Dipyridamole

Last updated

Dipyridamole
Dipyridamole.svg
Dipyridamole-from-xtal-Mercury-3D-balls.png
Clinical data
Trade names Persantine, others
AHFS/Drugs.com Monograph
MedlinePlus a682830
Routes of
administration
By mouth, intravenous
ATC code
Legal status
Legal status
Pharmacokinetic data
Bioavailability 37–66% [1]
Protein binding ~99%
Metabolism Liver (glucuronidation) [2]
Elimination half-life α phase: 40 min,
β phase: 10 hours
Excretion Biliary (95%), urine (negligible)
Identifiers
  • 2,2',2'',2'''-(4,8-di(piperidin-1-yl)pyrimido[5,4-d]pyrimidine-2,6-diyl)bis(azanetriyl)tetraethanol
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard 100.000.340 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C24H40N8O4
Molar mass 504.636 g·mol−1
3D model (JSmol)
  • C1CCN(CC1)C2=NC(=NC3=C2N=C(N=C3N4CCCCC4)N(CCO)CCO)N(CCO)CCO
  • InChI=1S/C24H40N8O4/c33-15-11-31(12-16-34)23-26-20-19(21(27-23)29-7-3-1-4-8-29)25-24(32(13-17-35)14-18-36)28-22(20)30-9-5-2-6-10-30/h33-36H,1-18H2 Yes check.svgY
  • Key:IZEKFCXSFNUWAM-UHFFFAOYSA-N Yes check.svgY
   (verify)

Dipyridamole (trademarked as Persantine and others) is a nucleoside transport inhibitor and a PDE3 inhibitor medication that inhibits blood clot formation [3] [ dead link ] when given chronically and causes blood vessel dilation when given at high doses over a short time.

Contents

Medical uses

Stroke

A combination of dipyridamole and aspirin (acetylsalicylic acid/dipyridamole) is FDA-approved for the secondary prevention of stroke and has a bleeding risk equal to that of aspirin use alone. [4] Dipyridamole absorption is pH-dependent and concomitant treatment with gastric acid suppressors (such as a proton pump inhibitor) will inhibit the absorption of liquid and plain tablets. [7] [8] [9] [10]

However, it is not licensed as monotherapy for stroke prophylaxis, although a Cochrane review suggested that dipyridamole may reduce the risk of further vascular events in patients presenting after cerebral ischemia. [11]

A triple therapy of aspirin, clopidogrel, and dipyridamole has been investigated, but this combination led to an increase in adverse bleeding events. [12]

Other uses

Dipyridamole also has non-medicinal uses in a laboratory context, such as the inhibition of cardiovirus growth in cell culture. [ citation needed ]

Drug interactions

Due to its action as a phosphodiesterase inhibitor, dipyridamole is likely to potentiate the effects of adenosine. This occurs by blocking the nucleoside transporter (ENT1) through which adenosine enters erythrocyte and endothelial cells. [13]

According to Association of Anaesthetists of Great Britain and Ireland 2016 guidelines, dipyridamole is considered to not cause risk of bleeding when receiving neuroaxial anaesthesia and deep nerve blocks. It does not therefore require cessation prior to anaesthesia with these techniques, and can continue to be taken with nerve block catheters in place. [14]

Overdose

Dipyridamole overdose can be treated with aminophylline [2] :6 or caffeine which reverses its dilating effect on the blood vessels. Symptomatic treatment is recommended, possibly including a vasopressor drug. Gastric lavage should be considered. Since dipyridamole is highly protein bound, dialysis is not likely to be of benefit.

Mechanisms of action

Dipyridamole has two known effects, acting via different mechanisms of action:

Experimental studies

Dipyridamole is currently undergoing repurposing for treatment of ocular surface disorders. These include pterygium and dry eye disease. The first report of topical dipyridamole's benefit in treating pterygium was published in 2014. [15] A subsequent report of outcomes in 25 patients using topical dipyridamole was presented in 2016. [16]

Related Research Articles

A transient ischemic attack (TIA), commonly known as a mini-stroke, is a minor stroke whose noticeable symptoms usually end in less than an hour. TIA causes the same symptoms associated with strokes, such as weakness or numbness on one side of the body, sudden dimming or loss of vision, difficulty speaking or understanding language, slurred speech, or confusion.

<span class="mw-page-title-main">Angina</span> Chest discomfort due to not enough blood flow to heart muscle

Angina, also known as angina pectoris, is chest pain or pressure, usually caused by insufficient blood flow to the heart muscle (myocardium). It is most commonly a symptom of coronary artery disease.

<span class="mw-page-title-main">Adenosine</span> Chemical compound

Adenosine (symbol A) is an organic compound that occurs widely in nature in the form of diverse derivatives. The molecule consists of an adenine attached to a ribose via a β-N9-glycosidic bond. Adenosine is one of the four nucleoside building blocks of RNA (and its derivative deoxyadenosine is a building block of DNA), which are essential for all life on earth. Its derivatives include the energy carriers adenosine mono-, di-, and triphosphate, also known as AMP/ADP/ATP. Cyclic adenosine monophosphate (cAMP) is pervasive in signal transduction. Adenosine is used as an intravenous medication for some cardiac arrhythmias.

An antiplatelet drug (antiaggregant), also known as a platelet agglutination inhibitor or platelet aggregation inhibitor, is a member of a class of pharmaceuticals that decrease platelet aggregation and inhibit thrombus formation. They are effective in the arterial circulation where classical Vitamin K antagonist anticoagulants have minimal effect.

<span class="mw-page-title-main">Thrombosis</span> Medical condition caused by blood clots

Thrombosis is the formation of a blood clot inside a blood vessel, obstructing the flow of blood through the circulatory system. When a blood vessel is injured, the body uses platelets (thrombocytes) and fibrin to form a blood clot to prevent blood loss. Even when a blood vessel is not injured, blood clots may form in the body under certain conditions. A clot, or a piece of the clot, that breaks free and begins to travel around the body is known as an embolus.

<span class="mw-page-title-main">Peripheral artery disease</span> Medical condition

Peripheral artery disease (PAD) is an abnormal narrowing of arteries other than those that supply the heart or brain. PAD can happen in any blood vessel, but it is more common in the legs than the arms.

<span class="mw-page-title-main">Ischemia</span> Restriction in blood supply to tissues

Ischemia or ischaemia is a restriction in blood supply to any tissue, muscle group, or organ of the body, causing a shortage of oxygen that is needed for cellular metabolism. Ischemia is generally caused by problems with blood vessels, with resultant damage to or dysfunction of tissue i.e. hypoxia and microvascular dysfunction. It also implies local hypoxia in a part of a body resulting from constriction. Ischemia causes not only insufficiency of oxygen, but also reduced availability of nutrients and inadequate removal of metabolic wastes. Ischemia can be partial or total blockage. The inadequate delivery of oxygenated blood to the organs must be resolved either by treating the cause of the inadequate delivery or reducing the oxygen demand of the system that needs it. For example, patients with myocardial ischemia have a decreased blood flow to the heart and are prescribed with medications that reduce chronotrophy and ionotrophy to meet the new level of blood delivery supplied by the stenosed vasculature so that it is adequate.

<span class="mw-page-title-main">Prostacyclin</span> Chemical compound

Prostacyclin (also called prostaglandin I2 or PGI2) is a prostaglandin member of the eicosanoid family of lipid molecules. It inhibits platelet activation and is also an effective vasodilator.

<span class="mw-page-title-main">Thromboxane</span> Group of lipids

Thromboxane is a member of the family of lipids known as eicosanoids. The two major thromboxanes are thromboxane A2 and thromboxane B2. The distinguishing feature of thromboxanes is a 6-membered ether-containing ring.

<span class="mw-page-title-main">Haemodynamic response</span>

In haemodynamics, the body must respond to physical activities, external temperature, and other factors by homeostatically adjusting its blood flow to deliver nutrients such as oxygen and glucose to stressed tissues and allow them to function. Haemodynamic response (HR) allows the rapid delivery of blood to active neuronal tissues. The brain consumes large amounts of energy but does not have a reservoir of stored energy substrates. Since higher processes in the brain occur almost constantly, cerebral blood flow is essential for the maintenance of neurons, astrocytes, and other cells of the brain. This coupling between neuronal activity and blood flow is also referred to as neurovascular coupling.

<span class="mw-page-title-main">Ticlopidine</span> Chemical compound

Ticlopidine, sold under the brand name Ticlid, is a medication used to reduce the risk of thrombotic strokes. It is an antiplatelet drug in the thienopyridine family which is an adenosine diphosphate (ADP) receptor inhibitor. Research initially showed that it was useful for preventing strokes and coronary stent occlusions. However, because of its rare but serious side effects of neutropenia and thrombotic thrombocytopenic purpura it was primarily used in patients in whom aspirin was not tolerated, or in whom dual antiplatelet therapy was desirable. With the advent of newer and safer antiplatelet drugs such as clopidogrel and ticagrelor, its use remained limited.

Vasospasm refers to a condition in which an arterial spasm leads to vasoconstriction. This can lead to tissue ischemia and tissue death (necrosis). Cerebral vasospasm may arise in the context of subarachnoid hemorrhage. Symptomatic vasospasm or delayed cerebral ischemia is a major contributor to post-operative stroke and death especially after aneurysmal subarachnoid hemorrhage. Vasospasm typically appears 4 to 10 days after subarachnoid hemorrhage.

<span class="mw-page-title-main">Thromboxane receptor</span> Mammalian protein found in Homo sapiens

The thromboxane receptor (TP) also known as the prostanoid TP receptor is a protein that in humans is encoded by the TBXA2R gene, The thromboxane receptor is one among the five classes of prostanoid receptors and was the first eicosanoid receptor cloned. The TP receptor derives its name from its preferred endogenous ligand thromboxane A2.

<span class="mw-page-title-main">Triflusal</span> Antiplatelet drug

Triflusal is a platelet aggregation inhibitor that was discovered and developed in the Uriach Laboratories, and commercialised in Spain since 1981. Currently, it is available in 25 countries in Europe, Asia, Africa and America. It is a derivative of acetylsalicylic acid in which a hydrogen atom on the benzene ring has been replaced by a trifluoromethyl group. Trade names include Disgren, Grendis, Aflen and Triflux.

<span class="mw-page-title-main">Mechanism of action of aspirin</span>

Aspirin causes several different effects in the body, mainly the reduction of inflammation, analgesia, the prevention of clotting, and the reduction of fever. Much of this is believed to be due to decreased production of prostaglandins and TXA2. Aspirin's ability to suppress the production of prostaglandins and thromboxanes is due to its irreversible inactivation of the cyclooxygenase (COX) enzyme. Cyclooxygenase is required for prostaglandin and thromboxane synthesis. Aspirin acts as an acetylating agent where an acetyl group is covalently attached to a serine residue in the active site of the COX enzyme. This makes aspirin different from other NSAIDs, which are reversible inhibitors. However, other effects of aspirin, such as uncoupling oxidative phosphorylation in mitochondria, and the modulation of signaling through NF-κB, are also being investigated. Some of its effects are like those of salicylic acid, which is not an acetylating agent.

<span class="mw-page-title-main">Diabetic cardiomyopathy</span> Medical condition

Diabetic cardiomyopathy is a disorder of the heart muscle in people with diabetes. It can lead to inability of the heart to circulate blood through the body effectively, a state known as heart failure(HF), with accumulation of fluid in the lungs or legs. Most heart failure in people with diabetes results from coronary artery disease, and diabetic cardiomyopathy is only said to exist if there is no coronary artery disease to explain the heart muscle disorder.

<span class="mw-page-title-main">Acetylsalicylic acid/dipyridamole</span> Pharmaceutical combination

The combination drug acetylsalicylic acid/dipyridamole is a drug combination of:

<span class="mw-page-title-main">Ifetroban</span> Chemical compound

Ifetroban is a potent and selective thromboxane receptor antagonist. It has been studied in animal models for the treatment of cancer metastasis, myocardial ischemia, hypertension, stroke, thrombosis, cardiomyopathy, and for its effects on platelets. Clinical trials are evaluating the therapeutic safety and efficacy of oral ifetroban capsules for the treatment of cancer metastasis, cardiovascular disease, aspirin exacerbated respiratory disease, systemic sclerosis, and Duchenne muscular dystrophy.

<span class="mw-page-title-main">Management of acute coronary syndrome</span>

Management of acute coronary syndrome is targeted against the effects of reduced blood flow to the affected area of the heart muscle, usually because of a blood clot in one of the coronary arteries, the vessels that supply oxygenated blood to the myocardium. This is achieved with urgent hospitalization and medical therapy, including drugs that relieve chest pain and reduce the size of the infarct, and drugs that inhibit clot formation; for a subset of patients invasive measures are also employed. Basic principles of management are the same for all types of acute coronary syndrome. However, some important aspects of treatment depend on the presence or absence of elevation of the ST segment on the electrocardiogram, which classifies cases upon presentation to either ST segment elevation myocardial infarction (STEMI) or non-ST elevation acute coronary syndrome (NST-ACS); the latter includes unstable angina and non-ST elevation myocardial infarction (NSTEMI). Treatment is generally more aggressive for STEMI patients, and reperfusion therapy is more often reserved for them. Long-term therapy is necessary for prevention of recurrent events and complications.

<span class="mw-page-title-main">Coronary artery ectasia</span> Medical condition

Coronary artery ectasia is a rare disease that occurs in only 0.3-4.9% of people in North America. Coronary artery ectasia is characterized by the enlargement of a coronary artery to 1.5 times or more than its normal diameter. The disease is commonly asymptomatic and is normally discovered when performing tests for other conditions such as coronary artery disease, stable angina and other acute coronary syndromes. Coronary artery ectasia occurs 4 times more frequently in males than in females and in people who have risk factors for heart disease such as smokers. While the disease is commonly found in patients with atherosclerosis and coronary artery disease, it can occur by itself and in both cases, it can cause health problems. The disease can cause the heart tissue to be deprived of blood and die due to decreased blood flow, and blockages due to blood clots or spasms of the blood vessel. This blood flow disruption can cause permanent damage to the muscle if the deprivation is prolonged. Coronary artery ectasia also increases the chance of developing large weak spots in the affected coronary arteries, or aneurysms that can rupture and result in death. The damage can result in angina which is pain in the chest and is a common complaint in these patients.

References

  1. Nielsen-Kudsk F, Pedersen AK (May 1979). "Pharmacokinetics of dipyridamole". Acta Pharmacologica et Toxicologica. 44 (5): 391–399. doi:10.1111/j.1600-0773.1979.tb02350.x. PMID   474151.
  2. 1 2 "Aggrenox (aspirin/extended-release dipyridamole) Capsules. Full Prescribing Information" (PDF). Boehringer Ingelheim Pharmaceuticals, Inc. Retrieved 1 December 2016.
  3. " Dipyridamole " at Dorland's Medical Dictionary
  4. 1 2 3 Brown DG, Wilkerson EC, Love WE (March 2015). "A review of traditional and novel oral anticoagulant and antiplatelet therapy for dermatologists and dermatologic surgeons". Journal of the American Academy of Dermatology. 72 (3): 524–534. doi:10.1016/j.jaad.2014.10.027. PMID   25486915.
  5. Dixon BS, Beck GJ, Vazquez MA, Greenberg A, Delmez JA, Allon M, et al. (May 2009). "Effect of dipyridamole plus aspirin on hemodialysis graft patency". The New England Journal of Medicine. 360 (21): 2191–2201. doi:10.1056/nejmoa0805840. PMC   3929400 . PMID   19458364.
  6. Dipyridamole in the laboratory: Fata-Hartley CL, Palmenberg AC (September 2005). "Dipyridamole reversibly inhibits mengovirus RNA replication". Journal of Virology. 79 (17): 11062–11070. doi:10.1128/JVI.79.17.11062-11070.2005. PMC   1193570 . PMID   16103157.
  7. Russell TL, Berardi RR, Barnett JL, O'Sullivan TL, Wagner JG, Dressman JB (January 1994). "pH-related changes in the absorption of dipyridamole in the elderly". Pharmaceutical Research. 11 (1): 136–43. doi:10.1023/a:1018918316253. hdl: 2027.42/41435 . PMID   7908130. S2CID   12877330.
  8. Derendorf H, VanderMaelen CP, Brickl RS, MacGregor TR, Eisert W (July 2005). "Dipyridamole bioavailability in subjects with reduced gastric acidity". Journal of Clinical Pharmacology. 45 (7): 845–50. doi:10.1177/0091270005276738. PMID   15951475. S2CID   36579161.
  9. "Persantin Retard 200mg - Summary of Product Characteristics (SPC)". Electronic Medicines Compendium (EMC). Archived from the original on 5 July 2009. Retrieved 6 February 2010.
  10. Stockley I (2009). Stockley's Drug Interactions. The Pharmaceutical Press. ISBN   978-0-85369-424-3.
  11. De Schryver EL, Algra A, van Gijn J (July 2007). Algra A (ed.). "Dipyridamole for preventing stroke and other vascular events in patients with vascular disease". The Cochrane Database of Systematic Reviews (3): CD001820. doi:10.1002/14651858.CD001820.pub3. PMID   17636684.
  12. Sprigg N, Gray LJ, England T, Willmot MR, Zhao L, Sare GM, Bath PM (August 2008). Berger JS (ed.). "A randomised controlled trial of triple antiplatelet therapy (aspirin, clopidogrel and dipyridamole) in the secondary prevention of stroke: safety, tolerability and feasibility". PLOS ONE. 3 (8): e2852. Bibcode:2008PLoSO...3.2852S. doi: 10.1371/journal.pone.0002852 . PMC   2481397 . PMID   18682741.
  13. Gamboa A, Abraham R, Diedrich A, Shibao C, Paranjape SY, Farley G, Biaggioni I (October 2005). "Role of adenosine and nitric oxide on the mechanisms of action of dipyridamole". Stroke. 36 (10): 2170–5. doi:10.1161/01.STR.0000179044.37760.9d. PMID   16141426. S2CID   1877425.
  14. AAGBI Guidelines Neuraxial and Coagulation June 2016
  15. Carlock BH, Bienstock CA, Rogosnitzky M (January 2014). "Pterygium: nonsurgical treatment using topical dipyridamole - a case report". Case Reports in Ophthalmology. 5 (1): 98–103. doi:10.1159/000362113. PMC   3995373 . PMID   24761148.
  16. Rogosnitzky M, Bienstock CA, Issakov Y, Frenkel A (March 2016). Topical Dipyridamole for Treatment of Pterygium and Associated Dry Eye Symptoms: Analysis of User-Reported Outcomes. ISVER (Israeli Society for Vision and Eye Research) affiliate of ARVO (Association of Research in Vision and Ophthalmology). Kfar Maccabia, Israel. Retrieved 19 May 2019 via ResearchGate.