Glaucine

Last updated
Glaucine
Glaucine.svg
Clinical data
AHFS/Drugs.com International Drug Names
ATC code
  • none
Identifiers
  • (S)-5,6,6a,7-tetrahydro-1,2,9,10-tetramethoxy-6-methyl-4H-dibenzo[de,g]quinoline
CAS Number
PubChem CID
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
NIAID ChemDB
CompTox Dashboard (EPA)
ECHA InfoCard 100.006.820 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C21H25NO4
Molar mass 355.434 g·mol−1
3D model (JSmol)
  • CN1CCc2cc(c(c-3c2[C@@H]1Cc4c3cc(c(c4)OC)OC)OC)OC
  • InChI=1S/C21H25NO4/c1-22-7-6-12-9-18(25-4)21(26-5)20-14-11-17(24-3)16(23-2)10-13(14)8-15(22)19(12)20/h9-11,15H,6-8H2,1-5H3/t15-/m0/s1 X mark.svgN
  • Key:RUZIUYOSRDWYQF-HNNXBMFYSA-N X mark.svgN
 X mark.svgNYes check.svgY  (what is this?)    (verify)

Glaucine (also known as 1,2,9,10-tetramethoxyaporphine, bromcholitin, glauvent, tusidil, and tussiglaucin) is an aporphine alkaloid found in several different plant species in the family Papaveraceae, such as Glaucium flavum , [1] Glaucium oxylobum , and Corydalis yanhusuo , [2] [3] and in other plants such as Croton lechleri in the family Euphorbiaceae. [4]

Contents

It has bronchodilator, neuroleptic [5] and antiinflammatory effects, acting as a PDE4 inhibitor and calcium channel blocker, [6] and is used medically as an antitussive in some countries. [7] TLRs plays role in its anti inflammatory effects. [8] Glaucine may produce side effects such as sedation, fatigue, and a hallucinogenic effect characterised by colourful visual images, [9] [10] and has been detected as a novel psychoactive drug. [11] In a 2019 publication, [12] the isomer (R)-glaucine is reported to be a positive allosteric modulator of the 5-HT2A receptor, which is also associated with the hallucinogenic effects of substances such as psilocybin and mescaline.

Chemistry

Stereoisomerism

It was believed that only the (S)-form of glaucine occurs in nature until (R)-glaucine was found in fire poppy (Papaver californicum). [13]

Glaucine
(2 stereoisomers)
(S)-Glaucin V2.svg
(S)-configuration
(R)-Glaucin V2.svg
(R)-configuration

Mechanism of action

Glaucine binds to the benzothiazepine site on L-type Ca2+-channels, thereby blocking calcium ion channels in smooth muscle like the human bronchus. Glaucine has no effect on intracellular calcium stores, but rather, does not allow the entry of Ca2+ after intracellular stores have been depleted. [6] Ca2+ influx is a vital component in the process of muscular contraction, and the blocking of this influx therefore reduces the ability of the muscle to contract. [14] In this way, glaucine can prevent smooth muscle from contracting, allowing it to relax.

Glaucine has also been demonstrated to be a dopamine receptor antagonist, favoring D1 and D1-like receptors. [11] [15] It is also a non-competitive selective inhibitor of PDE4 in human bronchial tissue and granulocytes. PDE4 is an isoenzyme that hydrolyzes cyclic AMP to regulate human bronchial tone (along with PDE3). Yet as a PDE4 inhibitor, glaucine possesses very low potency. [6]

Glaucine has also recently [12] been found to have an effect on the neuronal 5-HT2A receptors, which are responsible for the hallucinogenic effects of classical psychedelics. It also inhibits MAO enzymes. [16] Its enantiomers effect are same for adrenergic receptor yet different for 5-HT receptor. Both (R)-glaucine and (S)-glaucine antagonize α1 receptor, but (S)-glaucine is partial agonist of 5-HT2 subtypes whereas (R)-glaucine is a positive allosteric modulator of 5-HT2. [17]

Uses

Medical

It is currently used as an antitussive agent in Iceland, as well as Romania, Bulgaria, Russia and other eastern European countries. [6] [11] Bulgarian pharmaceutical company Sopharma sells glaucine in tablet form, where a single dose contains 40 mg and the half-life is indicated to be 6–8 hours. When ingested orally has been shown to increase airway conductance in humans, and has been investigated as a treatment for asthma. [6]

Glaucine has been reported to reduce blood pressure, heart rate and possess anticonvulsant and antinoiciceptive effect in animals. [18] [19]

Recreational

Reports of recreational use of glaucine have recently been published, and effects include dissociative-type symptoms; feeling detached and 'in another world', as well as nausea, vomiting and dilated pupils. These reports mirror those about the effects of clinical use, which state dissociative-type symptoms as well as lethargy, fatigue, hallucinations. [10] [11] Investigation of side effects in a clinical setting also reports that the hallucinatory effects manifest as bright and colorful visualizations. They also report that patients perceive their environments clearly yet feel detached from it; "the patient sees and understands everything and is oriented well enough, but cannot take a clear and adequate action". [10]

One particular report of recreational use gone awry described the form of distribution as tablets being marketed as a 1-benzylpiperazine (BZP)-free "herbal high" which the patient referred to as "head candy". [11]

See also

Related Research Articles

<span class="mw-page-title-main">Phosphodiesterase inhibitor</span> Drug

A phosphodiesterase inhibitor is a drug that blocks one or more of the five subtypes of the enzyme phosphodiesterase (PDE), thereby preventing the inactivation of the intracellular second messengers, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) by the respective PDE subtype(s). The ubiquitous presence of this enzyme means that non-specific inhibitors have a wide range of actions, the actions in the heart, and lungs being some of the first to find a therapeutic use.

<span class="mw-page-title-main">Dextrorphan</span> Psychoactive cough suppressant medication

Dextrorphan (DXO) is a psychoactive drug of the morphinan class which acts as an antitussive or cough suppressant and in high doses a dissociative hallucinogen. It is the dextrorotatory enantiomer of racemorphan; the levorotatory enantiomer is levorphanol. Dextrorphan is produced by O-demethylation of dextromethorphan by CYP2D6. Dextrorphan is an NMDA antagonist and contributes to the psychoactive effects of dextromethorphan.

<span class="mw-page-title-main">Phenylpiracetam</span> Chemical compound

Phenylpiracetam, also known as fonturacetam and sold under the brand names Phenotropil, Actitropil, and Carphedon among others, is a stimulant and nootropic medication used in Russia and certain other Eastern European countries in the treatment of cerebrovascular deficiency, depression, apathy, and attention, and memory problems, among other indications. It is also used in Russian cosmonauts to improve physical, mental, and cognitive abilities. The drug is taken by mouth.

<span class="mw-page-title-main">Chlorprothixene</span> Typical antipsychotic medication

Chlorprothixene, sold under the brand name Truxal among others, is a typical antipsychotic of the thioxanthene group.

<span class="mw-page-title-main">Dopamine agonist</span> Compound that activates dopamine receptors

A dopamine agonist is a compound that activates dopamine receptors. There are two families of dopamine receptors, D1-like and D2-like. They are all G protein-coupled receptors. D1- and D5-receptors belong to the D1-like family and the D2-like family includes D2, D3 and D4 receptors. Dopamine agonists are primarily used in the treatment of the motor symptoms of Parkinson's disease, and to a lesser extent, in hyperprolactinemia and restless legs syndrome. They are also used off-label in the treatment of clinical depression. Impulse control disorders are associated with the use of dopamine agonists for whatever condition.

<span class="mw-page-title-main">Aporphine</span> Chemical compound

Aporphine is an alkaloid with the chemical formula C17H17N. It is the core chemical substructure of the aporphine alkaloids, a subclass of quinoline alkaloids. It can exist in either of two enantiomeric forms, (R)-aporphine and (S)-aporphine.

<i>Glaucium flavum</i> Species of flowering plant

Glaucium flavum, the yellow horned poppy, yellow hornpoppy or sea poppy, is a summer flowering plant in the family Papaveraceae. It is native to Europe, Northern Africa, Macaronesia and temperate zones in Western Asia. The plant grows on the seashore and is never found inland. All parts of the plant, including the seeds, are toxic. It is classed as a noxious weed in some areas of North America, where it is an introduced species. It is grown in gardens as a short-lived perennial but usually grown as a biennial.

<span class="mw-page-title-main">Bulbocapnine</span> Chemical compound

Bulbocapnine is an alkaloid found in Corydalis and Dicentra, genera of the plant family Fumariaceae which have caused the fatal poisoning of sheep and cattle. It has been shown to act as an acetylcholinesterase inhibitor, and inhibits biosynthesis of dopamine via inhibition of the enzyme tyrosine hydroxylase. Like apomorphine, it is reported to be an inhibitor of amyloid beta protein (Aβ) fiber formation, whose presence is a hallmark of Alzheimer's disease (AD). Bulbocapnine is thus a potential therapeutic under the amyloid hypothesis. According to the Dorlands Medical Dictionary, it "inhibits the reflex and motor activities of striated muscle. It has been used in the treatment of muscular tremors and vestibular nystagmus".

<span class="mw-page-title-main">NMDA receptor antagonist</span> Class of anesthetics

NMDA receptor antagonists are a class of drugs that work to antagonize, or inhibit the action of, the N-Methyl-D-aspartate receptor (NMDAR). They are commonly used as anesthetics for humans and animals; the state of anesthesia they induce is referred to as dissociative anesthesia.

<span class="mw-page-title-main">Desmetramadol</span> Opioid painkiller medication

Desmetramadol, also known as O-desmethyltramadol (O-DSMT), is an opioid analgesic and the main active metabolite of tramadol. Tramadol is demethylated by the liver enzyme CYP2D6 to desmetramadol in the same way as codeine, and so similarly to the variation in effects seen with codeine, individuals who have a less active form of CYP2D6 will tend to have reduced analgesic effects from tramadol. Because desmetramadol itself does not need to be metabolized to induce an analgesic effect, it can be used in individuals with CYP2D6 inactivating mutations.

<span class="mw-page-title-main">Zuclopenthixol</span> Typical antipsychotic medication

Zuclopenthixol, also known as zuclopentixol, is a medication used to treat schizophrenia and other psychoses. It is classed, pharmacologically, as a typical antipsychotic. Chemically it is a thioxanthene. It is the cis-isomer of clopenthixol. Clopenthixol was introduced in 1961, while zuclopenthixol was introduced in 1978.

<span class="mw-page-title-main">Tetrahydropalmatine</span> Isoquinoline alkaloid, found mainly in Corydalis

Tetrahydropalmatine (THP) is an isoquinoline alkaloid found in several different plant species, mainly in the genus Corydalis, but also in other plants such as Stephania rotunda. These plants have traditional uses in Chinese herbal medicine. The pharmaceutical industry has synthetically produced the more potent enantiomer Levo-tetrahydropalmatine (Levo-THP), which has been marketed worldwide under different brand names as an alternative to anxiolytic and sedative drugs of the benzodiazepine group and analgesics such as opiates. It is also sold as a dietary supplement.

<span class="mw-page-title-main">Ro64-6198</span> Chemical compound

Ro64-6198 is an opioid drug used in scientific research. It acts as a potent and selective agonist for the nociceptin receptor, also known as the ORL-1 receptor, with over 100x selectivity over the other opioid receptors. It produces anxiolytic effects in animal studies equivalent to those of benzodiazepine drugs, but has no anticonvulsant effects and does not produce any overt effects on behaviour. However it does impair short-term memory, and counteracts stress-induced anorexia. It also has antitussive effects, and reduces the rewarding and analgesic effects of morphine, although it did not prevent the development of dependence. It has been shown to reduce alcohol self-administration in animals and suppressed relapses in animal models of alcoholism, and ORL-1 agonists may have application in the treatment of alcoholism.

<span class="mw-page-title-main">Oxaprotiline</span> Chemical compound

Oxaprotiline, also known as hydroxymaprotiline, is a norepinephrine reuptake inhibitor belonging to the tetracyclic antidepressant (TeCA) family and is related to maprotiline. Though investigated as an antidepressant, it was never marketed.

<span class="mw-page-title-main">Nantenine</span> Chemical compound

Nantenine is an alkaloid found in the plant Nandina domestica as well as some Corydalis species. It is an antagonist of both the α1-adrenergic receptor and the serotonin 5-HT2A receptor, and blocks both the behavioral and physiological effects of MDMA in animals.

<span class="mw-page-title-main">Quinupramine</span> Tricyclic antidepressant

Quinupramine is a tricyclic antidepressant (TCA) used in Europe for the treatment of depression.

<span class="mw-page-title-main">PDE4 inhibitor</span> Class of chemical compounds

A phosphodiesterase-4 inhibitor, commonly referred to as a PDE4 inhibitor, is a drug used to block the degradative action of phosphodiesterase 4 (PDE4) on cyclic adenosine monophosphate (cAMP). It is a member of the larger family of PDE inhibitors. The PDE4 family of enzymes are the most prevalent PDE in immune cells. They are predominantly responsible for hydrolyzing cAMP within both immune cells and cells in the central nervous system.

Corydalis yanhusuo is a plant species in the genus Corydalis. The Chinese name for Corydalis yanhusuo is yan hu suo. The Japanese common name is engosaku (エンゴサク) and the Korean common name is hyeonhosaek (현호색). English common names include yanhusuo, corydalis, and Asian corydalis. The tuber of this plant, frequently mislabeled as the root, is an important therapeutic agent in traditional Chinese medicine. It is native to high-altitude grasslands across China including in the provinces of Anhui, Henan, Hubei, Hunan, Jiangsu, and Zhejiang, but is more widely cultivated.

Peripherally selective drugs have their primary mechanism of action outside of the central nervous system (CNS), usually because they are excluded from the CNS by the blood–brain barrier. By being excluded from the CNS, drugs may act on the rest of the body without producing side-effects related to their effects on the brain or spinal cord. For example, most opioids cause sedation when given at a sufficiently high dose, but peripherally selective opioids can act on the rest of the body without entering the brain and are less likely to cause sedation. These peripherally selective opioids can be used as antidiarrheals, for instance loperamide (Imodium).

<span class="mw-page-title-main">Aporphine alkaloids</span>

Aporphine alkaloids are naturally occurring chemical compounds from the group of alkaloids. After the benzylisoquinoline alkaloids they are the second largest group of isoquinoline alkaloids.

References

  1. Lapa GB, Sheichenko OP, Serezhechkin AG, Tolkachev ON (August 2004). "HPLC Determination of Glaucine in Yellow Horn Poppy Grass (Glaucium flavum Crantz)". Pharmaceutical Chemistry Journal. 38 (1): 441–442. doi:10.1023/B:PHAC.0000048907.58847.c6. ISSN   0091-150X. S2CID   44040818. S-(+)-Glaucine (C21H25NO4) is the main alkaloid component in the grass of yellow horn poppy (Glaucium luteum L., syn. Glaucium flavum Crantz) of the family Papaveraceae
  2. Xu XH, Yu GD, Wang ZT (May 2004). "[Resource investigation and quality evaluation on wild Corydalis yanhusuo]". Zhongguo Zhong Yao Za Zhi = Zhongguo Zhongyao Zazhi = China Journal of Chinese Materia Medica. 29 (5): 399–401. PMID   15706885.
  3. Morteza-Semnani K, Amin G, Shidfar MR, Hadizadeh H, Shafiee A (July 2003). "Antifungal activity of the methanolic extract and alkaloids of Glaucium oxylobum". Fitoterapia. 74 (5): 493–6. doi:10.1016/s0367-326x(03)00113-8. PMID   12837370.
  4. Milanowski DJ, Winter RE, Elvin-Lewis MP, Lewis WH (June 2002). "Geographic distribution of three alkaloid chemotypes of Croton lechleri". Journal of Natural Products. 65 (6): 814–9. doi:10.1021/np000270v. PMID   12088421.
  5. Zetler G (1988). "Neuroleptic-like, anticonvulsant and antinociceptive effects of aporphine alkaloids: bulbocapnine, corytuberine, boldine and glaucine". Archives Internationales de Pharmacodynamie et de Therapie. 296: 255–281. PMID   2907279.
  6. 1 2 3 4 5 Cortijo J, Villagrasa V, Pons R, Berto L, Martí-Cabrera M, Martinez-Losa M, et al. (August 1999). "Bronchodilator and anti-inflammatory activities of glaucine: In vitro studies in human airway smooth muscle and polymorphonuclear leukocytes". British Journal of Pharmacology. 127 (7): 1641–51. doi:10.1038/sj.bjp.0702702. PMC   1566148 . PMID   10455321.
  7. Rühle KH, Criscuolo D, Dieterich HA, Köhler D, Riedel G (May 1984). "Objective evaluation of dextromethorphan and glaucine as antitussive agents". British Journal of Clinical Pharmacology. 17 (5): 521–4. doi:10.1111/j.1365-2125.1984.tb02384.x. PMC   1463443 . PMID   6375709.
  8. Remichkova M, Dimitrova P, Philipov S, Ivanovska N (October 2009). "Toll-like receptor-mediated anti-inflammatory action of glaucine and oxoglaucine" (PDF). Fitoterapia . 80 (7): 411–4. doi:10.1016/j.fitote.2009.05.016. PMID   19481591.
  9. Rovinskiĭ VI (September 1989). "[A case of hallucinogen-like action of glaucine]". Klinicheskaia Meditsina. 67 (9): 107–8. PMID   2586025.
  10. 1 2 3 Rovinskiĭ VI (2006). "[Acute glaucine syndrome in the physician's practice: the clinical picture and potential danger]". Klinicheskaia Meditsina. 84 (11): 68–70. PMID   17243616.
  11. 1 2 3 4 5 Dargan PI, Button J, Hawkins L, Archer JR, Ovaska H, Lidder S, et al. (May 2008). "Detection of the pharmaceutical agent glaucine as a recreational drug". European Journal of Clinical Pharmacology. 64 (5): 553–4. doi:10.1007/s00228-007-0451-9. PMID   18204834. S2CID   21348503.
  12. 1 2 Heng, HL, Chee, CF, Thy, CK, et al. In vitro functional evaluation of isolaureline, dicentrine and glaucine enantiomers at 5‐HT2 and α1 receptors. Chem Biol Drug Des. 2019; 93: 132– 138. https://doi.org/10.1111/cbdd.13390
  13. Catania T, Li Y, Winzer T, Harvey D, Meade F, Caridi A, et al. (June 2022). "A functionally conserved STORR gene fusion in Papaver species that diverged 16.8 million years ago". Nature Communications. 13 (1): 3150. Bibcode:2022NatCo..13.3150C. doi:10.1038/s41467-022-30856-w. PMC   9174169 . PMID   35672295.
  14. Nestler E, Hyman S & Malenka R. Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). China: McGraw-Hill Companies.
  15. Asencio M, Hurtado-Guzmán C, López JJ, Cassels BK, Protais P, Chagraoui A (June 2005). "Structure-affinity relationships of halogenated predicentrine and glaucine derivatives at D1 and D2 dopaminergic receptors: halogenation and D1 receptor selectivity". Bioorganic & Medicinal Chemistry. 13 (11): 3699–704. doi:10.1016/j.bmc.2005.03.022. PMID   15862999.
  16. Zhang Y, Wang Q, Liu R, Zhou H, Crommen J, Moaddel R, Jiang Z, Zhang T (May 2019). "Rapid screening and identification of monoamine oxidase-A inhibitors from Corydalis Rhizome using enzyme-immobilized magnetic beads based method". Journal of Chromatography A . 1592: 1–8. doi:10.1016/j.chroma.2019.01.062. PMID   30712820. S2CID   73448412.
  17. Heng HL, Chee CF, Thy CK, Tee JT, Chin SP, Herr DR, Buckle MJ, Paterson IC, Doughty SW, Abd Rahman N, Chung LY (February 2019). "In vitro functional evaluation of isolaureline, dicentrine and glaucine enantiomers at 5-HT2 and α1 receptors". Chemical Biology & Drug Design . 93 (2): 132–138. doi:10.1111/cbdd.13390. PMID   30216681. S2CID   52278437.
  18. Zetler G (1988). "Neuroleptic-like, anticonvulsant and antinociceptive effects of aporphine alkaloids: bulbocapnine, corytuberine, boldine and glaucine". Archives Internationales de Pharmacodynamie et de Therapie. 296: 255–81. PMID   2907279.
  19. Orallo F, Fernández Alzueta A, Campos-Toimil M, Calleja JM (April 1995). "Study of the in vivo and in vitro cardiovascular effects of (+)-glaucine and N-carbethoxysecoglaucine in rats". British Journal of Pharmacology. 114 (7): 1419–27. doi:10.1111/j.1476-5381.1995.tb13364.x. PMC   1510273 . PMID   7606346.