Arsenic poisoning

Last updated
Arsenic poisoning
Other namesArsenic toxicity, arsenic overdose
Arsenic contamination areas.jpg
Areas of the world with high naturally occurring arsenic levels in the groundwater
Specialty Toxicology
SymptomsAcute: vomiting, abdominal pain, watery diarrhea [1]
Chronic: thickened skin, darker skin, cancer [1]
Causes Arsenic [1]
Diagnostic method Urine, blood, or hair testing [1]
PreventionDrinking water without arsenic [1]
Treatment Dimercaptosuccinic acid, dimercaptopropane sulfonate [2]
Frequency>200 million [3]

Arsenic poisoning is a medical condition that occurs due to elevated levels of arsenic in the body. [4] If arsenic poisoning occurs over a brief period of time symptoms may include vomiting, abdominal pain, encephalopathy, and watery diarrhea that contains blood. [1] Long-term exposure can result in thickening of the skin, darker skin, abdominal pain, diarrhea, heart disease, numbness, and cancer. [1]


The most common reason for long-term exposure is contaminated drinking water. [3] Groundwater most often becomes contaminated naturally; however, contamination may also occur from mining or agriculture. [1] It may also be found in the soil and air. [5] Recommended levels in water are less than 10–50 µg/L (10–50 parts per billion). [1] Other routes of exposure include toxic waste sites and traditional medicines. [1] [3] Most cases of poisoning are accidental. [1] Arsenic acts by changing the functioning of around 200 enzymes. [1] Diagnosis is by testing the urine, blood, or hair. [1]

Prevention is by using water that does not contain high levels of arsenic. [1] This may be achieved by the use of special filters or using rainwater. [1] There is not good evidence to support specific treatments for long-term poisoning. [1] For acute poisonings treating dehydration is important. [4] Dimercaptosuccinic acid (DMSA) or dimercaptopropane sulfonate (DMPS) may be used while dimercaprol (BAL) is not recommended. [2] Hemodialysis may also be used. [4]

Through drinking water, more than 200 million people globally are exposed to higher than safe levels of arsenic. [3] The areas most affected are Bangladesh and West Bengal. [3] Exposure is also more common in people of low income and minorities. [6] Acute poisoning is uncommon. [3] The toxicity of arsenic has been described as far back as 1500 BC in the Ebers papyrus. [7]

Signs and symptoms

Symptoms of arsenic poisoning begin with headaches, confusion, severe diarrhea, and drowsiness. As the poisoning develops, convulsions and changes in fingernail pigmentation called leukonychia striata (Mees's lines, or Aldrich-Mees's lines) may occur. [8] When the poisoning becomes acute, symptoms may include diarrhea, vomiting, vomiting blood, blood in the urine, cramping muscles, hair loss, stomach pain, and more convulsions. The organs of the body that are usually affected by arsenic poisoning are the lungs, skin, kidneys, and liver. [9] The final result of arsenic poisoning is coma and death. [10]

Arsenic is related to heart disease [11] (hypertension-related cardiovascular disease), cancer, [12] stroke [13] (cerebrovascular diseases), chronic lower respiratory diseases, [14] and diabetes. [15] [16] Skin effects can include skin cancer in the long term, but often prior to skin cancer are different skin lesions. [5] Other effects may include darkening of skin and thickening of skin. [17]

Chronic exposure to arsenic is related to[ clarification needed ] vitamin A deficiency, which is related to heart disease and night blindness. [18] The acute minimal lethal dose of arsenic in adults is estimated to be 70 to 200 mg or 1 mg/kg/day. [19]


Arsenic increases the risk of cancer. [20] Exposure is related to skin, lung, liver, and kidney cancer among others. [1]

Its comutagenic effects may be explained by interference with base and nucleotide excision repair, eventually through interaction with zinc finger structures. [21] Dimethylarsinic acid, DMA(V), caused DNA single strand breaks resulting from inhibition of repair enzymes at levels of 5 to 100 mM in human epithelial type II cells. [22] [23]

MMA(III) and DMA(III) were also shown to be directly genotoxic by effectuating scissions in supercoiled ΦX174 DNA. [24] Increased arsenic exposure is associated with an increased frequency of chromosomal aberrations, [25] micronuclei [26] [27] and sister-chromatid exchanges. An explanation for chromosomal aberrations is the sensitivity of the protein tubulin and the mitotic spindle to arsenic. Histological observations confirm effects on cellular integrity, shape and locomotion. [28]

DMA(III) is able to form reactive oxygen species (ROS) by reaction with molecular oxygen. Resulting metabolites are the dimethylarsenic radical and the dimethylarsenic peroxyl radical. [29] Both DMA(III) and DMA(V) were shown to release iron from horse spleen as well as from human liver ferritin if ascorbic acid was administered simultaneously. Thus, formation of ROS can be promoted. [30] Moreover, arsenic could cause oxidative stress by depleting the cell's antioxidants, especially the ones containing thiol groups. The accumulation of ROS like the cited above and hydroxyl radicals, superoxide radicals and hydrogen peroxides causes aberrant gene expression at low concentrations and lesions of lipids, proteins and DNA in higher concentrations which eventually lead to cellular death. In a rat animal model, urine levels of 8-hydroxy-2’-deoxyguanosine (as a biomarker of ROS DNA damage) were measured after treatment with DMA(V). In comparison to control levels, they turned out to be significantly increased. [31] This theory is further supported by a cross-sectional study which found elevated mean serum lipid peroxides (LPO) in the As exposed individuals which correlated with blood levels of inorganic arsenic and methylated metabolites and inversely correlated with nonprotein sulfhydryl (NPSH) levels in whole blood. [32] Another study found an association of As levels in whole blood with the level of reactive oxidants in plasma and an inverse relationship with plasma antioxidants. [33] A finding of the latter study indicates that methylation might in fact be a detoxification pathway with regard to oxidative stress: the results showed that the lower the As methylation capacity was, the lower the level of plasma antioxidant capacity. As reviewed by Kitchin (2001), the oxidative stress theory provides an explanation for the preferred tumor sites connected with arsenic exposure. [34] Considering that a high partial pressure of oxygen is present in lungs and DMA(III) is excreted in gaseous state via the lungs, this seems to be a plausible mechanism for special vulnerability. The fact that DMA is produced by methylation in the liver, excreted via the kidneys and later on stored in the bladder accounts for the other tumor localizations.

Regarding DNA methylation, some studies suggest interaction of As with methyltransferases which leads to an inactivation of tumor suppressor genes through hypermethylation; others state that hypomethylation might occur due to a lack of SAM resulting in aberrant gene activation. [35] An experiment by Zhong et al. (2001) with arsenite-exposed human lung A549, kidney UOK123, UOK109 and UOK121 cells isolated eight different DNA fragments by methylation-sensitive arbitrarily primed PCR. [36] It turned out that six of the fragments were hyper- and two of them were hypomethylated. [36] Higher levels of DNA methyltransferase mRNA and enzyme activity were found. [36]

Kitchin (2001) proposed a model of altered growth factors which lead to cell proliferation and thus to carcinogenesis. [34] From observations, it is known that chronic low-dose arsenic poisoning can lead to increased tolerance to its acute toxicity. [20] [37] MRP1-overexpressing lung tumor GLC4/Sb30 cells poorly accumulate arsenite and arsenate. This is mediated through MRP-1 dependent efflux. [38] The efflux requires GSH, but no As-GSH complex formation. [39]

Although many mechanisms have been proposed, no definite model can be given for the mechanisms of chronic arsenic poisoning. The prevailing events of toxicity and carcinogenicity might be quite tissue-specific. Current consensus on the mode of carcinogenesis is that it acts primarily as a tumor promoter. Its co-carcinogenicity has been demonstrated in several models. However, the finding of several studies that chronically arsenic-exposed Andean populations (as most extremely exposed to UV-light) do not develop skin cancer with chronic arsenic exposure, is puzzling. [40]


Organic arsenic is less harmful than inorganic arsenic. Seafood is a common source of the less toxic organic arsenic in the form of arsenobetaine. The arsenic reported in 2012 in fruit juice and rice by Consumer Reports was primarily inorganic arsenic. [41] [42] Because of its high toxicity, arsenic is seldom used in the Western world, although in Asia it is still a popular pesticide. Arsenic is mainly encountered occupationally in the smelting of zinc and copper ores.

Drinking water

Arsenic is naturally found in groundwater and presents serious health threats when high amounts exist. [43] Chronic arsenic poisoning results from drinking contaminated well water over a long period of time. Many aquifers contain high concentration of arsenic salts. [44] The World Health Organization (WHO) Guidelines for drinking water quality established in 1993 a provisional guideline value of 0.01 mg/L (10 parts per billion) for maximum contaminant levels of arsenic in drinking water. [45] This recommendation was established based on the limit of detection for most laboratories' testing equipment at the time of publication of the WHO water quality guidelines. More recent findings show that consumption of water with levels as low as 0.00017 mg/L (0.17 parts per billion) over long periods of time can lead to arsenicosis. [46] [47]

From a 1988 study in China, the US protection agency quantified the lifetime exposure of arsenic in drinking water at concentrations of 0.0017 mg/L (1.7 ppb), 0.00017 mg/L, and 0.000017 mg/L are associated with a lifetime skin cancer risk of 1 in 10,000, 1 in 100,000, and 1 in 1,000,000 respectively. WHO asserts that a water level of 0.01 mg/L (10 ppb) poses a risk of 6 in 10,000 chance of lifetime skin cancer risk and contends that this level of risk is acceptable. [48]

One of the worst incidents of arsenic poisoning via well water occurred in Bangladesh, which the World Health Organization called the "largest mass poisoning of a population in history" [49] recognized as a major public health concern. The contamination in the Ganga-Brahmaputra fluvial plains in India and Padma-Meghna fluvial plains in Bangladesh demonstrated adverse impacts on human health. [50]

Mining techniques such as hydraulic fracturing may mobilize arsenic in groundwater and aquifers due to enhanced methane transport and resulting changes in redox conditions, [51] and inject fluid containing additional arsenic. [52]


In the US, the U.S. Geological Survey estimates that the median groundwater concentration is 1 μg/L or less, although some groundwater aquifers, particularly in the western United States, can contain much higher levels. For example, median levels in Nevada were about 8 μg/L [53] but levels of naturally occurring arsenic as high as 1000 μg/L have been measured in the United States in drinking water. [54]

Geothermally active zones occur at hotspots where mantle-derived plumes ascend, such as in Hawaii and Yellowstone National Park, USA. Arsenic is an incompatible element (does not fit easily into the lattices of common rock-forming minerals). Concentrations of arsenic are high mainly in geothermal waters that leach continental rocks. Arsenic in hot geothermal fluids was shown to be derived mainly from leaching of host rocks at Yellowstone National Park, in Wyoming, USA, rather than from magmas. [55]

In the western USA, there are As (arsenic) inputs to groundwater and surface water from geothermal fluids in and near Yellowstone National Park, [56] and in other western mineralized areas. [57] Groundwater associated with volcanics in California contain As at concentrations ranging up to 48,000 μg/L, with As-bearing sulfide minerals as the main source. [58] Geothermal waters on Dominica in the Lesser Antilles also contain concentrations of As >50 μg/L. [59]

In general, because arsenic is an incompatible element, it accumulates in differentiated magmas, [56] and in other western mineralized areas. [57] Weathering of pegmatite veins in Connecticut, USA, was thought to contribute As to groundwater.[ citation needed ]

In Pennsylvania, As concentrations in water discharging from abandoned anthracite mines ranged from <0.03 to 15 μg/L and from abandoned bituminous mines, from 0.10 to 64 μg/L, with 10% of samples exceeding the United States Environmental Protection Agency MLC of 10 μg/L. [60]

In Wisconsin, As concentrations of water in sandstone and dolomite aquifers were as high as 100 μg/L. Oxidation of pyrite hosted by these formations was the likely source of the As. [61]

In the Piedmont of Pennsylvania and New Jersey, groundwater in Mesozoic age aquifers contains elevated levels of As—domestic well waters from Pennsylvania contained up to 65 μg/L, [62] whereas in New Jersey the highest concentration measured recently was 215 μg/L. [63]


In the United States, Schoof et al. estimated an average adult intake of 3.2 μg/day, with a range of 1–20 μg/day. [64] Estimates for children were similar. [65] Food also contains many organic arsenic compounds. The key organic arsenic compounds that can be routinely found in food (depending on food type) include monomethylarsonic acid (MMAsV), dimethylarsinic acid (DMAsV), arsenobetaine, arsenocholine, arsenosugars, and arsenolipids. DMAsV or MMAsV can be found in various types of fin fish, crabs, and mollusks, but often at very low levels. [66]

Arsenobetaine is the major form of arsenic in marine animals, and, by all accounts, it is considered a compound that is nontoxic under conditions of human consumption. Arsenocholine, which is mainly found in shrimp, is chemically similar to arsenobetaine, and is considered to be “essentially nontoxic”. [67] Although arsenobetaine is little studied, available information indicates it is not mutagenic, immunotoxic, or embryotoxic. [68]

Arsenosugars and arsenolipids have recently been identified. Exposure to these compounds and toxicological implications are currently being studied. Arsenosugars are detected mainly in seaweed but are also found to a lesser extent in marine mollusks. [69] Studies addressing arsenosugar toxicity, however, have largely been limited to in vitro studies, which show that arsenosugars are significantly less toxic than both inorganic arsenic and trivalent methylated arsenic metabolites. [70]

It has been found that rice is particularly susceptible to accumulation of arsenic from soil. [71] Rice grown in the United States has an average 260  ppb of arsenic, according to a study; but U.S. arsenic intake remains far below World Health Organization-recommended limits. [72] China has set a standard for arsenic limits in food (150 ppb), [73] as levels in rice exceed those in water. [74]

Arsenic is a ubiquitous element present in American drinking water. [75] In the United States, levels of arsenic that are above natural levels, but still well below danger levels set in federal safety standards, have been detected in commercially raised chickens. [76] The source of the arsenic appears to be the feed additives roxarsone and nitarsone, which are used to control the parasitic infection coccidiosis as well as to increase weight and skin coloring of the poultry. [77] [78]

High levels of inorganic arsenic were reportedly found in 83 California wines in 2015. [79]


Exposure to arsenic in soil can occur through multiple pathways. Compared with the intake of naturally occurring arsenic from water and the diet, soil arsenic constitutes only a small fraction of intake. [80]


The European Commission (2000) reports that levels of arsenic in air range 0–1 ng/m3 in remote areas, 0.2–1.5 ng/m3 in rural areas, 0.5–3 ng/m3 in urban areas, and up to about 50 ng/m3 in the vicinity of industrial sites. Based on these data, the European Commission (2000) estimated that in relation to food, cigarette smoking, water, and soil, air contributes less than 1% of total arsenic exposure.


The use of lead arsenate pesticides has been effectively eliminated for over 50 years. However, because of the pesticide's environmental persistence, it is estimated that millions of acres of land are still contaminated with lead arsenate residues. This presents a potentially significant public health concern in some areas of the United States (e.g., New Jersey, Washington, and Wisconsin), where large areas of land used historically as orchards have been converted into residential developments. [81]

Some modern uses of arsenic-based pesticides still exist. Chromated copper arsenate (CCA) has been registered for use in the United States since the 1940s as a wood preservative, protecting wood from insects and microbial agents. In 2003, CCA manufacturers instituted a voluntary recall of residential uses of CCA-treated wood. The EPA 2008 final report stated that CCA is still approved for use in nonresidential applications, such as in marine facilities (pilings and structures), utility poles, and sand highway structures.

Copper smelting

Exposure studies in the copper smelting industry are much more extensive and have established definitive links between arsenic, a by-product of copper smelting, and lung cancer via inhalation. [82] Dermal and neurological effects were also increased in some of these studies. [83] Although as time went on, occupational controls became more stringent and workers were exposed to reduced arsenic concentrations, the arsenic exposures measured from these studies ranged from about 0.05 to 0.3 mg/m3 and are significantly higher than airborne environmental exposures to arsenic (which range from 0 to 0.000003 mg/m3). [84]


Arsenic interferes with cellular longevity by allosteric inhibition of an essential metabolic enzyme pyruvate dehydrogenase (PDH) complex, which catalyzes the oxidation of pyruvate to acetyl-CoA by NAD +. With the enzyme inhibited, the energy system of the cell is disrupted resulting in cellular apoptosis. Biochemically, arsenic prevents use of thiamine resulting in a clinical picture resembling thiamine deficiency. Poisoning with arsenic can raise lactate levels and lead to lactic acidosis. Low potassium levels in the cells increases the risk of experiencing a life-threatening heart rhythm problem from arsenic trioxide.[ citation needed ] Arsenic in cells clearly stimulates the production of hydrogen peroxide (H2O2). When the H2O2 reacts with certain metals such as iron or manganese it produces a highly reactive hydroxyl radical. Inorganic arsenic trioxide found in ground water particularly affects voltage-gated potassium channels, [85] disrupting cellular electrolytic function resulting in neurological disturbances, cardiovascular episodes such as prolonged QT interval, neutropenia, high blood pressure, [86] central nervous system dysfunction, anemia, and death.

Arsenic exposure plays a key role in the pathogenesis of vascular endothelial dysfunction as it inactivates endothelial nitric oxide synthase, leading to reduction in the generation and bioavailability of nitric oxide. In addition, the chronic arsenic exposure induces high oxidative stress, which may affect the structure and function of cardiovascular system. Further, the arsenic exposure has been noted to induce atherosclerosis by increasing the platelet aggregation and reducing fibrinolysis. Moreover, arsenic exposure may cause arrhythmia by increasing the QT interval and accelerating the cellular calcium overload. The chronic exposure to arsenic upregulates the expression of tumor necrosis factor-α, interleukin-1, vascular cell adhesion molecule and vascular endothelial growth factor to induce cardiovascular pathogenesis.

Pitchai Balakumar and Jagdeep Kaur, "Arsenic Exposure and Cardiovascular Disorders: An Overview", Cardiovascular Toxicology , December 2009 [87]

Tissue culture studies have shown that arsenic compounds block both IKr and Iks channels and, at the same time, activate IK-ATP channels. Arsenic compounds also disrupt ATP production through several mechanisms. At the level of the citric acid cycle, arsenic inhibits pyruvate dehydrogenase and by competing with phosphate it uncouples oxidative phosphorylation, thus inhibiting energy-linked reduction of NAD+, mitochondrial respiration, and ATP synthesis. Hydrogen peroxide production is also increased, which might form reactive oxygen species and oxidative stress. These metabolic interferences lead to death from multi-system organ failure, probably from necrotic cell death, not apoptosis. A post mortem reveals brick red colored mucosa, due to severe hemorrhage. Although arsenic causes toxicity, it can also play a protective role. [88]


Arsenite inhibits not only the formation of acetyl-CoA but also the enzyme succinic dehydrogenase. Arsenate can replace phosphate in many reactions. It is able to form Glc-6-arsenate in vitro; therefore it has been argued that hexokinase could be inhibited. [89] (Eventually this may be a mechanism leading to muscle weakness in chronic arsenic poisoning.) In the glyceraldehyde 3-phosphate dehydrogenase reaction arsenate attacks the enzyme-bound thioester. The formed 1-arseno-3-phosphoglycerate is unstable and hydrolyzes spontaneously. Thus, ATP formation in glycolysis is inhibited while bypassing the phosphoglycerate kinase reaction. (Moreover, the formation of 2,3-bisphosphoglycerate in erythrocytes might be affected, followed by a higher oxygen affinity of hemoglobin and subsequently enhanced cyanosis.) As shown by Gresser (1981), submitochondrial particles synthesize adenosine-5’-diphosphate-arsenate from ADP and arsenate in presence of succinate. Thus, by a variety of mechanisms arsenate leads to an impairment of cell respiration and subsequently diminished ATP formation. [90] This is consistent with observed ATP depletion of exposed cells and histopathological findings of mitochondrial and cell swelling, glycogen depletion in liver cells and fatty change in liver, heart and kidney.

Experiments demonstrated enhanced arterial thrombosis in a rat animal model, elevations of serotonin levels, thromboxane A[2] and adhesion proteins in platelets, while human platelets showed similar responses. [91] The effect on vascular endothelium may eventually be mediated by the arsenic-induced formation of nitric oxide. It was demonstrated that +3 As concentrations substantially lower than concentrations required for inhibition of the lysosomal protease cathepsin L in B cell line TA3 were sufficient to trigger apoptosis in the same B cell line, while the latter could be a mechanism mediating immunosuppressive effects. [92]


The two forms of inorganic arsenic, reduced (trivalent As(III)) and oxidized (pentavalent As(V)), can be absorbed, and accumulated in tissues and body fluids. [93] In the liver, the metabolism of arsenic involves enzymatic and non-enzymatic methylation; the most frequently excreted metabolite (≥ 90%) in the urine of mammals is dimethylarsinic acid or cacodylic acid, DMA(V). [94] Dimethylarsenic acid is also known as Agent Blue and was used as herbicide in the American war in Vietnam.

In humans inorganic arsenic is reduced nonenzymatically from pentoxide to trioxide, using glutathione (GSH) or it is mediated by enzymes. Reduction of arsenic pentoxide to arsenic trioxide increases its toxicity and bio availability, Methylation occurs through methyltransferase enzymes. S-adenosylmethionine (SAM) may serve as methyl donor. Various pathways are used, the principal route being dependent on the current environment of the cell. [95] Resulting metabolites are monomethylarsonous acid, MMA(III), and dimethylarsinous acid, DMA(III).

Methylation had been regarded as a detoxification process, [ by whom? ] but reduction from +5 As to +3 As may be considered as a bioactivation [ clarification needed ] instead. [96] Another suggestion is that methylation might be a detoxification if "As[III] intermediates are not permitted to accumulate" because the pentavalent organoarsenics have a lower affinity to thiol groups than inorganic pentavalent arsenics. [95] Gebel (2002) stated that methylation is a detoxification through accelerated excretion. [97] With regard to carcinogenicity it has been suggested that methylation should be regarded as a toxification. [34] [98] [99]

Arsenic, especially +3 As, binds to single, but with higher affinity to vicinal sulfhydryl groups, thus reacts with a variety of proteins and inhibits their activity. It was also proposed that binding of arsenite at nonessential sites might contribute to detoxification. [100] Arsenite inhibits members of the disulfide oxidoreductase family like glutathione reductase [101] and thioredoxin reductase. [102]

The remaining unbound arsenic (≤ 10%) accumulates in cells, which over time may lead to skin, bladder, kidney, liver, lung, and prostate cancers. [94] Other forms of arsenic toxicity in humans have been observed in blood, bone marrow, cardiac, central nervous system, gastrointestinal, gonadal, kidney, liver, pancreatic, and skin tissues. [94]

Heat shock response

Another aspect is the similarity of arsenic effects to the heat shock response. Short-term arsenic exposure has effects on signal transduction inducing heat shock proteins with masses of 27, 60, 70, 72, 90, and 110 kDa as well as metallotionein, ubiquitin, mitogen-activated [MAP] kinases, extracellular regulated kinase [ERK], c-jun terminal kinases [JNK] and p38. [28] [103] Via JNK and p38 it activates c-fos, c-jun and egr-1 which are usually activated by growth factors and cytokines. [28] [104] [105] The effects are largely dependent on the dosing regime and may be as well inversed.

As shown by some experiments reviewed by Del Razo (2001), ROS induced by low levels of inorganic arsenic increase the transcription and the activity of the activator protein 1 (AP-1) and the nuclear factor-κB (NF-κB) (maybe enhanced by elevated MAPK levels), which results in c-fos/c-jun activation, over-secretion of pro-inflammatory and growth promoting cytokines stimulating cell proliferation. [103] [106] Germolec et al. (1996) found an increased cytokine expression and cell proliferation in skin biopsies from individuals chronically exposed to arsenic-contaminated drinking water. [107]

Increased AP-1 and NF-κB obviously also result in an up-regulation of mdm2 protein, which decreases p53 protein levels. [108] Thus, taking into account p53's function, a lack of it could cause a faster accumulation of mutations contributing to carcinogenesis. However, high levels of inorganic arsenic inhibit NF-κB activation and cell proliferation. An experiment of Hu et al. (2002) demonstrated increased binding activity of AP-1 and NF-κB after acute (24 h) exposure to +3 sodium arsenite, whereas long-term exposure (10–12 weeks) yielded the opposite result. [109] The authors conclude that the former may be interpreted as a defense response while the latter could lead to carcinogenesis. [109] As the contradicting findings and connected mechanistic hypotheses indicate, there is a difference in acute and chronic effects of arsenic on signal transduction which is not clearly understood yet.[ citation needed ]

Oxidative stress

Studies have demonstrated that the oxidative stress generated by arsenic may disrupt the signal transduction pathways of the nuclear transcriptional factors PPARs, AP-1, and NF-κB, [94] [109] [110] as well as the pro-inflammatory cytokines IL-8 and TNF-α. [94] [109] [110] [111] [112] [113] [114] [115] The interference of oxidative stress with signal transduction pathways may affect physiological processes associated with cell growth, metabolic syndrome X, glucose homeostasis, lipid metabolism, obesity, insulin resistance, inflammation, and diabetes-2. [116] [117] [118] Recent scientific evidence has elucidated the physiological roles of the PPARs in the ω- hydroxylation of fatty acids and the inhibition of pro-inflammatory transcription factors (NF-κB and AP-1), pro-inflammatory cytokines (IL-1, -6, -8, -12, and TNF-α), cell4 adhesion molecules (ICAM-1 and VCAM-1), inducible nitric oxide synthase, proinflammatory nitric oxide (NO), and anti-apoptotic factors. [94] [111] [116] [118] [119]

Epidemiological studies have suggested a correlation between chronic consumption of drinking water contaminated with arsenic and the incidence of Type 2-diabetes. [94] The human liver after exposure to therapeutic drugs may exhibit hepatic non-cirrhotic portal hypertension, fibrosis, and cirrhosis. [94] However, the literature provides insufficient scientific evidence to show cause and effect between arsenic and the onset of diabetes mellitus Type 2. [94]


Arsenic may be measured in blood or urine to monitor excessive environmental or occupational exposure, confirm a diagnosis of poisoning in hospitalized victims or to assist in the forensic investigation in a case of fatal over dosage. Some analytical techniques are capable of distinguishing organic from inorganic forms of the element. Organic arsenic compounds tend to be eliminated in the urine in unchanged form, while inorganic forms are largely converted to organic arsenic compounds in the body prior to urinary excretion. The current biological exposure index for U.S. workers of 35 µg/L total urinary arsenic may easily be exceeded by a healthy person eating a seafood meal. [120]

Tests are available to diagnose poisoning by measuring arsenic in blood, urine, hair, and fingernails. The urine test is the most reliable test for arsenic exposure within the last few days. Urine testing needs to be done within 24–48 hours for an accurate analysis of an acute exposure. Tests on hair and fingernails can measure exposure to high levels of arsenic over the past 6–12 months. These tests can determine if one has been exposed to above-average levels of arsenic. They cannot predict, however, whether the arsenic levels in the body will affect health. [121] Chronic arsenic exposure can remain in the body systems for a longer period of time than a shorter term or more isolated exposure and can be detected in a longer time frame after the introduction of the arsenic, important in trying to determine the source of the exposure.

Hair is a potential bioindicator for arsenic exposure due to its ability to store trace elements from blood. Incorporated elements maintain their position during growth of hair. Thus for a temporal estimation of exposure, an assay of hair composition needs to be carried out with a single hair which is not possible with older techniques requiring homogenization and dissolution of several strands of hair. This type of biomonitoring has been achieved with newer microanalytical techniques like synchrotron radiation based X-ray fluorescence (SXRF) spectroscopy and microparticle induced X-ray emission (PIXE). The highly focused and intense beams study small spots on biological samples allowing analysis to micro level along with the chemical speciation. In a study, this method has been used to follow arsenic level before, during and after treatment with arsenious oxide in patients with acute oromyelocytic leukemia. [122]



Dimercaprol and dimercaptosuccinic acid are chelating agents that sequester the arsenic away from blood proteins and are used in treating acute arsenic poisoning. The most important side effect is hypertension. Dimercaprol is considerably more toxic than succimer.[ citation needed ] [123] DMSA monoesters, e.g. MiADMSA, are promising antidotes for arsenic poisoning. [124]


Supplemental potassium decreases the risk of experiencing a life-threatening heart rhythm problem from arsenic trioxide. [125]


An 1889 newspaper advertisement for "arsenic complexion wafers". Arsenic was known to be poisonous during the Victorian era. 18891109 Arsenic complexion wafers - Helena Independent.png
An 1889 newspaper advertisement for "arsenic complexion wafers". Arsenic was known to be poisonous during the Victorian era.

Beginning in about 3000 BCE arsenic was mined and added to copper in the alloying of bronze, but the adverse health effects of working with arsenic led to it being abandoned when a viable alternative, tin, was discovered. [128]

In addition to its presence as a poison, for centuries arsenic was used medicinally. It has been used for over 2,400 years as a part of traditional Chinese medicine. [129] In the western world, arsenic compounds, such as salvarsan, were used extensively to treat syphilis before penicillin was introduced. It was eventually replaced as a therapeutic agent by sulfa drugs and then by other antibiotics. Arsenic was also an ingredient in many tonics (or "patent medicines").

In addition, during the Elizabethan era, some women used a mixture of vinegar, chalk, and arsenic applied topically to whiten their skin. This use of arsenic was intended to prevent aging and creasing of the skin, but some arsenic was inevitably absorbed into the blood stream.[ citation needed ]

During the Victorian era (late 19th century) in the United States, U.S. newspapers advertised "arsenic complexion wafers" that promised to remove facial blemishes such as moles and pimples. [127]

Some pigments, most notably the popular Emerald Green (known also under several other names), were based on arsenic compounds. Overexposure to these pigments was a frequent cause of accidental poisoning of artists and craftsmen.

Arsenic became a favored method for murder of the Middle Ages and Renaissance, particularly among ruling classes in Italy allegedly. Because the symptoms are similar to those of cholera, which was common at the time, arsenic poisoning often went undetected. [130] :63 By the 19th century, it had acquired the nickname "inheritance powder," perhaps because impatient heirs were known or suspected to use it to ensure or accelerate their inheritances. [130] :21 It was also a common murder technique in the 19th century in domestic violence situations, such as the case of Rebecca Copin, who attempted to poison her husband by "putting arsenic in his coffee". [131]

In post-WW1 Hungary, arsenic extracted by boiling fly paper was used in an estimated 300 murders by the Angel Makers of Nagyrév.

In imperial China, arsenic trioxide and sulfides were used in murder, as well as for capital punishment for members of the royal family or aristocracy. Forensic studies have determined that the Guangxu Emperor (d. 1908) was murdered by arsenic, most likely ordered by the Empress Dowager Cixi or Generalissimo Yuan Shikai. Likewise, in ancient Korea, and particularly in Joseon Dynasty, arsenic-sulfur compounds have been used as a major ingredient of sayak (사약; 賜藥), which was a poison cocktail used in capital punishment of high-profile political figures and members of the royal family. [132]   Due to social and political prominence of the condemned, many of these events were well-documented, often in the Annals of Joseon Dynasty; they are sometimes portrayed in historical television miniseries because of their dramatic nature. [133]


In the U.S. in 1975, under the authority of the Safe Drinking Water Act (SDWA), the U.S. Environmental Protection Agency determined the National Interim Primary Drinking Water Regulation levels of arsenic (inorganic contaminant - IOCs) to be 0.05 mg/L (50 parts per billion - ppb). [134]

Throughout the years, many studies reported dose-dependent effects of arsenic in drinking water and skin cancer. In other to prevent new cases and death from cancerous and non-cancerous diseases, the SDWA directed the EPA to revise arsenic's levels and specified the maximum contaminant level (MCL). MCLs are set as close to the health goals as possible, considering cost, benefits and the ability of public water systems to detect and remove contaminants using suitable treatment technologies. [134] [135]

In 2001, EPA adopted a lower standard of MCL 0.01 mg/L (10 ppb) for arsenic in drinking water that applies to both community water systems and non-transient non-community water systems. [134]

In some other countries, when developing national drinking water standards based on the guideline values, it is necessary to take account of a variety of geographical, socio-economic, dietary and other conditions affecting potential exposure. These factors lead to national standards that differ appreciably from the guideline values. That is the case in countries such as India and Bangladesh, where the permissible limit of arsenic in absence of an alternative source of water is 0.05 mg/L. [45] [136]

Challenges to implementation

Arsenic removal technologies are traditional treatment processes which have been tailored to improve removal of arsenic from drinking water. Although some of the removal processes, such as precipitative processes, adsorption processes, ion exchange processes, and separation (membrane) processes, may be technically feasible, their cost may be prohibitive. [134]

For underdeveloped countries, the challenge is finding the means to fund such technologies. The EPA, for example, has estimated the total national annualized cost of treatment, monitoring, reporting, record keeping, and administration to enforce the MCL rule to be approximately $181 million. Most of the cost is due to the installation and operation of the treatment technologies needed to reduce arsenic in public water systems. [137]


Arsenic exposure through groundwater is highly concerning throughout the perinatal period. Pregnant women are a high-risk population because not only are the mothers at risk for adverse outcomes, but in-utero exposure also poses health risks to the infant.

There is a dose-dependent relationship between maternal exposure to arsenic and infant mortality, meaning that infants born to women exposed to higher concentrations, or exposed for longer periods of time, have a higher mortality rate. [138]

Studies have shown that ingesting arsenic through groundwater during pregnancy poses dangers to the mother including, but not limited to abdominal pain, vomiting, diarrhea, skin pigmentation changes, and cancer. [139] Research has also demonstrated that arsenic exposure also causes low birth weight, low birth size, infant mortality, and a variety of other outcomes in infants. [139] [140] Some of these effects, like lower birth-rate and size may be due to the effects of arsenic on maternal weight gain during pregnancy. [140]

See also

Related Research Articles

Arsenic Chemical element with atomic number 33

Arsenic is a chemical element with the symbol As and atomic number 33. Arsenic occurs in many minerals, usually in combination with sulfur and metals, but also as a pure elemental crystal. Arsenic is a metalloid. It has various allotropes, but only the gray form, which has a metallic appearance, is important to industry.

Lead poisoning Poisoning by lead in the body, especially affects the brain

Lead poisoning is a type of metal poisoning caused by lead in the body. The brain is the most sensitive. Symptoms may include abdominal pain, constipation, headaches, irritability, memory problems, inability to have children, and tingling in the hands and feet. It causes almost 10% of intellectual disability of otherwise unknown cause and can result in behavioral problems. Some of the effects are permanent. In severe cases anemia, seizures, coma, or death may occur.

Mercury poisoning Poisoning caused by mercury chemicals

Mercury poisoning is a type of metal poisoning due to exposure to mercury. Symptoms depend upon the type, dose, method, and duration of exposure. They may include muscle weakness, poor coordination, numbness in the hands and feet, skin rashes, anxiety, memory problems, trouble speaking, trouble hearing, or trouble seeing. High-level exposure to methylmercury is known as Minamata disease. Methylmercury exposure in children may result in acrodynia in which the skin becomes pink and peels. Long-term complications may include kidney problems and decreased intelligence. The effects of long-term low-dose exposure to methylmercury are unclear.

Fluoride toxicity is a condition in which there are elevated levels of the fluoride ion in the body. Although fluoride is safe for dental health at low concentrations, sustained consumption of large amounts of soluble fluoride salts is dangerous. Referring to a common salt of fluoride, sodium fluoride (NaF), the lethal dose for most adult humans is estimated at 5 to 10 g. Ingestion of fluoride can produce gastrointestinal discomfort at doses at least 15 to 20 times lower than lethal doses. Although it is helpful topically for dental health in low dosage, chronic ingestion of fluoride in large amounts interferes with bone formation. In this way, the most widespread examples of fluoride poisoning arise from consumption of ground water that is abnormally fluoride-rich.

Manganism or manganese poisoning is a toxic condition resulting from chronic exposure to manganese. It was first identified in 1837 by James Couper.

Cadmium is a naturally occurring toxic metal with common exposure in industrial workplaces, plant soils, and from smoking. Due to its low permissible exposure in humans, overexposure may occur even in situations where trace quantities of cadmium are found. Cadmium is used extensively in electroplating, although the nature of the operation does not generally lead to overexposure. Cadmium is also found in some industrial paints and may represent a hazard when sprayed. Operations involving removal of cadmium paints by scraping or blasting may pose a significant hazard. The primary use of cadmium is in the manufacturing of NiCd rechargeable batteries. The primary source for cadmium is as a byproduct of refining zinc metal. Exposures to cadmium are addressed in specific standards for the general industry, shipyard employment, the construction industry, and the agricultural industry.

Arsenic trioxide pharmaceutical drug

Arsenic trioxide, sold under the brand name Trisenox among others, is an inorganic compound and medication. As an industrial chemical major uses include in the manufacture of wood preservatives, pesticides, and glass. As a medication it is used to treat a type of cancer known as acute promyelocytic leukemia. For this use it is given by injection into a vein.

Hexavalent chromium chemical compounds that contain the element chromium in the +6 oxidation state

Hexavalent chromium is the chromium in any chemical compound that contains the element in the +6 oxidation state. Virtually all chromium ore is processed via hexavalent chromium, specifically the salt sodium dichromate. Approximately 136,000 tonnes (300,000,000 lb) of hexavalent chromium were produced in 1985. Additional hexavalent chromium compounds are chromium trioxide and various salts of chromate and dichromate, among others. Hexavalent chromium is used in textile dyes, wood preservation, anti-corrosion products, chromate conversion coatings, and a variety of niche uses. Industrial uses of hexavalent chromium compounds include chromate pigments in dyes, paints, inks, and plastics; chromates added as anticorrosive agents to paints, primers, and other surface coatings; and chromic acid electroplated onto metal parts to provide a decorative or protective coating. Hexavalent chromium can be formed when performing "hot work" such as welding on stainless steel or melting chromium metal. In these situations the chromium is not originally hexavalent, but the high temperatures involved in the process result in oxidation that converts the chromium to a hexavalent state. Hexavalent chromium can also be found in drinking water and public water systems.

In chemistry, an arsenite is a chemical compound containing an arsenic oxoanion where arsenic has oxidation state +3. Note that in fields that commonly deal with groundwater chemistry, arsenite is used generically to identify soluble AsIII anions. IUPAC have recommended that arsenite compounds are to be named as arsenate(III), for example ortho-arsenite is called trioxidoarsenate(III). Ortho-arsenite contrasts to the corresponding anions of the lighter members of group 15, phosphite which has the structure HPO2−
and nitrite, NO
which is bent.

Scheeles Green yellowish-green pigment no longer in wide use

Scheele's Green, also called Schloss Green, is chemically a cupric hydrogen arsenite, CuHAsO
. It is chemically related to Paris Green. It is a yellowish-green pigment which in the past was used in some paints, but has since fallen out of use because of its toxicity and the instability of its color in the presence of sulfides and various chemical pollutants. Scheele's Green was invented in 1775 by Carl Wilhelm Scheele. By the end of the 19th century, it had virtually replaced the older green pigments based on copper carbonate.

Chromated copper arsenate (CCA) is a wood preservative containing compounds of chromium, copper, and arsenic, in various proportions. It is used to impregnate timber and other wood products, especially those intended for outdoor use, in order to protect them from attack by microbes and insects. Like other copper-based wood preservatives, it imparts a greenish tint to treated timber.

Arsenic contamination of groundwater

Arsenic contamination of groundwater is a form of groundwater pollution which is often due to naturally occurring high concentrations of arsenic in deeper levels of groundwater. It is a high-profile problem due to the use of deep tubewells for water supply in the Ganges Delta, causing serious arsenic poisoning to large numbers of people. A 2007 study found that over 137 million people in more than 70 countries are probably affected by arsenic poisoning of drinking water. The problem became serious health concern after mass poisoning of water in Bangladesh. Arsenic contamination of ground water is found in many countries throughout the world, including the US.

Potassium arsenite (KAsO2) is an inorganic compound that exists in two forms, potassium meta-arsenite (KAsO2) and potassium ortho-arsenite (K3AsO3). It is composed of arsenite ions (AsO33− or AsO2) with arsenic always existing in the +3 oxidation state, and potassium existing in the +1 oxidation state. Like many other arsenic containing compounds, potassium arsenite is highly toxic and carcinogenic to humans. Potassium arsenite forms the basis of Fowler’s solution, which was historically used as a medicinal tonic, but due to its toxic nature its use was discontinued. Potassium arsenite is still, however, used as a rodenticide.

Metal toxicity or metal poisoning is the toxic effect of certain metals in certain forms and doses on life. Some metals are toxic when they form poisonous soluble compounds. Certain metals have no biological role, i.e. are not essential minerals, or are toxic when in a certain form. In the case of lead, any measurable amount may have negative health effects. Often heavy metals are thought as synonymous, but lighter metals may also be toxic in certain circumstances, such as beryllium and lithium. Not all heavy metals are particularly toxic, and some are essential, such as iron. The definition may also include trace elements when in abnormally high doses may be toxic. An option for treatment of metal poisoning may be chelation therapy, which is a technique which involves the administration of chelation agents to remove metals from the body.

Environmental toxicology multidisciplinary field of science

Environmental toxicology is a multidisciplinary field of science concerned with the study of the harmful effects of various chemical, biological and physical agents on living organisms. Ecotoxicology is a subdiscipline of environmental toxicology concerned with studying the harmful effects of toxicants at the population and ecosystem levels.

Copper toxicity type of metal poisoning caused by excess copper in the body

Copper toxicity is a type of metal poisoning caused by an excess of copper in the body. Copperiedus can occur from eating acidic foods cooked in uncoated copper cookware, or from exposure to excess copper in drinking water or other environmental sources.

An arsenical keratosis is a growth of keratin on the skin caused by arsenic, which occurs naturally in the earth's crust and is widely distributed in the environment, Arsenical compounds are used in industrial, agricultural, and medicinal substances. Arsenic is also found to be an environmental contaminant in drinking water and an occupational hazard for miners and glass workers. Arsenic may also causes other conditions including: Bowen's disease, cardiovascular diseases, developmental abnormalities, neurologic and neurobehavioral disorders, diabetes, hearing loss, hematologic disorders, and various types of cancer. Arsenical keratoses may persist indefinitely, and some may develop into invasive squamous cell carcinoma. Metastatic arsenic squamous cell carcinoma and arsenic-induced malignancies in internal organs such as the bladder, kidney, skin, liver, and colon, may result in death.

Arsenic biochemistry refers to biochemical processes that can use arsenic or its compounds, such as arsenate. Arsenic is a moderately abundant element in Earth's crust, and although many arsenic compounds are often considered highly toxic to most life, a wide variety of organoarsenic compounds are produced biologically and various organic and inorganic arsenic compounds are metabolized by numerous organisms. This pattern is general for other related elements, including selenium, which can exhibit both beneficial and deleterious effects. Arsenic biochemistry has become topical since many toxic arsenic compounds are found in some aquifers, potentially affecting many millions of people via biochemical processes.

Realgar wine or Xionghuang wine (Chinese: 雄黃酒, Xiónghuáng Jiǔ) is a Chinese alcoholic drink that consists of huangjiu ("yellow wine") dosed with powdered realgar, a yellow-orange arsenic sulfide mineral (As4S4). It is traditionally consumed as part of the Dragon Boat Festival at the height of summer.

Arsenate-reducing bacteria are bacteria which reduce arsenates. Arsenate-reducing bacteria are ubiquitous in arsenic-contaminated groundwater (aqueous environment). Arsenates are salts or esters of arsenic acid (H3AsO4), consisting of the ion AsO43−. They are moderate oxidizers that can be reduced to arsenites and to arsine. Arsenate can serve as a respiratory electron acceptor for oxidation of organic substrates and H2S or H2. Arsenates occur naturally in minerals such as adamite, alarsite, legrandite, and erythrite, and as hydrated or anhydrous arsenates. Arsenates are similar to phosphates since arsenic (As) and phosphorus (P) occur in group 15 (or VA) of the periodic table. Unlike phosphates, arsenates are not readily lost from minerals due to weathering. They are the predominant form of inorganic arsenic in aqueous aerobic environments. On the other hand, arsenite is more common in anaerobic environments, more mobile, and more toxic than arsenate. Arsenite is 25–60 times more toxic and more mobile than arsenate under most environmental conditions. Arsenate can lead to poisoning, since it can replace inorganic phosphate in the glyceraldehyde-3-phosphate --> 1,3-biphosphoglycerate step of glycolysis, producing 1-arseno-3-phosphoglycerate instead. Although glycolysis continues, 1 ATP molecule is lost. Thus, arsenate is toxic due to its ability to uncouple glycolysis. Arsenate can also inhibit pyruvate conversion into acetyl-CoA, thereby blocking the TCA cycle, resulting in additional loss of ATP.


  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Ratnaike, R N (1 July 2003). "Acute and chronic arsenic toxicity". Postgraduate Medical Journal. 79 (933): 391–396. doi:10.1136/pmj.79.933.391. PMC   1742758 . PMID   12897217.
  2. 1 2 Andersen, Ole; Aaseth, Jan (December 2016). "A review of pitfalls and progress in chelation treatment of metal poisonings". Journal of Trace Elements in Medicine and Biology . 38: 74–80. doi:10.1016/j.jtemb.2016.03.013. hdl:11250/2430866. PMID   27150911.
  3. 1 2 3 4 5 6 Naujokas, Marisa F.; Anderson, Beth; Ahsan, Habibul; Aposhian, H. Vasken; Graziano, Joseph H.; Thompson, Claudia; Suk, William A. (3 January 2013). "The Broad Scope of Health Effects from Chronic Arsenic Exposure: Update on a Worldwide Public Health Problem". Environmental Health Perspectives. 121 (3): 295–302. doi:10.1289/ehp.1205875. PMC   3621177 . PMID   23458756.
  4. 1 2 3 Vahidnia, A.; van der Voet, G.B.; de Wolff, F.A. (1 October 2007). "Arsenic neurotoxicity A review". Human & Experimental Toxicology. 26 (10): 823–832. doi:10.1177/0960327107084539. PMID   18025055.
  5. 1 2 Hughes, MF; Beck, BD; Chen, Y; Lewis, AS; Thomas, DJ (October 2011). "Arsenic exposure and toxicology: a historical perspective". Toxicological Sciences. 123 (2): 305–32. doi:10.1093/toxsci/kfr184. PMC   3179678 . PMID   21750349.
  6. Joca, L; Sacks, JD; Moore, D; Lee, JS; Sams R, 2nd; Cowden, J (2016). "Systematic review of differential inorganic arsenic exposure in minority, low-income, and indigenous populations in the United States". Environment International. 92-93: 707–15. doi:10.1016/j.envint.2016.01.011. PMID   26896853.
  7. Howie, Frank (2013). Care and Conservation of Geological Material. Routledge. p. 135. ISBN   9781135385217. Archived from the original on 2017-09-10.
  8. Yalçın Tüzün (2009). "Leukonychia" (PDF). Archived (PDF) from the original on 2016-03-03.
  9. "Test ID: ASU. Arsenic, 24 Hour, Urine, Clinical Information". Mayo Medical Laboratories Catalog. Mayo Clinic. Archived from the original on 2012-11-17. Retrieved 2012-09-25.
  10. "Arsenic Toxicity Case Study: What are the Physiologic Effects of Arsenic Exposure? | ATSDR - Environmental Medicine & Environmental Health Education - CSEM". Retrieved 27 March 2018.
  11. Tseng CH, Chong CK, Tseng CP, et al. (January 2003). "Long-term arsenic exposure and ischemic heart disease in arseniasis-hyperendemic villages in Taiwan". Toxicol. Lett. 137 (1–2): 15–21. doi:10.1016/S0378-4274(02)00377-6. PMID   12505429.
  12. Smith AH, Hopenhayn-Rich C, Bates MN, et al. (July 1992). "Cancer risks from arsenic in drinking water". Environ. Health Perspect. 97: 259–67. doi:10.2307/3431362. JSTOR   3431362. PMC   1519547 . PMID   1396465.
  13. Chiou HY, Huang WI, Su CL, Chang SF, Hsu YH, Chen CJ (September 1997). "Dose-response relationship between prevalence of cerebrovascular disease and ingested inorganic arsenic". Stroke. 28 (9): 1717–23. doi:10.1161/01.STR.28.9.1717. PMID   9303014.
  14. Hendryx M (January 2009). "Mortality from heart, respiratory, and kidney disease in coal mining areas of Appalachia". Int Arch Occup Environ Health. 82 (2): 243–9. doi:10.1007/s00420-008-0328-y. PMID   18461350.
  15. Navas-Acien A, Silbergeld EK, Pastor-Barriuso R, Guallar E (August 2008). "Arsenic exposure and prevalence of type 2 diabetes in US adults". JAMA. 300 (7): 814–22. doi: 10.1001/jama.300.7.814 . PMID   18714061.
  16. Kile ML, Christiani DC (August 2008). "Environmental arsenic exposure and diabetes". JAMA. 300 (7): 845–6. doi:10.1001/jama.300.7.845. PMC   4048320 . PMID   18714068.
  17. "Arsenic Toxicity What are the Physiologic Effects of Arsenic Exposure?". ATSDR. Retrieved 30 March 2018.
  18. Hsueh YM, Wu WL, Huang YL, Chiou HY, Tseng CH, Chen CJ (December 1998). "Low serum carotene level and increased risk of ischemic heart disease related to long-term arsenic exposure". Atherosclerosis. 141 (2): 249–57. doi:10.1016/S0021-9150(98)00178-6. PMID   9862173.
  19. Dart, RC (2004). Medical toxicology. Philadelphia: Williams & Wilkins. pp. 1393–1401. ISBN   978-0-7817-2845-4.
  20. 1 2 Gebel TW (March 2001). "Genotoxicity of arsenical compounds". International Journal of Hygiene and Environmental Health. 203 (3): 249–62. doi:10.1078/S1438-4639(04)70036-X. PMID   11279822.
  21. Hartwig A, Schwerdtle T (February 2002). "Interactions by carcinogenic metal compounds with DNA repair processes: toxicological implications". Toxicology Letters. 127 (1–3): 47–54. doi:10.1016/S0378-4274(01)00482-9. PMID   12052640.
  22. Yamanaka K, Hayashi H, Tachikawa M, et al. (November 1997). "Metabolic methylation is a possible genotoxicity-enhancing process of inorganic arsenics". Mutation Research. 394 (1–3): 95–101. doi:10.1016/s1383-5718(97)00130-7. PMID   9434848.
  23. Bau DT, Wang TS, Chung CH, Wang AS, Wang AS, Jan KY (October 2002). "Oxidative DNA adducts and DNA-protein cross-links are the major DNA lesions induced by arsenite". Environmental Health Perspectives. 110 (Suppl 5): 753–6. doi:10.1289/ehp.02110s5753. PMC   1241239 . PMID   12426126.
  24. Mass MJ, Tennant A, Roop BC, et al. (April 2001). "Methylated trivalent arsenic species are genotoxic". Chemical Research in Toxicology . 14 (4): 355–61. doi:10.1021/tx000251l. PMID   11304123.
  25. Mäki-Paakkanen J, Kurttio P, Paldy A, Pekkanen J (1998). "Association between the clastogenic effect in peripheral lymphocytes and human exposure to arsenic through drinking water". Environmental and Molecular Mutagenesis. 32 (4): 301–13. doi:10.1002/(SICI)1098-2280(1998)32:4<301::AID-EM3>3.0.CO;2-I. PMID   9882004.
  26. Warner ML, Moore LE, Smith MT, Kalman DA, Fanning E, Smith AH (1994). "Increased micronuclei in exfoliated bladder cells of individuals who chronically ingest arsenic-contaminated water in Nevada". Cancer Epidemiology, Biomarkers & Prevention. 3 (7): 583–90. PMID   7827589.
  27. Gonsebatt ME, Vega L, Salazar AM, et al. (June 1997). "Cytogenetic effects in human exposure to arsenic". Mutation Research. 386 (3): 219–28. doi:10.1016/S1383-5742(97)00009-4. PMID   9219560.
  28. 1 2 3 Bernstam L, Nriagu J (2000). "Molecular aspects of arsenic stress". Journal of Toxicology and Environmental Health, Part B. 3 (4): 293–322. doi:10.1080/109374000436355. PMID   11055208.
  29. Yamanaka K, Hoshino M, Okamoto M, Sawamura R, Hasegawa A, Okada S (April 1990). "Induction of DNA damage by dimethylarsine, a metabolite of inorganic arsenics, is for the major part likely due to its peroxyl radical". Biochemical and Biophysical Research Communications. 168 (1): 58–64. doi:10.1016/0006-291X(90)91674-H. PMID   2158319.
  30. Ahmad R, Alam K, Ali R (February 2000). "Antigen binding characteristics of antibodies against hydroxyl radical modified thymidine monophosphate". Immunology Letters. 71 (2): 111–5. doi:10.1016/S0165-2478(99)00177-7. PMID   10714438.
  31. Yamanaka K, Mizol M, Kato K, Hasegawa A, Nakano M, Okada S (May 2001). "Oral administration of dimethylarsinic acid, a main metabolite of inorganic arsenic, in mice promotes skin tumorigenesis initiated by dimethylbenz(a)anthracene with or without ultraviolet B as a promoter". Biological & Pharmaceutical Bulletin. 24 (5): 510–4. doi: 10.1248/bpb.24.510 . PMID   11379771.
  32. Pi J, Yamauchi H, Kumagai Y, et al. (April 2002). "Evidence for induction of oxidative stress caused by chronic exposure of Chinese residents to arsenic contained in drinking water". Environmental Health Perspectives. 110 (4): 331–6. doi:10.1289/ehp.02110331. PMC   1240794 . PMID   11940449.
  33. Wu MM, Chiou HY, Wang TW, et al. (October 2001). "Association of blood arsenic levels with increased reactive oxidants and decreased antioxidant capacity in a human population of northeastern Taiwan". Environmental Health Perspectives. 109 (10): 1011–7. doi:10.2307/3454955. JSTOR   3454955. PMC   1242077 . PMID   11675266.
  34. 1 2 3 Kitchin KT (May 2001). "Recent advances in arsenic carcinogenesis: modes of action, animal model systems, and methylated arsenic metabolites". Toxicology and Applied Pharmacology . 172 (3): 249–61. doi:10.1006/taap.2001.9157. PMID   11312654.
  35. Goering PL, Aposhian HV, Mass MJ, Cebrián M, Beck BD, Waalkes MP (May 1999). "The enigma of arsenic carcinogenesis: role of metabolism". Toxicological Sciences. 49 (1): 5–14. doi: 10.1093/toxsci/49.1.5 . PMID   10367337.
  36. 1 2 3 Zhong CX, Mass MJ (July 2001). "Both hypomethylation and hypermethylation of DNA associated with arsenite exposure in cultures of human cells identified by methylation-sensitive arbitrarily-primed PCR". Toxicology Letters. 122 (3): 223–34. doi:10.1016/S0378-4274(01)00365-4. PMID   11489357.
  37. Brambila EM, Achanzar WE, Qu W, Webber MM, Waalkes MP (September 2002). "Chronic arsenic-exposed human prostate epithelial cells exhibit stable arsenic tolerance: mechanistic implications of altered cellular glutathione and glutathione S-transferase". Toxicology and Applied Pharmacology. 183 (2): 99–107. doi:10.1016/S0041-008X(02)99468-8. PMID   12387749.
  38. Vernhet L, Allain N, Bardiau C, Anger JP, Fardel O (January 2000). "Differential sensitivities of MRP1-overexpressing lung tumor cells to cytotoxic metals". Toxicology. 142 (2): 127–34. doi:10.1016/S0300-483X(99)00148-1. PMID   10685512.
  39. Salerno M, Petroutsa M, Garnier-Suillerot A (April 2002). "The MRP1-mediated effluxes of arsenic and antimony do not require arsenic-glutathione and antimony-glutathione complex formation". Journal of Bioenergetics and Biomembranes. 34 (2): 135–45. doi:10.1023/A:1015180026665. PMID   12018890.
  40. Gebel T (April 2000). "Confounding variables in the environmental toxicology of arsenic". Toxicology. 144 (1–3): 155–62. doi:10.1016/S0300-483X(99)00202-4. PMID   10781883.
  41. "Arsenic in your food: Our findings show a real need for federal standards for this toxin". Consumer Reports. November 2012. Archived from the original on 30 November 2012. Retrieved 22 November 2012.
  42. EFSA Panel on Contaminants in the Food Chain (CONTAM) (22 October 2009). "Scientific Opinion on Arsenic in Food". EFSA Journal. 7 (10): 1351. doi: 10.2903/j.efsa.2009.1351 . Retrieved 22 November 2012.
  43. "Arsenic". World Health Organization.
  44. WHO Water-related diseases Archived 2008-03-12 at the Wayback Machine
  45. 1 2 "Chapter 5: Drinking Water Guidelines and Standards" (PDF). World Health Organization (WHO).
  46. (August 10, 2011) Concentration of selected toxic metals in groundwater and some cereals grown in Shibganj area of Chapai Nawabganj, Rajshahi, Bangladesh Archived 2015-02-11 at the Wayback Machine (Page 429) Current Science Journal, retrieved August 29, 2014
  47. (April–June, 2012) Rwanda Bureau of Standards Newsletter Archived 2015-02-11 at the Wayback Machine (Page 35), Rwanda Bureau of Standards, retrieved August 29, 2014
  48. "Towards an assessment of the socioeconomic impact of arsenic poisoning in Bangladesh: Health effects of arsenic in drinking water (Page 5)" (PDF). Drinking Water Quality. WHO. Archived (PDF) from the original on 2015-09-04. Retrieved 2014-08-29.
  49. "Contamination of drinking-water by arsenic in Bangladesh: a public health emergency" (PDF). World Health Organisation. Archived (PDF) from the original on 2015-09-04. Retrieved 2013-08-27.
  50. "Arsenic". Retrieved 2018-03-29.
  51. Brown, R.A. and Katrina E. Patterson, K.E., Mitchell D. Zimmerman, M.D., & Ririe, G. T. (May, 2010). Attenuation of Naturally Occurring Arsenic at Petroleum Hydrocarbon–Impacted Sites. Archived 2013-05-07 at the Wayback Machine Seventh International Conference on Remediation of Chlorinated and Recalcitrant Compounds. ISBN   978-0-9819730-2-9, Battelle Memorial Institute, Columbus, OH,
  52. Murcott, S. (2012). Arsenic contamination in the world. London: IWA Publishing.
  54. D R, Lewis (1999). "Drinking water arsenic in Utah: A cohort mortality study". Environmental Health Perspectives. 107 (5): 359–365. doi:10.1289/ehp.99107359. PMC   1566417 . PMID   10210691.
  55. Stauffer, Robert E; Thompson, John M (1 December 1984). "Arsenic and antimony in geothermal waters of Yellowstone National Park, Wyoming, USA". Geochimica et Cosmochimica Acta. 48 (12): 2547–2561. Bibcode:1984GeCoA..48.2547S. doi:10.1016/0016-7037(84)90305-3. ISSN   0016-7037.
  56. 1 2 Nimick, David A.; Moore, Johnnie N.; Dalby, Charles E.; Savka, Michael W. (1 November 1998). "The fate of geothermal arsenic in the Madison and Missouri Rivers, Montana and Wyoming". Water Resources Research. 34 (11): 3051–3067. doi:10.1029/98WR01704. ISSN   1944-7973.
  57. 1 2 "USGS – Arsenic and Drinking Water".
  58. Welch, Alan H.; Lico, Michael S.; Hughes, Jennifer L. (1 May 1988). "Arsenic in Ground Water of the Western United States". Ground Water. 26 (3): 333–347. doi:10.1111/j.1745-6584.1988.tb00397.x. ISSN   1745-6584.
  59. Breuer, Christian; Pichler, Thomas (1 June 2013). "Arsenic in marine hydrothermal fluids". Chemical Geology. 348: 2–14. Bibcode:2013ChGeo.348....2B. doi:10.1016/j.chemgeo.2012.10.044.
  60. Cravotta, Charles A. (2008). "Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. Part 1: Constituent quantities and correlations". Applied Geochemistry. 23 (2): 166–202. Bibcode:2008ApGC...23..166C. doi:10.1016/j.apgeochem.2007.10.011. ISSN   0883-2927.
  61. Thornburg, Katie; Sahai, Nita (1 October 2004). "Arsenic occurrence, mobility, and retardation in sandstone and dolomite formations of the Fox River Valley, Eastern Wisconsin". Environmental Science & Technology. 38 (19): 5087–5094. doi:10.1021/es049968b. PMID   15506203.
  62. Peters, Stephen C.; Burkert, Lori (January 2008). "The occurrence and geochemistry of arsenic in groundwaters of the Newark basin of Pennsylvania". Applied Geochemistry. 23 (1): 85–98. Bibcode:2008ApGC...23...85P. doi:10.1016/j.apgeochem.2007.10.008.
  63. E. Serfes, Michael; Herman, Gregory; E. Spayd, Steven; Reinfelder, John (1 January 2010). "Sources, mobilization and transport of arsenic in groundwater in the Passaic and Lockatong Formations of the Newark Basin, New Jersey". N J Geol Soc Bull. 77: E1–E40.
  64. Schoof, R. A.; Yost, L. J.; et al. (Aug 1999). "A market basket survey of inorganic arsenic in food". Food Chem. Toxicol. 37 (8): 839–846. doi:10.1016/S0278-6915(99)00073-3. PMID   10506007.
  65. Yost, L. J.; Tao, S.-H.; et al. (2004). "Estimation of dietary intake of inorganic arsenic in U.S. children". Hum. Ecol. Risk Assess. 10 (3): 473–483. doi:10.1080/10807030490452151.
  66. Hosgood, Borak (2007). "Seafood arsenic: implications for human risk assessment". Regulatory Toxicology and Pharmacology . 47 (2): 204–12. doi:10.1016/j.yrtph.2006.09.005. PMID   17092619.
  67. ATEDR. "Toxicological Profile for Arsenic".
  68. Borak J, Hosgood HD. (2007). "Seafood arsenic: implications for human risk assessment". Regulatory Toxicology and Pharmacology. 47 (2): 204–12. doi:10.1016/j.yrtph.2006.09.005. PMID   17092619.
  69. CONTAM (Oct 2009). "Scientific opinion on arsenic in food". EFSA J. 7 (10): 1351. doi: 10.2903/j.efsa.2009.1351 .
  70. Fujiwara, S.; et al. (Jan 2000). "Isolation and characterization of arsenate-sensitive and resistant mutants of Chlamydomonas reinhardtii". Plant Cell Physiol. 41 (1): 77–83. doi: 10.1093/pcp/41.1.77 . PMID   10750711.
  71. Kotz, Deborah (December 8, 2011). "Do you need to worry about arsenic in rice?". Boston Globe. Archived from the original on April 15, 2012. Retrieved December 8, 2011.
  72. "Surprisingly high concentrations of toxic arsenic species found in U.S. rice". Archived from the original on 2011-07-24.
  73. "Rice as a source of arsenic exposure". Archived from the original on 2014-01-10.
  74. "China: Inorganic Arsenic in Rice - An Underestimated Health Threat?". Archived from the original on 2011-07-24.
  75. "USGS NAWQA Arsenic in Groundwater". Archived from the original on 2010-05-31.
  76. "Study Finds an Increase in Arsenic Levels in Chicken". New York Times. May 11, 2013. Archived from the original on February 18, 2017.
  77. "FDA: Pfizer will voluntarily suspend sale of animal drug 3-Nitro". Archived from the original on 2013-05-02.
  78. Lewis, D R (1999). "Drinking water arsenic in Utah: A cohort mortality study". Environmental Health Perspectives. 107 (5): 359–365. doi:10.1289/ehp.99107359. PMC   1566417 . PMID   10210691.
  79. "Dangerous arsenic levels found in California wine from 28 producers, suit claims". New York Daily News. March 21, 2015. Archived from the original on March 21, 2015.
  80. Roberts, SM; Munson, JW; Lowney, YW; Ruby, MV (January 2007). "Relative oral bioavailability of arsenic from contaminated soils measured in the cynomolgus monkey". Toxicological Sciences. 95 (1): 281–8. doi: 10.1093/toxsci/kfl117 . PMID   17005634.
  81. Hood, E (August 2006). "The apple bites back: claiming old orchards for residential development". Environmental Health Perspectives. 114 (8): A470–6. doi:10.1289/ehp.114-a470. PMC   1551991 . PMID   16882511.
  82. Enterline, P. E.; Day, R.; Marsh, G. M. (1 January 1995). "Cancers related to exposure to arsenic at a copper smelter". Occupational and Environmental Medicine. 52 (1): 28–32. doi:10.1136/oem.52.1.28. PMC   1128146 . PMID   7697137.
  83. Lagerkvist, B. J.; Zetterlund, B. (1994). "Assessment of exposure to arsenic among smelter workers: a five-year follow-up". American Journal of Industrial Medicine. 25 (4): 477–488. doi:10.1002/ajim.4700250403. PMID   7516623.
  84. "ATSDR - Toxicological Profile: Arsenic".
  85. Zhou J, Wang W, Wei QF, Feng TM, Tan LJ, Yang BF (July 2007). "Effects of arsenic trioxide on voltage-dependent potassium channels and on cell proliferation of human multiple myeloma cells". Chin. Med. J. 120 (14): 1266–9. doi: 10.1097/00029330-200707020-00012 . PMID   17697580.
  86. Konduri GG, Bakhutashvili I, Eis A, Gauthier KM (2009). "Impaired Voltage Gated Potassium Channel Responses in a Fetal Lamb Model of Persistent Pulmonary Hypertension of the Newborn". Pediatric Research. 66 (3): 289–294. doi:10.1203/PDR.0b013e3181b1bc89. PMC   3749926 . PMID   19542906.
  87. Balakumar, Pitchai; Kaur, Jagdeep (December 2009). "Arsenic Exposure and Cardiovascular Disorders: An Overview". Cardiovascular Toxicology. 9 (4): 169–76. doi:10.1007/s12012-009-9050-6. PMID   19787300.
  88. Klaassen, Curtis; Watkins, John (2003). Casarett and Doull's Essentials of Toxicology. McGraw-Hill. p. 512. ISBN   978-0-07-138914-3.
  89. Hughes MF (July 2002). "Arsenic toxicity and potential mechanisms of action". Toxicology Letters . 133 (1): 1–16. doi:10.1016/S0378-4274(02)00084-X. PMID   12076506.
  90. Gresser MJ (June 1981). "ADP-arsenate. Formation by submitochondrial particles under phosphorylating conditions". The Journal of Biological Chemistry. 256 (12): 5981–3. PMID   7240187.
  91. Lee MY, Bae ON, Chung SM, Kang KT, Lee JY, Chung JH (March 2002). "Enhancement of platelet aggregation and thrombus formation by arsenic in drinking water: a contributing factor to cardiovascular disease". Toxicology and Applied Pharmacology. 179 (2): 83–8. doi:10.1006/taap.2001.9356. PMID   11884240.
  92. Harrisson JW, Packman EW, Abbott DD (February 1958). "Acute oral toxicity and chemical and physical properties of arsenic trioxides". AMA Archives of Industrial Health. 17 (2): 118–23. PMID   13497305.
  93. Ueki K, Kondo T, Tseng YH, Kahn CR (July 2004). "Central role of suppressors of cytokine signaling proteins in hepatic steatosis, insulin resistance, and the metabolic syndrome in the mouse". Proceedings of the National Academy of Sciences of the United States of America . 101 (28): 10422–7. Bibcode:2004PNAS..10110422U. doi:10.1073/pnas.0402511101. PMC   478587 . PMID   15240880.
  94. 1 2 3 4 5 6 7 8 9 Vigo, J. B. & J. T. Ellzey (2006). "Effects of Arsenic Toxicity at the Cellular Level: A Review". Texas Journal of Microscopy. 37 (2): 45–49.
  95. 1 2 Thompson DJ (September 1993). "A chemical hypothesis for arsenic methylation in mammals". Chemico-Biological Interactions . 88 (2–3): 89–114. doi:10.1016/0009-2797(93)90086-E. PMID   8403081.
  96. Vahter M, Concha G (July 2001). "Role of metabolism in arsenic toxicity". Pharmacology & Toxicology . 89 (1): 1–5. doi:10.1034/j.1600-0773.2001.d01-128.x. PMID   11484904.
  97. Gebel TW (October 2002). "Arsenic methylation is a process of detoxification through accelerated excretion". International Journal of Hygiene and Environmental Health. 205 (6): 505–8. doi:10.1078/1438-4639-00177. PMID   12455273.
  98. Kenyon EM, Fea M, Styblo M, Evans MV (2001). "Application of modelling techniques to the planning of in vitro arsenic kinetic studies". Alternatives to Laboratory Animals. 29 (1): 15–33. doi:10.1177/026119290102900109. PMID   11178572.
  99. Styblo M, Thomas DJ (April 2001). "Selenium modifies the metabolism and toxicity of arsenic in primary rat hepatocytes". Toxicology and Applied Pharmacology. 172 (1): 52–61. doi:10.1006/taap.2001.9134. PMID   11264023.
  100. Aposhian HV, Maiorino RM, Dart RC, Perry DF (May 1989). "Urinary excretion of meso-2,3-dimercaptosuccinic acid in human subjects". Clinical Pharmacology and Therapeutics. 45 (5): 520–6. doi:10.1038/clpt.1989.67. PMID   2541962.
  101. Rodríguez VM, Del Razo LM, Limón-Pacheco JH, et al. (March 2005). "Glutathione reductase inhibition and methylated arsenic distribution in Cd1 mice brain and liver". Toxicological Sciences . 84 (1): 157–66. doi: 10.1093/toxsci/kfi057 . PMID   15601678.
  102. Rom, William N.; Markowitz, Steven B. (2007). Environmental and Occupational Medicine. Lippincott Williams & Wilkins. pp. 1014–5. ISBN   978-0-7817-6299-1. Archived from the original on 2017-09-10.
  103. 1 2 Del Razo LM, Quintanilla-Vega B, Brambila-Colombres E, Calderón-Aranda ES, Manno M, Albores A (December 2001). "Stress proteins induced by arsenic". Toxicology and Applied Pharmacology. 177 (2): 132–48. doi:10.1006/taap.2001.9291. PMID   11740912.
  104. Cavigelli M, Li WW, Lin A, Su B, Yoshioka K, Karin M (November 1996). "The tumor promoter arsenite stimulates AP-1 activity by inhibiting a JNK phosphatase". The EMBO Journal. 15 (22): 6269–79. doi:10.1002/j.1460-2075.1996.tb01017.x. PMC   452450 . PMID   8947050.
  105. Ludwig S, Hoffmeyer A, Goebeler M, et al. (January 1998). "The stress inducer arsenite activates mitogen-activated protein kinases extracellular signal-regulated kinases 1 and 2 via a MAPK kinase 6/p38-dependent pathway". The Journal of Biological Chemistry. 273 (4): 1917–22. doi: 10.1074/jbc.273.4.1917 . PMID   9442025.
  106. Simeonova PP, Luster MI (2000). "Mechanisms of arsenic carcinogenicity: genetic or epigenetic mechanisms?". Journal of Environmental Pathology, Toxicology and Oncology. 19 (3): 281–6. PMID   10983894.
  107. Germolec DR, Yoshida T, Gaido K, et al. (November 1996). "Arsenic induces overexpression of growth factors in human keratinocytes". Toxicology and Applied Pharmacology. 141 (1): 308–18. doi:10.1006/taap.1996.0288. PMID   8917704.
  108. Hamadeh HK, Vargas M, Lee E, Menzel DB (September 1999). "Arsenic disrupts cellular levels of p53 and mdm2: a potential mechanism of carcinogenesis". Biochemical and Biophysical Research Communications. 263 (2): 446–9. doi:10.1006/bbrc.1999.1395. PMID   10491313.
  109. 1 2 3 4 Hu Y, Jin X, Snow ET (July 2002). "Effect of arsenic on transcription factor AP-1 and NF-κB DNA binding activity and related gene expression". Toxicology Letters. 133 (1): 33–45. doi:10.1016/S0378-4274(02)00083-8. PMID   12076508.
  110. 1 2 Walton FS, Harmon AW, Paul DS, Drobná Z, Patel YM, Styblo M (August 2004). "Inhibition of insulin-dependent glucose uptake by trivalent arsenicals: possible mechanism of arsenic-induced diabetes". Toxicology and Applied Pharmacology. 198 (3): 424–33. doi:10.1016/j.taap.2003.10.026. PMID   15276423.
  111. 1 2 Black PH (October 2003). "The inflammatory response is an integral part of the stress response: Implications for atherosclerosis, insulin resistance, type II diabetes and metabolic syndrome X". Brain, Behavior, and Immunity. 17 (5): 350–64. doi:10.1016/S0889-1591(03)00048-5. PMID   12946657.
  112. Carey AL, Lamont B, Andrikopoulos S, Koukoulas I, Proietto J, Febbraio MA (March 2003). "Interleukin-6 gene expression is increased in insulin-resistant rat skeletal muscle following insulin stimulation". Biochemical and Biophysical Research Communications. 302 (4): 837–40. doi:10.1016/S0006-291X(03)00267-5. PMID   12646246.
  113. Dandona P, Aljada A, Bandyopadhyay A (January 2004). "Inflammation: the link between insulin resistance, obesity and diabetes". Trends in Immunology. 25 (1): 4–7. doi:10.1016/ PMID   14698276.
  114. Fischer CP, Perstrup LB, Berntsen A, Eskildsen P, Pedersen BK (November 2005). "Elevated plasma interleukin-18 is a marker of insulin-resistance in type 2 diabetic and non-diabetic humans". Clinical Immunology. 117 (2): 152–60. doi:10.1016/j.clim.2005.07.008. PMID   16112617.
  115. Gentry PR, Covington TR, Mann S, Shipp AM, Yager JW, Clewell HJ (January 2004). "Physiologically based pharmacokinetic modeling of arsenic in the mouse". Journal of Toxicology and Environmental Health, Part A. 67 (1): 43–71. doi:10.1080/15287390490253660. PMID   14668111.
  116. 1 2 Kota BP, Huang TH, Roufogalis BD (February 2005). "An overview on biological mechanisms of PPARs". Pharmacological Research. 51 (2): 85–94. doi:10.1016/j.phrs.2004.07.012. PMID   15629253.
  117. Luquet, Serge; Gaudel, Celine; Holst, Dorte; Lopez-Soriano, Joaquin; Jehl-Pietri, Chantal; Fredenrich, Alexandre; Grimaldi, Paul A. (May 2005). "Roles of PPAR delta in lipid absorption and metabolism: a new target for the treatment of type 2 diabetes". Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 1740 (2): 313–317. doi:10.1016/j.bbadis.2004.11.011. PMID   15949697.
  118. 1 2 Moraes LA, Piqueras L, Bishop-Bailey D (June 2006). "Peroxisome proliferator-activated receptors and inflammation". Pharmacology & Therapeutics. 110 (3): 371–85. doi:10.1016/j.pharmthera.2005.08.007. PMID   16168490.
  119. Hara K, Okada T, Tobe K, et al. (April 2000). "The Pro12Ala polymorphism in PPAR gamma2 may confer resistance to type 2 diabetes". Biochemical and Biophysical Research Communications. 271 (1): 212–6. doi:10.1006/bbrc.2000.2605. PMID   10777704.
  120. R. Baselt, Disposition of Toxic Drugs and Chemicals in Man, 8th edition, Biomedical Publications, Foster City, CA, 2008, pp. 106-110.
  121. "ToxFAQs for Arsenic". Agency for Toxic Substances and Disease Registry. Archived from the original on 15 January 2009. Retrieved 2009-01-06.
  122. Nicolis I, Curis E, Deschamps P, Bénazeth S (October 2009). "Arsenite medicinal use, metabolism, pharmacokinetics and monitoring in human hair". Biochimie. 91 (10): 1260–7. doi:10.1016/j.biochi.2009.06.003. PMID   19527769.
  123. "Dimercaprol medical facts from". Archived from the original on 2006-10-13.
  124. Kreppel H, Reichl FX, Kleine A, Szinicz L, Singh PK, Jones MM. Antidotal efficacy of newly synthesized dimercaptosuccinic acid (DMSA) monoesters in experimental arsenic poisoning in mice. Fundam. Appl. Toxicol. 26(2), 239–245 (1995).
  125. Arsenic Trioxide (Trisenox®). The Abramson Cancer Center of the University of Pennsylvania. Last modified: December 25, 2005
  126. "A Woman's Face is Her Fortune (advertisement)". The Helena Independent. November 9, 1889. p. 7.
  127. 1 2 Little, Becky (2016-09-22). "Arsenic Pills and Lead Foundation: The History of Toxic Makeup". National Geographic. National Geographic. Archived from the original on November 5, 2018.
  128. Harper, M. (1987). "Possible toxic metal exposure of prehistoric bronze workers". British Journal of Industrial Medicine. 44 (10): 652–656. doi:10.1136/oem.44.10.652. PMC   1007896 . PMID   3314977.
  129. "Application of arsenic trioxide for the treatment of lupus nephritis". Chinese Medical Association. Archived from the original on 2009-02-25.
  130. 1 2 James G. Whorton (2011). The Arsenic Century. Oxford University Press. ISBN   978-0-19-960599-6.
  131. 1939-, Buckley, Thomas E. (2002). The great catastrophe of my life: divorce in the Old Dominion . Chapel Hill. ISBN   978-0807853801. OCLC   614736213.CS1 maint: numeric names: authors list (link)
  132. "MBC NEWS". Archived from the original on 2007-12-25.
  133. 구혜선, '왕과 나' 폐비윤씨 사약받는 장면 열연 화제
  134. 1 2 3 4 "United States Environmental Protection Agency (EPA). State Implementation Guidance for the Arsenic Rules".
  135. EPA, OW, OGWDW, US (2015-10-13). "Chemical Contaminant Rules | US EPA". US EPA. Retrieved 2018-03-29.CS1 maint: multiple names: authors list (link)
  136. "Arsenic". South-East Asia Regional Office. Retrieved 2018-03-29.
  137. "United State Environment Protection Agency (EPA). Technical Fact Sheet: Final Rule for Arsenic in Drinking Water".
  138. Rahman, Anisur et al. "Arsenic Exposure and Risk of Spontaneous Abortion, Stillbirth and Infant Mortality". Epidemiology, 21(6), 797-804. Accessed on 24 May 2019.
  139. 1 2 Bloom, M. S., Surdu, S., Neamtiu, I. A., & Gurzau, E. S. (2014). Maternal arsenic exposure and birth outcomes: a comprehensive review of the epidemiologic literature focused on drinking water. International journal of hygiene and environmental health, 217(7), 709-719. doi:10.1016/j.ijheh.2014.03.004
  140. 1 2 Kile, M. L., Cardenas, A., Rodrigues, E., Mazumdar, M., Dobson, C., Golam, M., ... & Christiani, D. C. (2016). Estimating effects of arsenic exposure during pregnancy on perinatal outcomes in a Bangladeshi cohort. Epidemiology, 27(2), 173. doi:10.1097/EDE.0000000000000416.

Further reading

External resources