Substituted amphetamine | |
---|---|
Drug class | |
Class identifiers | |
Synonyms | Amphetamines; α-Methylphenethylamines; α-Methylphenylethylamines; Phenylisopropylamines |
Chemical class | Substituted derivatives of amphetamine |
Legal status | |
In Wikidata |
L-amphetamine | D-amphetamine |
Substituted amphetamines, or simply amphetamines, are a class of compounds based upon the amphetamine structure; [1] it includes all derivative compounds which are formed by replacing, or substituting, one or more hydrogen atoms in the amphetamine core structure with substituents. [1] [2] [3] [4] The compounds in this class span a variety of pharmacological subclasses, including stimulants, empathogens, and hallucinogens, among others. [2] Examples of substituted amphetamines are amphetamine (itself), [1] [2] methamphetamine, [1] ephedrine, [1] cathinone, [1] phentermine, [1] mephentermine, [1] tranylcypromine, [5] bupropion, [1] methoxyphenamine, [1] selegiline, [1] amfepramone (diethylpropion), [1] pyrovalerone, [1] MDMA (ecstasy), and DOM (STP).
Some of amphetamine's substituted derivatives occur in nature, for example in the leaves of Ephedra and khat plants. [1] Amphetamine was first produced at the end of the 19th century. By the 1930s, amphetamine and some of its derivative compounds found use as decongestants in the symptomatic treatment of colds and also occasionally as psychoactive agents. Their effects on the central nervous system are diverse, but can be summarized by three overlapping types of activity: psychoanaleptic, hallucinogenic and empathogenic. Various substituted amphetamines may cause these actions either separately or in combination.
Generic or Trivial Name | Chemical Name | # of Subs |
---|---|---|
Amphetamine | α-Methyl-phenethylamine | 0 |
Tranylcypromine | trans-2-Phenylcyclopropylamine | 0 [note 1] |
Methamphetamine | N-Methylamphetamine | 1 |
Ethylamphetamine | N-Ethylamphetamine | 1 |
Propylamphetamine | N-Propylamphetamine | 1 |
Isopropylamphetamine | N-iso-Propylamphetamine | 1 |
Butylamphetamine | N-n-Butylamphetamine | 1 |
Pheniprazine | N-Aminoamphetamine | 1 |
Phenatine | N-Nicotinoylamphetamine | 1 |
Lisdexamfetamine | L-Lysine–amphetamine conjugate, (S)- | 1 |
Phentermine | α-Methylamphetamine | 1 |
Phenylpropanolamine (PPA) | β-Hydroxyamphetamine, (1R,2S)- | 1 |
Cathine | β-Hydroxyamphetamine, (1S,2S)- | 1 |
Cathinone | β-Ketoamphetamine | 1 |
Ortetamine | 2-Methylamphetamine | 1 |
2-Fluoroamphetamine (2-FA) | 2-Fluoroamphetamine | 1 |
3-Methylamphetamine (3-MA) | 3-Methylamphetamine | 1 |
2-Phenyl-3-aminobutane | 2-Phenyl-3-aminobutane | 1 |
3-Fluoroamphetamine (3-FA) | 3-Fluoroamphetamine | 1 |
Gepefrine | 3-Hydroxyamphetamine | 1 |
Norfenfluramine | 3-Trifluoromethylamphetamine | 1 |
4-Methylamphetamine (4-MA) | 4-Methylamphetamine | 1 |
para-Methoxyamphetamine (PMA) | 4-Methoxyamphetamine | 1 |
para-Ethoxyamphetamine | 4-Ethoxyamphetamine | 1 |
4-Methylthioamphetamine (4-MTA) | 4-Methylthioamphetamine | 1 |
Norpholedrine (α-Me-TRA) | 4-Hydroxyamphetamine | 1 |
para-Bromoamphetamine (PBA, 4-BA) | 4-Bromoamphetamine | 1 |
para-Chloroamphetamine (PCA, 4-CA) | 4-Chloroamphetamine | 1 |
para-Fluoroamphetamine (PFA, 4-FA, 4-FMP) | 4-Fluoroamphetamine | 1 |
para-Iodoamphetamine (PIA, 4-IA) | 4-Iodoamphetamine | 1 |
Mefenorex | N-(3-Chloropropyl)amphetamine | 1 |
Clobenzorex | N-(2-Chlorobenzyl)amphetamine | 1 |
Amfetaminil | N-Cyanobenzylamphetamine | 1 |
Amfecloral | N-(2,2,2-Trichloroethylidene)amphetamine | 1 |
Racefemine | N-(1-Methyl-2-phenoxyethyl)amphetamine | 1 |
Dextrofemine | N-(1-Methyl-2-phenoxyethyl)amphetamine, (+)- | 1 |
Fenproporex | N-2-Cyanoethylamphetamine | 1 |
Prenylamine | N-(3,3-Diphenylpropyl)amphetamine | 1 |
Fenethylline | Theophylline–amphetamine conjugate | 1 |
Dimethylamphetamine | N,N-Dimethylamphetamine | 2 |
Benzphetamine | N-Benzyl-N-methylamphetamine | 2 |
Deprenyl | N-Methyl-N-propargylamphetamine | 2 |
D-Deprenyl | N-Methyl-N-propargylamphetamine, (S)- | 2 |
Selegiline | N-Methyl-N-propargylamphetamine, (R)- | 2 |
Metfendrazine | N-Amino-N-methylamphetamine | 2 |
Mephentermine | N-Methyl-α-methylamphetamine | 2 |
Phenpentermine | α,β-Dimethylamphetamine | 2 |
Ephedrine | β-Hydroxy-N-methylamphetamine, (1R,2S)- | 2 |
Pseudoephedrine (PSE) | β-Hydroxy-N-methylamphetamine, (1S,2S)- | 2 |
Metaraminol | 3,β-Dihydroxyamphetamine, (1R,2S)- | 2 |
Methcathinone | β-Keto-N-methylamphetamine | 2 |
Ethcathinone | β-Keto-N-ethylamphetamine | 2 |
Clortermine | 2-Chloro-α-methylamphetamine | 2 |
Methoxymethylamphetamine (MMA) | 3-Methoxy-4-methylamphetamine | 2 |
Fenfluramine | 3-Trifluoromethyl-N-ethylamphetamine | 2 |
Dexfenfluramine | 3-Trifluoromethyl-N-ethylamphetamine, (S)- | 2 |
4-Methylmethamphetamine (4-MMA) | 4-Methyl-N-methylamphetamine | 2 |
para-Methoxymethamphetamine (PMMA) | 4-Methoxy-N-methylamphetamine | 2 |
para-Methoxyethylamphetamine (PMEA) | 4-Methoxy-N-ethylamphetamine | 2 |
Pholedrine | 4-Hydroxy-N-methylamphetamine | 2 |
Chlorphentermine | 4-Chloro-α-methylamphetamine | 2 |
para-Fluoromethamphetamine (PFMA, 4-FMA) | 4-Fluoro-N-methylamphetamine | 2 |
Xylopropamine | 3,4-Dimethylamphetamine | 2 |
α-Methyldopamine (α-Me-DA) | 3,4-Dihydroxyamphetamine | 2 |
3,4-Methylenedioxyamphetamine (MDA) | 3,4-Methylenedioxyamphetamine | 2 |
Dimethoxyamphetamine (DMA) | X,X-Dimethoxyamphetamine | 2 |
6-APB | 6-(2-Aminopropyl)benzofuran | 2 |
Phenylpropylaminopentane (PPAP) | α-Desmethyl-α,N-dipropylamphetamine | 2 |
Furfenorex | N-(2-Furylmethyl)-N-methylamphetamine | 2 |
Fencamine | 8-Aminocaffeine–methamphetamine conjugate | 2 |
Nordefrin (α-Me-NE) | β,3,4-Trihydroxyamphetamine, (R)- | 3 |
Methylephedrine | β-Hydroxy-N-methylamphetamine, (1R,2S)- | 3 |
Etafedrine | β-Hydroxy-N-ethylamphetamine, (1R,2S)- | 3 |
Oxilofrine | β,4-Dihydroxy-N-methylamphetamine | 3 |
Cinnamedrine | β-Hydroxy-N-methyl-N-cinnamylamphetamine | 3 |
Methoxamine | 2,6-Dimethoxy-β-hydroxyamphetamine | 3 |
Aleph | 2,5-Dimethoxy-4-methylthioamphetamine | 3 |
Dimethoxybromoamphetamine (DOB) | 2,5-Dimethoxy-4-bromoamphetamine | 3 |
Dimethoxychloroamphetamine (DOC) | 2,5-Dimethoxy-4-chloroamphetamine | 3 |
Dimethoxyfluoroethylamphetamine (DOEF) | 2,5-Dimethoxy-4-fluoroethylamphetamine | 3 |
Dimethoxyethylamphetamine (DOET) | 2,5-Dimethoxy-4-ethylamphetamine | 3 |
Dimethoxyfluoroamphetamine (DOF) | 2,5-Dimethoxy-4-fluoroamphetamine | 3 |
Dimethoxyiodoamphetamine (DOI) | 2,5-Dimethoxy-4-iodoamphetamine | 3 |
Dimethoxymethylamphetamine (DOM) | 2,5-Dimethoxy-4-methylamphetamine | 3 |
Dimethoxynitroamphetamine (DON) | 2,5-Dimethoxy-4-nitroamphetamine | 3 |
Dimethoxypropylamphetamine (DOPR) | 2,5-Dimethoxy-4-propylamphetamine | 3 |
Dimethoxytrifluoromethylamphetamine (DOTFM) | 2,5-Dimethoxy-4-trifluoromethylamphetamine | 3 |
Methylenedioxymethamphetamine (MDMA) | 3,4-Methylenedioxy-N-methylamphetamine | 3 |
Methylenedioxyethylamphetamine (MDEA) | 3,4-Methylenedioxy-N-ethylamphetamine | 3 |
Methylenedioxyhydroxyamphetamine (MDOH) | 3,4-Methylenedioxy-N-hydroxyamphetamine | 3 |
2-Methyl-MDA | 3,4-Methylenedioxy-2-methylamphetamine | 3 |
5-Methyl-MDA | 4,5-Methylenedioxy-3-methylamphetamine | 3 |
Methoxymethylenedioxyamphetamine (MMDA) | 3-Methoxy-4,5-methylenedioxyamphetamine | 3 |
Trimethoxyamphetamine (TMA) | X,X,X-Trimethoxyamphetamine | 3 |
Dimethylcathinone | β-Keto-N,N-dimethylamphetamine | 3 |
Diethylcathinone | β-Keto-N,N-diethylamphetamine | 3 |
Bupropion | β-Keto-3-chloro-N-tert-butylamphetamine | 3 |
Mephedrone (4-MMC) | β-Keto-4-methyl-N-methylamphetamine | 3 |
Methedrone (PMMC) | β-Keto-4-methoxy-N-methylamphetamine | 3 |
Brephedrone (4-BMC) | β-Keto-4-bromo-N-methylamphetamine | 3 |
Flephedrone (4-FMC) | β-Keto-4-fluoro-N-methylamphetamine | 3 |
Ritodrine | 4,β-Dihydroxy-N-(4-hydroxyphenylethyl)amphetamine | 3 |
Buphenine (nylidrin) | 4,β-Dihydroxy-N-(...)-amphetamine | 3 |
Trecadrine | β-Hydroxy-N-methyl-N-(...)-amphetamine | 3 |
Isoxsuprine | 4,β-Dihydroxy-N-(...)-amphetamine | 3 |
Dioxifedrine | 3,4,β-Trihydroxy-N-methylamphetamine | 4 |
Dioxethedrin | 3,4,β-Trihydroxy-N-ethylamphetamine | 4 |
A variety of prodrugs of amphetamine and/or methamphetamine exist, and include amfecloral, amfetaminil, benzphetamine, clobenzorex, D-deprenyl, deprenyl, dimethylamphetamine, ethylamphetamine, fencamine, fenethylline, fenproporex, furfenorex, lisdexamfetamine, mefenorex, prenylamine, and selegiline. [6]
A number of synthetic Russian amphetamine derivatives have been developed, including alafen (amphetamine–β-alanine), feprosidnine, gamofen (amphetamine–GABA), mesocarb, methylphenatine, pabofen (amphetamine–PABA), phenatine (amphetamine–niacin; N-nicotinoylamphetamine), phenylphenamine (phenylamphetamine), propylphenamine (propylamphetamine), pyridoxiphen (amphetamine–pyridoxine), and thiophenatine (N-thionicotinoylamphetamine).
This section needs expansionwith: substituents and structures for phenelzine, phenylephrine, phenylpropanolamine, selegiline, fenfluramine, mescaline, diethylpropion, desmethylselegiline, and benzphetamine from this table. [7] . You can help by adding to it. (February 2019) |
Amphetamines are a subgroup of the substituted phenethylamine class of compounds. Substitution of hydrogen atoms results in a large class of compounds. Typical reaction is substitution by methyl and sometimes ethyl groups at the amine and phenyl sites: [8] [9] [10]
Substance | Substituents | Structure | Sources | ||||||
---|---|---|---|---|---|---|---|---|---|
N | α | β | phenyl group | ||||||
2 | 3 | 4 | 5 | ||||||
Phenethylamine | |||||||||
Amphetamine (α-methylphenylethylamine) | -CH3 | [7] | |||||||
Methamphetamine (N-methylamphetamine) | -CH3 | -CH3 | [7] | ||||||
Phentermine (α-methylamphetamine) | -(CH3)2 | [7] | |||||||
Ephedrine | -CH3 | -CH3 | -OH | [7] | |||||
Pseudoephedrine | -CH3 | -CH3 | -OH | [7] | |||||
Cathinone | -CH3 | =O | [7] | ||||||
Methcathinone (ephedrone) | -CH3 | -CH3 | =O | [7] | |||||
MDA (3,4-methylenedioxyamphetamine) | -CH3 | -O-CH2-O- | [7] | ||||||
MDMA (3,4-methylenedioxymethamphetamine) | -CH3 | -CH3 | -O-CH2-O- | [7] | |||||
MDEA (3,4-methylenedioxy-N-ethylamphetamine) | -CH2-CH3 | -CH3 | -O-CH2-O- | [7] | |||||
EDMA (3,4-ethylenedioxy-N-methylamphetamine) | -CH3 | -CH3 | -O-CH2-CH2-O- | ||||||
MBDB (N-methyl-1,3-benzodioxolylbutanamine) | -CH3 | -CH2-CH3 | -O-CH2-O- | ||||||
PMA (para-methoxyamphetamine) | -CH3 | -O-CH3 | |||||||
PMMA (para-methoxymethamphetamine) | -CH3 | -CH3 | -O-CH3 | ||||||
4-MTA (4-methylthioamphetamine) | -CH3 | -S-CH3 | |||||||
3,4-DMA (3,4-dimethoxyamphetamine) | -CH3 | -O-CH3 | -O-CH3 | ||||||
3,4,5-Trimethoxyamphetamine (α-methylmescaline) | -CH3 | -O-CH3 | -O-CH3 | -O-CH3 | |||||
DOM (2,5-dimethoxy-4-methylamphetamine) | -CH3 | -O-CH3 | -CH3 | -O-CH3 | |||||
DOB (2,5-dimethoxy-4-bromoamphetamine) | -CH3 | -O-CH3 | -Br | -O-CH3 |
Ephedra was used 5000 years ago in China as a medicinal plant; its active ingredients are alkaloids ephedrine, pseudoephedrine, norephedrine (phenylpropanolamine) and norpseudoephedrine (cathine). Natives of Yemen and Ethiopia have a long tradition of chewing khat leaves to achieve a stimulating effect. The active substances of khat are cathinone and, to a lesser extent, cathine. [11]
Amphetamine was first synthesized in 1887 by Romanian chemist Lazăr Edeleanu, although its pharmacological effects remained unknown until the 1930s. [12] MDMA was produced in 1912 (in 1914, according to other sources [13] ) as an intermediate product. However, this synthesis also went largely unnoticed. [14] In the 1920s, both methamphetamine and the dextrorotatory optical isomer of amphetamine, dextroamphetamine, were synthesized. This synthesis was a by-product of a search for ephedrine, a bronchodilator used to treat asthma extracted exclusively from natural sources. Over-the-counter use of substituted amphetamines was initiated in the early 1930s by the pharmaceutical company Smith, Kline & French (now part of GlaxoSmithKline), as a medicine (Benzedrine) for colds and nasal congestion. Subsequently, amphetamine was used in the treatment of narcolepsy, obesity, hay fever, orthostatic hypotension, epilepsy, Parkinson's disease, alcoholism and migraine. [12] [15] The "reinforcing" effects of substituted amphetamines were quickly discovered, and the misuse of substituted amphetamines had been noted as far back as 1936. [15]
During World War II, amphetamines were used by the German military to keep their tank crews awake for long periods, and treat depression. It was noticed that extended rest was required after such artificially induced activity. [12] The widespread use of substituted amphetamines began in postwar Japan and quickly spread to other countries. Modified "designer amphetamines", such as MDA and PMA, have gained in popularity since the 1960s. [15] In 1970, the United States adopted "the Controlled Substances Act" that limited non-medical use of substituted amphetamines. [15] Street use of PMA was noted in 1972. [16] MDMA emerged as a substitute for MDA in the early 1970s. [17] American chemist Alexander Shulgin first synthesized the drug in 1976 and through him the drug was briefly introduced into psychotherapy. [18] Recreational use grew and in 1985 MDMA was banned by the US authorities in an emergency scheduling initiated by the Drug Enforcement Administration. [19]
Since the mid-1990s, MDMA has become a popular entactogenic drug among the youth and quite often non-MDMA substances were sold as ecstasy. [20] Ongoing trials are investigating its efficacy as an adjunct to psychotherapy in the management of treatment-resistant post-traumatic stress disorder (PTSD). [21]
Agents | Legal status by 2009. [22] [23] [24] [25] | |||
---|---|---|---|---|
US | Russia | Australia | ||
Amphetamine (racemic) | Schedule II | Schedule II | Schedule II | Schedule 8 |
Dextroamphetamine (D-amphetamine) | Schedule II | Schedule II | Schedule I | Schedule 8 |
Levoamphetamine (L-amphetamine) | Schedule II | Schedule II | Schedule III | Schedule 8 |
Methamphetamine | Schedule II | Schedule II | Schedule I | Schedule 8 |
Cathinone Methcathinone | Schedule I | Schedule I | Schedule I | Schedule 9 |
MDA, MDMA, MDEA | Schedule I | Schedule I | Schedule I | Schedule 9 |
PMA | Schedule I | Schedule I | Schedule I | Schedule 9 |
DOB, DOM, 3,4,5-TMA | Schedule I | Schedule I | Schedule I | Schedule 9 |
Stimulants are a class of drugs that increase the activity of the brain. They are used for various purposes, such as enhancing alertness, attention, motivation, cognition, mood, and physical performance. Some of the most common stimulants are caffeine, nicotine, amphetamines, cocaine, methylphenidate, and modafinil.
Methcathinone is a monoamine alkaloid and psychoactive stimulant, a substituted cathinone. It is used as a recreational drug due to its potent stimulant and euphoric effects and is considered to be addictive, with both physical and psychological withdrawal occurring if its use is discontinued after prolonged or high-dosage administration. It is usually snorted, but can be smoked, injected, or taken orally.
D-norpseudoephedrine, also known as cathine and (+)-norpseudoephedrine, is a psychoactive drug of the phenethylamine and amphetamine chemical classes which acts as a stimulant. Along with cathinone, it is found naturally in Catha edulis (khat), and contributes to its overall effects. It has approximately 7-10% the potency of amphetamine.
Cathinone is a monoamine alkaloid found in the shrub Catha edulis (khat) and is chemically similar to ephedrine, cathine, methcathinone and other amphetamines. It is probably the main contributor to the stimulant effect of Catha edulis, also known as khat. Cathinone differs from many other amphetamines in that it has a ketone functional group. Other phenethylamines that share this structure include the stimulants methcathinone, MDPV, mephedrone and the antidepressant bupropion.
Phenylpropanolamine (PPA), sold under many brand names, is a sympathomimetic agent which is used as a decongestant and appetite suppressant. It was previously commonly used in prescription and over-the-counter cough and cold preparations. The medication is taken by mouth.
3,4-Methylenedioxyamphetamine (MDA), sometimes referred to as “sass,” is an empathogen-entactogen, stimulant, and psychedelic drug of the amphetamine family that is encountered mainly as a recreational drug. In its pharmacology, MDA is a serotonin–norepinephrine–dopamine releasing agent (SNDRA). In most countries, the drug is a controlled substance and its possession and sale are illegal.
Sympathomimetic drugs are stimulant compounds which mimic the effects of endogenous agonists of the sympathetic nervous system. Examples of sympathomimetic effects include increases in heart rate, force of cardiac contraction, and blood pressure. The primary endogenous agonists of the sympathetic nervous system are the catecholamines, which function as both neurotransmitters and hormones. Sympathomimetic drugs are used to treat cardiac arrest and low blood pressure, or even delay premature labor, among other things.
Butylone, also known as β-keto-N-methylbenzodioxolylbutanamine (βk-MBDB), is an entactogen, psychedelic, and stimulant psychoactive drug of the phenethylamine, amphetamine, phenylisobutylamine, and cathinone families. It is the β-keto analogue of MBDB and the substituted methylenedioxyphenethylamine analogue of buphedrone.
Methylone, also known as 3,4-methylenedioxy-N-methylcathinone (MDMC), is an empathogen and stimulant psychoactive drug. It is a member of the amphetamine, cathinone and methylenedioxyphenethylamine classes.
The substituted methylenedioxyphenethylamines represent a diverse chemical class of compounds derived from phenethylamines. This category encompasses numerous psychoactive substances with entactogenic, psychedelic, and/or stimulant properties, in addition to entheogens. These compounds find application as research chemicals, designer drugs, and recreational substances.
MDAI, also known as 5,6-methylenedioxy-2-aminoindane, is an entactogen drug of the 2-aminoindane group which is related to MDMA and produces similar subjective effects.
A monoamine releasing agent (MRA), or simply monoamine releaser, is a drug that induces the release of a monoamine neurotransmitter from the presynaptic neuron into the synapse, leading to an increase in the extracellular concentrations of the neurotransmitter. Many drugs induce their effects in the body and/or brain via the release of monoamine neurotransmitters, e.g., trace amines, many substituted amphetamines, and related compounds.
A norepinephrine releasing agent (NRA), also known as an adrenergic releasing agent, is a catecholaminergic type of drug that induces the release of norepinephrine (noradrenaline) and epinephrine (adrenaline) from the pre-synaptic neuron into the synapse. This in turn leads to increased extracellular concentrations of norepinephrine and epinephrine therefore an increase in adrenergic neurotransmission.
Substituted phenethylamines are a chemical class of organic compounds that are based upon the phenethylamine structure; the class is composed of all the derivative compounds of phenethylamine which can be formed by replacing, or substituting, one or more hydrogen atoms in the phenethylamine core structure with substituents.
Phenylisobutylamine, also known as α-ethylphenethylamine, Butanphenamine, B or AEPEA, is a stimulant drug of the phenethylamine class. It is a higher homologue of amphetamine, differing from amphetamine's molecular structure only by the substitution of the methyl group at the alpha position of the side chain with an ethyl group.
4-Substituted-2,5-dimethoxyamphetamines (DOx) is a chemical class of substituted amphetamine derivatives featuring methoxy groups at the 2- and 5- positions of the phenyl ring, and a substituent such as alkyl or halogen at the 4- position of the phenyl ring. Most compounds of this class are potent and long-lasting psychedelic drugs, and act as highly selective 5-HT2A, 5-HT2B, and 5-HT2C receptor partial agonists. A few bulkier derivatives such as DOAM have similarly high binding affinity for 5-HT2 receptors but instead act as antagonists, and so do not produce psychedelic effects though they retain amphetamine-like stimulant effects.
Substituted cathinones, or simply cathinones, which include some stimulants and entactogens, are derivatives of cathinone. They feature a phenethylamine core with an alkyl group attached to the alpha carbon, and a ketone group attached to the beta carbon, along with additional substitutions. Cathinone occurs naturally in the plant khat whose leaves are chewed as a recreational drug.
The substituted benzofurans are a class of chemical compounds based on the heterocyclyc and polycyclic compound benzofuran. Many medicines use the benzofuran core as a scaffold, but most commonly the term is used to refer to the simpler compounds in this class which include numerous psychoactive drugs, including stimulants, psychedelics and empathogens. In general, these compounds have a benzofuran core to which a 2-aminoethyl group is attached, and combined with a range of other substituents. Some psychoactive derivatives from this family have been sold under the name Benzofury.
Amphetamine type stimulants (ATS) are a group of synthetic drugs that are chemical derivatives of the parent compound alpha-methylphenethylamine, also known as amphetamine. Common ATS includes amphetamine, methamphetamine, ephedrine, pseudoephedrine, 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxyamphetamine (MDA) and 3,4-methylenedioxyethylamphetamine (MDEA). ATS when used illicitly has street names including ice, meth, crystal, crank, bennies, and speed. Within the group of amphetamine-type stimulants, there are also prescription drugs including mixed amphetamine salts, dextroamphetamine, and lisdexamfetamine.
Substituted β-hydroxyamphetamines, or simply β-hydroxyamphetamines, also known as substituted phenylisopropanolamines, substituted phenylpropanolamines, substituted norephedrines, or substituted cathinols, are derivatives of β-hydroxyamphetamine with one or more chemical substituents. They are substituted phenethylamines, phenylethanolamines (β-hydroxyphenethylamines), and amphetamines (α-methylphenethylamines), and are closely related to but distinct from the substituted cathinones (β-ketoamphetamines). Examples of β-hydroxyamphetamines include the β-hydroxyamphetamine stereoisomers phenylpropanolamine and cathine and the stereospecific N-methylated β-hydroxyamphetamine derivatives ephedrine and pseudoephedrine, among many others.
Substituted amphetamines, which are also called phenylpropylamino alkaloids, are a diverse group of nitrogen-containing compounds that feature a phenethylamine backbone with a methyl group at the α-position relative to the nitrogen (Figure 1). Countless variation in functional group substitutions has yielded a collection of synthetic drugs with diverse pharmacological properties as stimulants, empathogens and hallucinogens [3]. ... Beyond (1R,2S)-ephedrine and (1S,2S)-pseudoephedrine, myriad other substituted amphetamines have important pharmaceutical applications. The stereochemistry at the α-carbon is often a key determinant of pharmacological activity, with (S)-enantiomers being more potent. For example, (S)-amphetamine, commonly known as d-amphetamine or dextroamphetamine, displays five times greater psychostimulant activity compared with its (R)-isomer [78]. Most such molecules are produced exclusively through chemical syntheses and many are prescribed widely in modern medicine. For example, (S)-amphetamine (Figure 4b), a key ingredient in Adderall and Dexedrine, is used to treat attention deficit hyperactivity disorder (ADHD) [79]. ...
[Figure 4](b) Examples of synthetic, pharmaceutically important substituted amphetamines.
The simplest unsubstituted phenylisopropylamine, 1-phenyl-2-aminopropane, or amphetamine, serves as a common structural template for hallucinogens and psychostimulants. Amphetamine produces central stimulant, anorectic, and sympathomimetic actions, and it is the prototype member of this class (39).
{{cite web}}
: CS1 maint: unfit URL (link) May 2010 Edition Archived 24 December 2012 at the Wayback Machine {{cite web}}
: CS1 maint: unfit URL (link)