known as primary hyperaldosteronism, refers to the excess production of the hormone aldosterone from the adrenal glands, resulting in low renin levels and high blood pressure. This abnormality is a paraneoplastic syndrome. About 35% of the cases are caused by a single aldosterone-secreting adenoma, a condition known as Conn's syndrome.
Mineralocorticoids are a class of corticosteroids, which in turn are a class of steroid hormones. Mineralocorticoids are produced in the adrenal cortex and influence salt and water balances. The primary mineralocorticoid is aldosterone.
Adrenal insufficiency is a condition in which the adrenal glands do not produce adequate amounts of steroid hormones. The adrenal glands—also referred to as the adrenal cortex—normally secrete glucocorticoids, mineralocorticoids, and androgens. These hormones are important in regulating blood pressure, electrolytes, and metabolism as a whole. Deficiency of these hormones leads to symptoms ranging from abdominal pain, vomiting, muscle weakness and fatigue, low blood pressure, depression, mood and personality changes to organ failure and shock. Adrenal crisis may occur if a person having adrenal insufficiency experiences stresses, such as an accident, injury, surgery, or severe infection; this is a life-threatening medical condition resulting from severe deficiency of cortisol in the body. Death may quickly follow.
Renal artery stenosis (RAS) is the narrowing of one or both of the renal arteries, most often caused by atherosclerosis or fibromuscular dysplasia. This narrowing of the renal artery can impede blood flow to the target kidney, resulting in renovascular hypertension – a secondary type of high blood pressure. Possible complications of renal artery stenosis are chronic kidney disease and coronary artery disease.
Hypoaldosteronism is an endocrinological disorder characterized by decreased levels of the hormone aldosterone. Similarly, isolated hypoaldosteronism is the condition of having lowered aldosterone without corresponding changes in cortisol.
Hyperaldosteronism is a medical condition wherein too much aldosterone is produced. High aldosterone levels can lead to lowered levels of potassium in the blood (hypokalemia) and increased hydrogen ion excretion (alkalosis). Aldosterone is normally produced in the adrenal glands.
Adrenalectomy is the surgical removal of one or both adrenal glands. It is usually done to remove tumors of the adrenal glands that are producing excess hormones or is large in size. Adrenalectomy can also be done to remove a cancerous tumor of the adrenal glands, or cancer that has spread from another location, such as the kidney or lung. Adrenalectomy is not performed on those who have severe coagulopathy or whose heart and lungs are too weak to undergo surgery. The procedure can be performed using an open incision (laparotomy) or minimally invasive laparoscopic or robot-assisted techniques. Minimally invasive techniques are increasingly the gold standard of care due to shorter length of stay in the hospital, lower blood loss, and similar complication rates.
Apparent mineralocorticoid excess is an autosomal recessive disorder causing hypertension, hypernatremia and hypokalemia. It results from mutations in the HSD11B2 gene, which encodes the kidney isozyme of 11β-hydroxysteroid dehydrogenase type 2. In an unaffected individual, this isozyme inactivates circulating cortisol to the less active metabolite cortisone. The inactivating mutation leads to elevated local concentrations of cortisol in the aldosterone sensitive tissues like the kidney. Cortisol at high concentrations can cross-react and activate the mineralocorticoid receptor due to the non-selectivity of the receptor, leading to aldosterone-like effects in the kidney. This is what causes the hypokalemia, hypertension, and hypernatremia associated with the syndrome. Patients often present with severe hypertension and end-organ changes associated with it like left ventricular hypertrophy, retinal, renal and neurological vascular changes along with growth retardation and failure to thrive. In serum both aldosterone and renin levels are low.
A mineralocorticoid receptor antagonist or aldosterone antagonist, is a diuretic drug which antagonizes the action of aldosterone at mineralocorticoid receptors. This group of drugs is often used as adjunctive therapy, in combination with other drugs, for the management of chronic heart failure. Spironolactone, the first member of the class, is also used in the management of hyperaldosteronism and female hirsutism. Most antimineralocorticoids, including spironolactone, are steroidal spirolactones. Finerenone is a nonsteroidal antimineralocorticoid.
Liddle's syndrome, also called Liddle syndrome, is a genetic disorder inherited in an autosomal dominant manner that is characterized by early, and frequently severe, high blood pressure associated with low plasma renin activity, metabolic alkalosis, low blood potassium, and normal to low levels of aldosterone. Liddle syndrome involves abnormal kidney function, with excess reabsorption of sodium and loss of potassium from the renal tubule, and is treated with a combination of low sodium diet and potassium-sparing diuretics. It is extremely rare, with fewer than 30 pedigrees or isolated cases having been reported worldwide as of 2008.
Pseudohyperaldosteronism is a medical condition which mimics the effects of elevated aldosterone (hyperaldosteronism) by presenting with high blood pressure, low blood potassium levels (hypokalemia), metabolic alkalosis, and low levels of plasma renin activity (PRA). However, unlike hyperaldosteronism, this conditions exhibits low or normal levels of aldosterone in the blood. Causes include genetic disorders, acquired conditions, metabolic disorders, and dietary imbalances including excessive consumption of licorice. Confirmatory diagnosis depends on the specific cause and may involve blood tests, urine tests, or genetic testing; however, all forms of this condition exhibit abnormally low concentrations of both plasma renin activity (PRA) and plasma aldosterone concentration (PAC) which differentiates this group of conditions from other forms of secondary hypertension. Treatment is tailored to the specific cause and focuses on symptom control, blood pressure management, and avoidance of triggers.
11-Deoxycorticosterone (DOC), or simply deoxycorticosterone, also known as 21-hydroxyprogesterone, as well as desoxycortone (INN), deoxycortone, and cortexone, is a steroid hormone produced by the adrenal gland that possesses mineralocorticoid activity and acts as a precursor to aldosterone. It is an active (Na+-retaining) mineralocorticoid. As its names indicate, 11-deoxycorticosterone can be understood as the 21-hydroxy-variant of progesterone or as the 11-deoxy-variant of corticosterone.
Pseudohypoaldosteronism (PHA) is a condition that mimics hypoaldosteronism. Two major types of primary pseudohypoaldosteronism are recognized and these have major differences in etiology and presentation.
Aldosterone synthase, also called steroid 18-hydroxylase, corticosterone 18-monooxygenase or P450C18, is a steroid hydroxylase cytochrome P450 enzyme involved in the biosynthesis of the mineralocorticoid aldosterone and other steroids. The enzyme catalyzes sequential hydroxylations of the steroid angular methyl group at C18 after initial 11β-hydroxylation. It is encoded by the CYP11B2 gene in humans.
11-Deoxycortisol, also known as cortodoxone (INN), cortexolone as well as 17α,21-dihydroxyprogesterone or 17α,21-dihydroxypregn-4-ene-3,20-dione, is an endogenous glucocorticoid steroid hormone, and a metabolic intermediate toward cortisol. It was first described by Tadeusz Reichstein in 1938 as Substance S, thus has also been referred to as Reichstein's Substance S or Compound S.
Adrenal gland disorders are conditions that interfere with the normal functioning of the adrenal glands. Your body produces too much or too little of one or more hormones when you have an adrenal gland dysfunction. The type of issue you have and the degree to which it affects your body's hormone levels determine the symptoms.
Glucocorticoid remediable aldosteronism also describable as aldosterone synthase hyperactivity, is an autosomal dominant disorder in which the increase in aldosterone secretion produced by ACTH is no longer transient.