F-15,599

Last updated
F-15,599
F-15,599.svg
Clinical data
Other namesF-15599; F15599; NLX-101; NLX101
Routes of
administration
Oral
Drug class Serotonin 5-HT1A receptor agonist
Legal status
Legal status
  • Investigational
Identifiers
  • 3-Chloro-4-fluorophenyl-[4-fluoro-4-[[(5-methylpyrimidin-2-ylmethyl)amino]methyl]piperidin-1-yl]methanone
CAS Number
PubChem CID
IUPHAR/BPS
ChemSpider
UNII
CompTox Dashboard (EPA)
Chemical and physical data
Formula C19H22ClF2N4O
Molar mass 395.86 g·mol−1
3D model (JSmol)
  • Cc3cnc(nc3)CNCC(F)(CC2)CCN2C(=O)c(cc1Cl)ccc1F
  • InChI=1S/C19H21ClF2N4O/c1-13-9-24-17(25-10-13)11-23-12-19(22)4-6-26(7-5-19)18(27)14-2-3-16(21)15(20)8-14/h2-3,8-10,23H,4-7,11-12H2,1H3 X mark.svgN
  • Key:WAAXKNFGOFTGLP-UHFFFAOYSA-N X mark.svgN
   (verify)

F-15,599, also known as NLX-101, is a potent and selective 5-HT1A receptor full agonist. [1] [2] In addition, it displays functional selectivity, or biased agonism, by preferentially activating postsynaptic serotonin 5-HT1A receptors over somatodendritic serotonin 5-HT1A autoreceptors. [3] [1] [2] The drug has been investigated for potential use as a pharmaceutical drug in the treatment of conditions including depression, schizophrenia, cognitive disorders, Rett syndrome, and fragile X syndrome. [4]

Contents

Pharmacology

Pharmacodynamics

In terms of its functional selectivity, the drug preferentially activates and phosphorylates ERK1/2 over receptor internalization or inhibition of adenylyl cyclase. [3] In addition, it preferentially activates the Gαi G protein subtype over the Gαo subtype. [3] As a result of its biased agonism for postsynaptic 5-HT1A receptors, F-15,599 shows regional selectivity in its central effects. [3] It mainly activates the prefrontal cortex, cingulate cortex, retrosplenial cortex, septum, and colliculi. [3] Conversely, the drug does not significantly alter cerebral blood flow in areas characterized by abundance of presynaptic serotonin 5-HT1A receptors, such as the raphe nucleus. [3] [1] [2]

F-15,599 has shown antidepressant-like, anxiolytic-like, antidyskinetic, procognitive, and antiaggressive effects in animals. [3] [1] [2] [5] In cognitive tests in rodents, F-15,599 attenuates memory deficits elicited by the NMDA receptor antagonist phencyclidine (PCP), suggesting that it may improve cognitive function in disorders such as schizophrenia. [6] Another study found that F-15,599 reduces breathing irregularity and apneas observed in mice with mutations of the MeCP2 gene, a mouse model of Rett syndrome. [3] [7]

History

F-15,599 was first described in the scientific literature by 2006. [8]

Clinical trials

F-15,599 was discovered and initially developed by Pierre Fabre Médicament, a French pharmaceuticals company. In September 2013, F-15,599 was out-licensed to Neurolixis, a California-based biotechnology company. Neurolixis announced that it intends to re-purpose F-15,599 for the treatment of Rett syndrome. [9] and obtained orphan drug designation from the United States Food and Drug Administration (FDA) [10] and from the European Commission for this indication. [11]

Researchers at the University of Bristol are investigating the activity of F-15599 in animal models of Rett Syndrome, with support from the International Rett Syndrome Foundation. [12] In June 2015, the Rett Syndrome Research Trust awarded a grant to Neurolixis to advance F-15599 to clinical development. [13]

As of September 2024, F-15,599 is in phase 1 clinical trials for fragile X syndrome. [4] Conversely, no recent development has been reported for depressive disorders or Rett syndrome and development has been discontinued for cognition disorders, mood disorders, and schizophrenia. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Aripiprazole</span> Atypical antipsychotic

Aripiprazole, sold under the brand names Abilify and Aristada, among others, is an atypical antipsychotic. It is primarily used in the treatment of schizophrenia and bipolar disorder; other uses include as an add-on treatment in major depressive disorder and obsessive–compulsive disorder (OCD), tic disorders, and irritability associated with autism. Aripiprazole is taken by mouth or via injection into a muscle. A Cochrane review found low-quality evidence of effectiveness in treating schizophrenia.

<span class="mw-page-title-main">Mirtazapine</span> Antidepressant medication

Mirtazapine, sold under the brand name Remeron among others, is an atypical tetracyclic antidepressant, and as such is used primarily to treat depression. Its effects may take up to four weeks but can also manifest as early as one to two weeks. It is often used in cases of depression complicated by anxiety or insomnia. The effectiveness of mirtazapine is comparable to other commonly prescribed antidepressants. It is taken by mouth.

<span class="mw-page-title-main">Pergolide</span> Dopamine agonist medication

Pergolide, sold under the brand name Permax and Prascend (veterinary) among others, is an ergoline-based dopamine receptor agonist used in some countries for the treatment of Parkinson's disease. Parkinson's disease is associated with reduced dopamine synthesis in the substantia nigra of the brain. Pergolide acts on many of the same receptors as dopamine to increase receptor activity.

<span class="mw-page-title-main">Azapirone</span> Drug class of psycotropic drugs

Azapirones are a class of drugs used as anxiolytics, antidepressants, and antipsychotics. They are commonly used as add-ons to other antidepressants, such as selective serotonin reuptake inhibitors (SSRIs).

5-HT<sub>2A</sub> receptor Subtype of serotonin receptor

The 5-HT2A receptor is a subtype of the 5-HT2 receptor that belongs to the serotonin receptor family and is a G protein-coupled receptor (GPCR). The 5-HT2A receptor is a cell surface receptor, but has several intracellular locations.

<span class="mw-page-title-main">Serotonin receptor agonist</span> Neurotransmission-modulating substance

A serotonin receptor agonist is an agonist of one or more serotonin receptors. They activate serotonin receptors in a manner similar to that of serotonin, a neurotransmitter and hormone and the endogenous ligand of the serotonin receptors.

<span class="mw-page-title-main">Bifeprunox</span> Experimental dopamine D2 receptor partial agonist researched as an antipsychotic agent

Bifeprunox (INN) (code name DU-127,090) is an atypical antipsychotic which, similarly to aripiprazole, combines minimal D2 receptor agonism with serotonin receptor agonism. It was under development for the treatment of schizophrenia, psychosis and Parkinson's disease.

5-HT<sub>1A</sub> receptor Serotonin receptor protein distributed in the cerebrum and raphe nucleus

The serotonin 1A receptor is a subtype of serotonin receptors, or 5-HT receptors, that binds serotonin, also known as 5-HT, a neurotransmitter. 5-HT1A is expressed in the brain, spleen, and neonatal kidney. It is a G protein-coupled receptor (GPCR), coupled to the Gi protein, and its activation in the brain mediates hyperpolarization and reduction of firing rate of the postsynaptic neuron. In humans, the serotonin 1A receptor is encoded by the HTR1A gene.

<span class="mw-page-title-main">WAY-100635</span> Chemical compound

WAY-100635 is a piperazine drug and research chemical widely used in scientific studies. It was originally believed to act as a selective 5-HT1A receptor antagonist, but subsequent research showed that it also acts as potent full agonist at the D4 receptor. It is sometimes referred to as a silent antagonist at the former receptor. It is closely related to WAY-100135.

<span class="mw-page-title-main">Nemonapride</span> Antipsychotic medication

Nemonapride, also previously known as emonapride and sold under the brand name Emilace, is an atypical antipsychotic which is used in the treatment of schizophrenia. It is taken by mouth.

<span class="mw-page-title-main">S-15535</span> Chemical compound

S-15535 is a phenylpiperazine drug which is a potent and highly selective 5-HT1A receptor ligand that acts as an agonist and antagonist at the presynaptic and postsynaptic 5-HT1A receptors, respectively. It has anxiolytic properties.

<span class="mw-page-title-main">Befiradol</span> Chemical compound

Befiradol is an experimental drug being studied for the treatment of levodopa-induced dyskinesia. It is a potent and selective 5-HT1A receptor full agonist.

A serenic, or anti-aggressive drug, is a type of drug which reduces the capacity for aggression.

<span class="mw-page-title-main">Eptapirone</span> Chemical compound

Eptapirone (F-11,440) is a very potent and highly selective 5-HT1A receptor full agonist of the azapirone family. Its affinity for the 5-HT1A receptor was reported to be 4.8 nM (Ki), and its intrinsic activity approximately equal to that of serotonin.

<span class="mw-page-title-main">Tiospirone</span> Atypical antipsychotic drug

Tiospirone (BMY-13,859), also sometimes called tiaspirone or tiosperone, is an atypical antipsychotic of the azapirone class. It was investigated as a treatment for schizophrenia in the late 1980s and was found to have an effectiveness equivalent to those of typical antipsychotics in clinical trials but without causing extrapyramidal side effects. However, development was halted and it was not marketed. Perospirone, another azapirone derivative with antipsychotic properties, was synthesized and assayed several years after tiospirone. It was found to be both more potent and more selective in comparison and was commercialized instead.

<span class="mw-page-title-main">Roxindole</span> Dopaminergic & serotonergic drug developed for schizophrenia treatment

Roxindole (EMD-49,980) is a dopaminergic and serotonergic drug which was originally developed by Merck KGaA for the treatment of schizophrenia. In clinical trials its antipsychotic efficacy was only modest but it was unexpectedly found to produce potent and rapid antidepressant and anxiolytic effects. As a result, roxindole was further researched for the treatment of depression instead. It has also been investigated as a therapy for Parkinson's disease and prolactinoma.

<span class="mw-page-title-main">Sarizotan</span> Chemical compound

Sarizotan (EMD-128,130) is a selective 5-HT1A receptor agonist and D2 receptor antagonist, which has antipsychotic effects, and has also shown efficacy in reducing dyskinesias resulting from long-term anti-Parkinsonian treatment with levodopa.

<span class="mw-page-title-main">F-15063</span> Chemical compound

F-15,063 is an orally active potential antipsychotic, and an antagonist at the D2/D3 receptors, partial agonist at the D4 receptor, and agonist at the 5-HT1A receptors. It has greater efficacy at the 5-HT1A receptors than other antipsychotics, such as clozapine, aripiprazole, and ziprasidone. This greater efficacy may lead to enhanced antipsychotic properties, as antipsychotics that lack 5-HT1A affinity are associated with increased risk of extrapyramidal symptoms, and lack of activity against the negative symptoms of schizophrenia.

<span class="mw-page-title-main">Neurolixis</span>

Neurolixis is a biopharmaceutical company focused on novel drugs for the treatment of human central nervous system diseases.

A serotonin modulator and stimulator (SMS), sometimes referred to more simply as a serotonin modulator, is a type of drug with a multimodal action specific to the serotonin neurotransmitter system. To be precise, SMSs simultaneously modulate one or more serotonin receptors and inhibit the reuptake of serotonin. The term was created to describe the mechanism of action of the serotonergic antidepressant vortioxetine, which acts as a serotonin reuptake inhibitor (SRI), agonist of the 5-HT1A receptor, and antagonist of the 5-HT3 and 5-HT7 receptors. However, it can also technically be applied to vilazodone, which is an antidepressant as well and acts as an SRI and 5-HT1A receptor partial agonist.

References

  1. 1 2 3 4 Maurel JL, Autin JM, Funes P, Newman-Tancredi A, Colpaert F, Vacher B (October 2007). "High-efficacy 5-HT1A agonists for antidepressant treatment: a renewed opportunity". Journal of Medicinal Chemistry. 50 (20): 5024–33. doi:10.1021/jm070714l. PMID   17803293.
  2. 1 2 3 4 Newman-Tancredi A, Martel JC, Assié MB, et al. (January 2009). "Signal transduction and functional selectivity of F15599, a preferential post-synaptic 5-HT1A receptor agonist". British Journal of Pharmacology. 156 (2): 338–53. doi:10.1111/j.1476-5381.2008.00001.x. PMC   2697830 . PMID   19154445.
  3. 1 2 3 4 5 6 7 8 Sałaciak K, Pytka K (November 2021). "Biased agonism in drug discovery: Is there a future for biased 5-HT1A receptor agonists in the treatment of neuropsychiatric diseases?". Pharmacol Ther. 227: 107872. doi: 10.1016/j.pharmthera.2021.107872 . PMID   33905796.
  4. 1 2 3 "NLX 101". AdisInsight. 28 September 2024. Retrieved 26 October 2024.
  5. Assié MB, Bardin L, Auclair AL, et al. (November 2010). "F15599, a highly selective post-synaptic 5-HT(1A) receptor agonist: in-vivo profile in behavioural models of antidepressant and serotonergic activity". The International Journal of Neuropsychopharmacology. 13 (10): 1285–1298. doi: 10.1017/S1461145709991222 . PMID   20059805.
  6. Depoortère R, Auclair AL, Bardin L, Colpaert FC, Vacher B, Newman-Tancredi A (September 2010). "F15599, a preferential post-synaptic 5-HT1A receptor agonist: activity in models of cognition in comparison with reference 5-HT1A receptor agonists". European Neuropsychopharmacology. 20 (9): 641–654. doi:10.1016/j.euroneuro.2010.04.005. PMID   20488670. S2CID   22222213.
  7. Levitt ES, Hunnicutt BJ, Knopp SJ, Williams JT, Bissonnette JM (December 2013). "A selective 5-HT1a receptor agonist improves respiration in a mouse model of Rett syndrome". Journal of Applied Physiology. 115 (11): 1626–33. doi:10.1152/japplphysiol.00889.2013. PMC   3882741 . PMID   24092697.
  8. Assié, M. B., Cosi, C., Slot, L. B., Cussac, D., Martel, J. C., Depoortere, R., ... & Newman-Tancredi, A. (2006, October). Pharmacological profile of F15599, a highly selective serotonin 5-HT1A receptor agonist. In Society for Neuroscience 36th Annual Meeting, Atlanta, Georgia, USA (pp. 14–18). https://scholar.google.com/scholar?cluster=13780243967428028494
  9. http://neurolixis.com/images/stories/nlx_pf_license_23sept13.pdf%5B%5D
  10. "Enforcement Reports". Archived from the original on 2015-02-24. Retrieved 2014-03-03.
  11. "Public Health - European Commission".
  12. "April: Rett syndrome research | News and features | University of Bristol".
  13. "RSRT Awards $530,000 to Neurolixis for Clinical Development of NLX-101". 24 June 2015.