5-Carboxamidotryptamine

Last updated
5-Carboxamidotryptamine
5-Carboxamidotryptamine.svg
Identifiers
  • 3-(2-Aminoethyl)-1H-indole-5-carboxamide
CAS Number
PubChem CID
IUPHAR/BPS
ChemSpider
UNII
ChEBI
ChEMBL
CompTox Dashboard (EPA)
Chemical and physical data
Formula C11H13N3O
Molar mass 203.245 g·mol−1
3D model (JSmol)
  • C1=CC2=C(C=C1C(=O)N)C(=CN2)CCN
  • InChI=1S/C11H13N3O/c12-4-3-8-6-14-10-2-1-7(11(13)15)5-9(8)10/h1-2,5-6,14H,3-4,12H2,(H2,13,15) Yes check.svgY
  • Key:WKZLNEWVIAGNAW-UHFFFAOYSA-N Yes check.svgY
 X mark.svgNYes check.svgY  (what is this?)    (verify)

5-Carboxamidotryptamine (5-CT) is a tryptamine derivative closely related to the neurotransmitter serotonin.

5-CT acts as a non-selective, high-affinity full agonist at the 5-HT1A, 5-HT1B, 5-HT1D, 5-HT5A, and 5-HT7 receptors, as well as an agonist of the 5-HT2, 5-HT3, 5-HT6 receptors with lower affinity. [1] [2] [3] It has negligible affinity for the 5-HT1E and 5-HT1F receptors. [4] 5-CT binds most strongly to the 5-HT1A receptor and it was once thought to be selective for this site. [5] [6]

Recently, a close derivative of 5-CT, AH-494 has been shown to function as an agonist of 5-HT7, although being more selective over 5-HT1A. [7] Structural study indicated residue Ser5x43 might play critical roles in the selectivity of 5-CT across the serotonin receptor family. [8]

See also

Related Research Articles

<span class="mw-page-title-main">5-HT receptor</span> Class of transmembrane proteins

5-HT receptors, 5-hydroxytryptamine receptors, or serotonin receptors, are a group of G protein-coupled receptor and ligand-gated ion channels found in the central and peripheral nervous systems. They mediate both excitatory and inhibitory neurotransmission. The serotonin receptors are activated by the neurotransmitter serotonin, which acts as their natural ligand.

<span class="mw-page-title-main">Pindolol</span> Chemical compound

Pindolol, sold under the brand name Visken among others, is a nonselective beta blocker which is used in the treatment of hypertension. It is also an antagonist of the serotonin 5-HT1A receptor, preferentially blocking inhibitory 5-HT1A autoreceptors, and has been researched as an add-on therapy to various antidepressants, such as clomipramine and the selective serotonin reuptake inhibitors (SSRIs), in the treatment of depression and obsessive-compulsive disorder.

<span class="mw-page-title-main">Methysergide</span> Chemical compound

Methysergide, sold under the brand names Deseril and Sansert, is a monoaminergic medication of the ergoline and lysergamide groups which is used in the prophylaxis and treatment of migraine and cluster headaches. It has been withdrawn from the market in the United States and Canada due to safety concerns. It is taken by mouth.

5-HT<sub>2A</sub> receptor Subtype of serotonin receptor

The 5-HT2A receptor is a subtype of the 5-HT2 receptor that belongs to the serotonin receptor family and is a G protein-coupled receptor (GPCR). The 5-HT2A receptor is a cell surface receptor, but has several intracellular locations.

The 5-HT2 receptors are a subfamily of 5-HT receptors that bind the endogenous neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). The 5-HT2 subfamily consists of three G protein-coupled receptors (GPCRs) which are coupled to Gq/G11 and mediate excitatory neurotransmission, including 5-HT2A, 5-HT2B, and 5-HT2C. For more information, please see the respective main articles of the individual subtypes:

<span class="mw-page-title-main">Serotonin receptor agonist</span> Neurotransmission-modulating substance

A serotonin receptor agonist is an agonist of one or more serotonin receptors. They activate serotonin receptors in a manner similar to that of serotonin, a neurotransmitter and hormone and the endogenous ligand of the serotonin receptors.

The 5-HT3 receptor belongs to the Cys-loop superfamily of ligand-gated ion channels (LGICs) and therefore differs structurally and functionally from all other 5-HT receptors (5-hydroxytryptamine, or serotonin receptors) which are G protein-coupled receptors. This ion channel is cation-selective and mediates neuronal depolarization and excitation within the central and peripheral nervous systems.

<span class="mw-page-title-main">5-Methoxytryptamine</span> Chemical compound

5-Methoxytryptamine, also known as serotonin methyl ether or O-methylserotonin and as mexamine, is a tryptamine derivative closely related to the neurotransmitters serotonin and melatonin. It has been shown to occur naturally in the body in low levels, especially in the pineal gland. It is formed via O-methylation of serotonin or N-deacetylation of melatonin.

5-HT<sub>4</sub> receptor Protein-coding gene in the species Homo sapiens

5-Hydroxytryptamine receptor 4 is a protein that in humans is encoded by the HTR4 gene.

The 5-HT1 receptors are a subfamily of the 5-HT serotonin receptors that bind to the endogenous neurotransmitter serotonin (also known as 5-hydroxytryptamine, or 5-HT). The 5-HT1 subfamily consists of five G protein-coupled receptors (GPCRs) that share 40% to 63% overall sequence homology, including 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, and 5-HT1F. Receptors of the 5-HT1 type, specifically, the 5-HT1A and 5-HT1D receptor subtypes, are present on the cell bodies. Receptors of the 5-HT1 type, specifically, the 5-HT1B and 5-HT1D receptor subtypes, are also present on the nerve terminals. These receptors are broadly distributed throughout the brain and are recognized to play a significant part in regulating synaptic levels of 5-HT.

5-HT<sub>1D</sub> receptor Serotonin receptor which affects locomotion and anxiety in humans

5-hydroxytryptamine (serotonin) receptor 1D, also known as HTR1D, is a 5-HT receptor, but also denotes the human gene encoding it. 5-HT1D acts on the central nervous system, and affects locomotion and anxiety. It also induces vasoconstriction in the brain.

<span class="mw-page-title-main">8-OH-DPAT</span> Chemical compound

8-OH-DPAT is a research chemical of the aminotetralin chemical class which was developed in the 1980s and has been widely used to study the function of the 5-HT1A receptor. It was one of the first major 5-HT1A receptor full agonists to have been discovered.

5-HT<sub>1E</sub> receptor Protein-coding gene in the species Homo sapiens

5-hydroxytryptamine (serotonin) 1e receptor (5-HT1e) is a highly expressed human G-protein coupled receptor that belongs to the 5-HT1e receptor family. The human gene is denoted as HTR1E.

5-HT<sub>5A</sub> receptor Protein-coding gene in the species Homo sapiens

5-Hydroxytryptamine (serotonin) receptor 5A, also known as HTR5A, is a protein that in humans is encoded by the HTR5A gene. Agonists and antagonists for 5-HT receptors, as well as serotonin uptake inhibitors, present promnesic (memory-promoting) and/or anti-amnesic effects under different conditions, and 5-HT receptors are also associated with neural changes.

5-HT<sub>7</sub> receptor Protein-coding gene in the species Homo sapiens

The 5-HT7 receptor is a member of the GPCR superfamily of cell surface receptors and is activated by the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). The 5-HT7 receptor is coupled to Gs (stimulates the production of the intracellular signaling molecule cAMP) and is expressed in a variety of human tissues, particularly in the brain, the gastrointestinal tract, and in various blood vessels. This receptor has been a drug development target for the treatment of several clinical disorders. The 5-HT7 receptor is encoded by the HTR7 gene, which in humans is transcribed into 3 different splice variants.

α-Methylserotonin Chemical compound

α-Methylserotonin (αMS), also known as α-methyl-5-hydroxytryptamine (α-methyl-5-HT) or 5-hydroxy-α-methyltryptamine (5-HO-αMT), is a tryptamine derivative closely related to the neurotransmitter serotonin (5-HT). It acts as a non-selective serotonin receptor agonist and has been used extensively in scientific research to study the function of the serotonin system.

<span class="mw-page-title-main">2-Methyl-5-hydroxytryptamine</span> Chemical compound

2-Methyl-5-hydroxytryptamine (2-Methylserotonin, 2-Methyl-5-HT) is a tryptamine derivative closely related to the neurotransmitter serotonin which acts as a moderately selective full agonist at the 5-HT3 receptor.

<span class="mw-page-title-main">RU-24,969</span> Chemical compound

RU-24,969 is a serotonergic drug used in scientific research. It is a selective agonist of the serotonin 5-HT1A and 5-HT1B receptors, with 5-fold preference for the latter receptor over the former. It also has affinity for the serotonin 5-HT5A, 5-HT5B, and 5-HT7 receptors.

<span class="mw-page-title-main">Naphthylpiperazine</span> Chemical compound

1-(1-Naphthyl)piperazine (1-NP) is a drug which is a phenylpiperazine derivative. It acts as a non-selective, mixed serotonergic agent, exerting partial agonism at the 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, and 5-HT1F receptors, while antagonizing the 5-HT2A, 5-HT2B, and 5-HT2C receptors. It has also been shown to possess high affinity for the 5-HT3, 5-HT5A, 5-HT6, and 5-HT7 receptors, and may bind to 5-HT4 and the SERT as well. In animals it produces effects including hyperphagia, hyperactivity, and anxiolysis, of which are all likely mediated predominantly or fully by blockade of the 5-HT2C receptor.

<span class="mw-page-title-main">LY-215,840</span> Chemical compound

LY-215,840 is an ergoline derivative drug developed by Eli Lilly, which acts as a potent and selective antagonist at the serotonin 5-HT2 and 5-HT7 receptors. It has anti-hypertensive and muscle relaxant effects in animal studies.

References

  1. Yamada J, Sugimoto Y, Noma T, Yoshikawa T (October 1998). "Effects of the non-selective 5-HT receptor agonist, 5-carboxamidotryptamine, on plasma glucose levels in rats". European Journal of Pharmacology. 359 (1): 81–86. doi:10.1016/S0014-2999(98)00617-7. PMID   9831297.
  2. Wright CE, Angus JA (April 1989). "5-carboxamidotryptamine elicits 5-HT2 and 5-HT3 receptor-mediated cardiovascular responses in the conscious rabbit: evidence for 5-HT release from platelets". Journal of Cardiovascular Pharmacology. 13 (4): 557–564. doi: 10.1097/00005344-198913040-00007 . PMID   2470992.
  3. Glennon RA, Dukat M, Westkaemper RB (2000-01-01). "Serotonin Receptor Subtypes and Ligands". American College of Neurophyscopharmacology. Archived from the original on 21 April 2008. Retrieved 2008-04-11.
  4. Stanton JA, Middlemiss DN, Beer MS (February 1996). "Autoradiographic localization of 5-CT-insensitive 5-HT1-like recognition sites in guinea pig and rat brain". Neuropharmacology. 35 (2): 223–229. doi:10.1016/0028-3908(95)00178-6. PMID   8734492. S2CID   27188133.
  5. Thomas DR, Middlemiss DN, Taylor SG, Nelson P, Brown AM (September 1999). "5-CT stimulation of adenylyl cyclase activity in guinea-pig hippocampus: evidence for involvement of 5-HT7 and 5-HT1A receptors". British Journal of Pharmacology. 128 (1): 158–164. doi:10.1038/sj.bjp.0702759. PMC   1571602 . PMID   10498847.
  6. Saxena PR, Lawang A (October 1985). "A comparison of cardiovascular and smooth muscle effects of 5-hydroxytryptamine and 5-carboxamidotryptamine, a selective agonist of 5-HT1 receptors". Archives Internationales de Pharmacodynamie et de Therapie. 277 (2): 235–252. PMID   2933009.
  7. Latacz G, Hogendorf AS, Hogendorf A, Lubelska A, Wierońska JM, Woźniak M, et al. (November 2018). "Search for a 5-CT alternative. In vitro and in vivo evaluation of novel pharmacological tools: 3-(1-alkyl-1H-imidazol-5-yl)-1H-indole-5-carboxamides, low-basicity 5-HT7 receptor agonists". MedChemComm. 9 (11): 1882–1890. doi:10.1039/c8md00313k. PMC   6256855 . PMID   30568756.
  8. Zhang S, Chen H, Zhang C, Yang Y, Popov P, Liu J, et al. (July 2022). "Inactive and active state structures template selective tools for the human 5-HT5A receptor". Nature Structural & Molecular Biology. 29 (7): 677–687. doi:10.1038/s41594-022-00796-6. PMC   9299520 . PMID   35835867.