IBMX

Last updated
IBMX
IBMX structure.svg
IBMX 3D spacefill.png
Names
IUPAC name
1-Methyl-3-(2-methylpropyl)-7H-purine-2,6-dione
Other names
3-Isobutyl-1-methylxanthine
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.044.767 OOjs UI icon edit-ltr-progressive.svg
KEGG
PubChem CID
UNII
  • InChI=1S/C10H14N4O2/c1-6(2)4-14-8-7(11-5-12-8)9(15)13(3)10(14)16/h5-6H,4H2,1-3H3,(H,11,12) Yes check.svgY
    Key: APIXJSLKIYYUKG-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C10H14N4O2/c1-6(2)4-14-8-7(11-5-12-8)9(15)13(3)10(14)16/h5-6H,4H2,1-3H3,(H,11,12)
    Key: APIXJSLKIYYUKG-UHFFFAOYAL
  • CC(C)Cn1c2c(c(=O)n(c1=O)C)[nH]cn2
Properties
C10H14N4O2
Molar mass 222.3 g/mol
AppearanceWhite solid
Melting point 199 to 201 °C (390 to 394 °F; 472 to 474 K)
Solubility Soluble in ethanol, DMSO, and methanol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

IBMX (3-isobutyl-1-methylxanthine), like other methylxanthine derivatives, is both a:

  1. competitive non-selective phosphodiesterase inhibitor [1] which raises intracellular cAMP, activates PKA, inhibits TNFα [2] [3] and leukotriene [4] synthesis, and reduces inflammation and innate immunity, [4] and
  2. nonselective adenosine receptor antagonist. [5]

As a phosphodiesterase inhibitor, IBMX has IC50 = 2–50 μM [6] and does not inhibit PDE8 or PDE9. [7]

Related Research Articles

<span class="mw-page-title-main">Phosphodiesterase inhibitor</span> Drug

A phosphodiesterase inhibitor is a drug that blocks one or more of the five subtypes of the enzyme phosphodiesterase (PDE), thereby preventing the inactivation of the intracellular second messengers, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) by the respective PDE subtype(s). The ubiquitous presence of this enzyme means that non-specific inhibitors have a wide range of actions, the actions in the heart, and lungs being some of the first to find a therapeutic use.

<span class="mw-page-title-main">Xanthine</span> Chemical compound

Xanthine is a purine base found in most human body tissues and fluids, as well as in other organisms. Several stimulants are derived from xanthine, including caffeine, theophylline, and theobromine.

<span class="mw-page-title-main">Theophylline</span> Drug used to treat respiratory diseases

Theophylline, also known as 1,3-dimethylxanthine, is a drug that inhibits phosphodiesterase and blocks adenosine receptors. It is used to treat chronic obstructive pulmonary disease (COPD) and asthma. Its pharmacology is similar to other methylxanthine drugs. Trace amounts of theophylline are naturally present in tea, coffee, chocolate, yerba maté, guarana, and kola nut.

<span class="mw-page-title-main">Adenosine</span> Chemical compound

Adenosine (symbol A) is an organic compound that occurs widely in nature in the form of diverse derivatives. The molecule consists of an adenine attached to a ribose via a β-N9-glycosidic bond. Adenosine is one of the four nucleoside building blocks of RNA (and its derivative deoxyadenosine is a building block of DNA), which are essential for all life on Earth. Its derivatives include the energy carriers adenosine mono-, di-, and triphosphate, also known as AMP/ADP/ATP. Cyclic adenosine monophosphate (cAMP) is pervasive in signal transduction. Adenosine is used as an intravenous medication for some cardiac arrhythmias.

<span class="mw-page-title-main">Mast cell</span> Cell found in connective tissue

A mast cell is a resident cell of connective tissue that contains many granules rich in histamine and heparin. Specifically, it is a type of granulocyte derived from the myeloid stem cell that is a part of the immune and neuroimmune systems. Mast cells were discovered by Paul Ehrlich in 1877. Although best known for their role in allergy and anaphylaxis, mast cells play an important protective role as well, being intimately involved in wound healing, angiogenesis, immune tolerance, defense against pathogens, and vascular permeability in brain tumors.

<span class="mw-page-title-main">Pentoxifylline</span> Chemical compound

Pentoxifylline, also known as oxpentifylline, is a xanthine derivative used as a drug to treat muscle pain in people with peripheral artery disease. It is generic and sold under many brand names worldwide.

<span class="mw-page-title-main">Aminophylline</span> Chemical compound

Aminophylline is a compound of the bronchodilator theophylline with ethylenediamine in 2:1 ratio. The ethylenediamine improves solubility, and the aminophylline is usually found as a dihydrate.

<span class="mw-page-title-main">Paraxanthine</span> Chemical compound

Paraxanthine, also known as 1,7-dimethylxanthine, is a metabolite of theophylline and theobromine, two well-known stimulants found in coffee, tea, and chocolate mainly in the form of caffeine. It is a member of the xanthine family of alkaloids, which includes theophylline, theobromine and caffeine.

<span class="mw-page-title-main">Phosphodiesterase 2</span> Class of enzymes

The PDE2 enzyme is one of 21 different phosphodiesterases (PDE) found in mammals. These different PDEs can be subdivided to 11 families. The different PDEs of the same family are functionally related despite the fact that their amino acid sequences show considerable divergence. The PDEs have different substrate specificities. Some are cAMP selective hydrolases, others are cGMP selective hydrolases and the rest can hydrolyse both cAMP and cGMP.

Adenosine A<sub>2B</sub> receptor Cell surface receptor found in humans

The adenosine A2B receptor, also known as ADORA2B, is a G-protein coupled adenosine receptor, and also denotes the human adenosine A2b receptor gene which encodes it.

Prostaglandin DP<sub>2</sub> receptor Protein-coding gene in the species Homo sapiens

Prostaglandin D2 receptor 2 (DP2 or CRTH2) is a human protein encoded by the PTGDR2 gene and GPR44. DP2 has also been designated as CD294 (cluster of differentiation 294). It is a member of the class of prostaglandin receptors which bind with and respond to various prostaglandins. DP2 along with Prostaglandin DP1 receptor are receptors for prostaglandin D2 (PGD2). Activation of DP2 by PGD2 or other cognate receptor ligands has been associated with certain physiological and pathological responses, particularly those associated with allergy and inflammation, in animal models and certain human diseases.

<span class="mw-page-title-main">OXGR1</span> Protein-coding gene in the species Homo sapiens

2-Oxoglutarate receptor 1 (OXGR1), also known as cysteinyl leukotriene receptor E (CysLTE) and GPR99, is a protein that in humans is encoded by the OXGR1 gene. Studies indicate that OXGR1 is a receptor for : alpha-ketoglutaric acid ; at least three different cysteinyl-containing leukotrienes (CysLTs), leukotriene E4 (LTE4) and, with less potencies, LTC4 and LTD4; and itaconate.

<span class="mw-page-title-main">Dipropylcyclopentylxanthine</span> Chemical compound

8-Cyclopentyl-1,3-dipropylxanthine (DPCPX, PD-116,948) is a drug which acts as a potent and selective antagonist for the adenosine A1 receptor. It has high selectivity for A1 over other adenosine receptor subtypes, but as with other xanthine derivatives DPCPX also acts as a phosphodiesterase inhibitor, and is almost as potent as rolipram at inhibiting PDE4. It has been used to study the function of the adenosine A1 receptor in animals, which has been found to be involved in several important functions such as regulation of breathing and activity in various regions of the brain, and DPCPX has also been shown to produce behavioural effects such as increasing the hallucinogen-appropriate responding produced by the 5-HT2A agonist DOI, and the dopamine release induced by MDMA, as well as having interactions with a range of anticonvulsant drugs.

<span class="mw-page-title-main">Etazolate</span> Chemical compound

Etazolate (SQ-20,009, EHT-0202) is an anxiolytic drug which is a pyrazolopyridine derivative and has unique pharmacological properties. It acts as a positive allosteric modulator of the GABAA receptor at the barbiturate binding site, as an adenosine antagonist of the A1 and A2 subtypes, and as a phosphodiesterase inhibitor selective for the PDE4 isoform. It is currently in clinical trials for the treatment of Alzheimer's disease.

<span class="mw-page-title-main">Phosphodiesterase-4 inhibitor</span> Class of chemical compounds

A phosphodiesterase-4 inhibitor, commonly referred to as a PDE4 inhibitor, is a drug used to block the degradative action of phosphodiesterase 4 (PDE4) on cyclic adenosine monophosphate (cAMP). It is a member of the larger family of PDE inhibitors. The PDE4 family of enzymes are the most prevalent PDE in immune cells. They are predominantly responsible for hydrolyzing cAMP within both immune cells and cells in the central nervous system.

<span class="mw-page-title-main">Cartazolate</span> Chemical compound

Cartazolate (SQ-65,396) is a drug of the pyrazolopyridine class. It acts as a GABAA receptor positive allosteric modulator at the barbiturate binding site of the complex and has anxiolytic effects in animals. It is also known to act as an adenosine antagonist at the A1 and A2 subtypes and as a phosphodiesterase inhibitor. Cartazolate was tested in human clinical trials and was found to be efficacious for anxiety but was never marketed. It was developed by a team at E.R. Squibb and Sons in the 1970s.

<span class="mw-page-title-main">CGS-15943</span> Chemical compound

CGS-15943 is a drug which acts as a potent and reasonably selective antagonist for the adenosine receptors A1 and A2A, having a Ki of 3.3nM at A2A and 21nM at A1. It was one of the first adenosine receptor antagonists discovered that is not a xanthine derivative, instead being a triazoloquinazoline. Consequently, CGS-15943 has the advantage over most xanthine derivatives that it is not a phosphodiesterase inhibitor, and so has more a specific pharmacological effects profile. It produces similar effects to caffeine in animal studies, though with higher potency.

<span class="mw-page-title-main">8-Cyclopentyl-1,3-dimethylxanthine</span> Chemical compound

8-Cyclopentyl-1,3-dimethylxanthine (8-Cyclopentyltheophylline, 8-CPT, CPX) is a drug which acts as a potent and selective antagonist for the adenosine receptors, with some selectivity for the A1 receptor subtype, as well as a non-selective phosphodiesterase inhibitor. It has stimulant effects in animals with slightly higher potency than caffeine.

<span class="mw-page-title-main">8-Phenyltheophylline</span> Chemical compound

8-Phenyltheophylline (8-phenyl-1,3-dimethylxanthine, 8-PT) is a drug derived from the xanthine family which acts as a potent and selective antagonist for the adenosine receptors A1 and A2A, but unlike other xanthine derivatives has virtually no activity as a phosphodiesterase inhibitor. It has stimulant effects in animals with similar potency to caffeine. Coincidentally 8-phenyltheophylline has also been found to be a potent and selective inhibitor of the liver enzyme CYP1A2 which makes it likely to cause interactions with other drugs which are normally metabolised by CYP1A2.

Cysteinyl-leukotriene type 1 receptor antagonists Class of drugs that hinder the action of leukotriene

Cysteinyl-leukotriene type 1 receptor antagonists, also known as CysLT1 antagonists, are a class of drugs that hinder the action of leukotriene by binding to the receptor with antagonistic action without having an agonistic effect. These drugs are used to treat asthma, relieve individuals of seasonal allergies rhinitis and prevention of exercise-induced bronchoconstriction. There are currently three different types of drugs within the CysLT1 family, zafirlukast which was first on the market being released in 1996, montelukast which was released in 1998 and pranlukast which was released in 2007.

References

  1. Essayan, DM (November 2001). "Cyclic Nucleotide Phosphodiesterases". The Journal of Allergy and Clinical Immunology. 108 (5): 671–80. doi: 10.1067/mai.2001.119555 . PMID   11692087.
  2. Deree, J; Martins, JO; Melbostad, H; Loomis, WH; Coimbra, R (June 2008). "Insights into the Regulation of TNF-α Production in Human Mononuclear Cells: The Effects of Non-Specific Phosphodiesterase Inhibition". Clinics (Sao Paulo). 63 (3): 321–8. doi:10.1590/S1807-59322008000300006. PMC   2664230 . PMID   18568240.
  3. Marques, LJ; Zheng, L; Poulakis, N; Guzman, J; Costabel, U (February 1999). "Pentoxifylline Inhibits TNF-α Production from Human Alveolar Macrophages". American Journal of Respiratory and Critical Care Medicine. 159 (2): 508–11. doi:10.1164/ajrccm.159.2.9804085. PMID   9927365.
  4. 1 2 Peters-Golden, M; Canetti, C; Mancuso, P; Coffey, MJ (15 January 2005). "Leukotrienes: Underappreciated Mediators of Innate Immune Responses" (PDF). Journal of Immunology. 174 (2): 589–94. doi: 10.4049/jimmunol.174.2.589 . PMID   15634873.
  5. Daly, JW; Jacobson, KA; Ukena, D (1987). "Adenosine Receptors: Development of Selective Agonists and Antagonists". Progress in Clinical and Biological Research. 230: 41–63. PMID   3588607.
  6. Beavo, JA; Rogers, NL; Crofford, OB; Hardman, JG; Sutherland, EW; Newman, EV (November 1970). "Effects of Xanthine Derivatives on Lipolysis and on Adenosine 3',5'-Monophosphate Phosphodiesterase Activity". Molecular Pharmacology. 6 (6): 597–603. PMID   4322367.
  7. Soderling, SH; Beavo, JA (April 2000). "Regulation of cAMP and cGMP Signaling: New Phosphodiesterases and New Functions". Current Opinion in Cell Biology. 12 (2): 174–9. doi:10.1016/s0955-0674(99)00073-3. PMID   10712916.