SCHEMBL5334361

Last updated
SCHEMBL5334361
SCHEMBL5334361.svg
Identifiers
  • 7-[(3-methoxyphenoxy)methyl]-2,3,4,5-tetrahydro-1H-3-benzazepine
CAS Number
PubChem CID
Chemical and physical data
Formula C18H21NO2
Molar mass 283.371 g·mol−1
3D model (JSmol)
  • COC1=CC(=CC=C1)OCC2=CC3=C(CCNCC3)C=C2
  • InChI=1S/C18H21NO2/c1-20-17-3-2-4-18(12-17)21-13-14-5-6-15-7-9-19-10-8-16(15)11-14/h2-6,11-12,19H,7-10,13H2,1H3
  • Key:BFCIUKMUJQOSDE-UHFFFAOYSA-N

SCHEMBL5334361 is a drug which acts as an agonist at the 5-HT2 family of serotonin receptors, and was developed for the treatment of glaucoma. It is a benzazepine derivative structurally related to the anorectic drug lorcaserin. It is selective for 5-HT2A, with an EC50 of 0.4nM at 5-HT2A vs 3.9nM at 5-HT2C and a much lower affinity of 417nM at 5-HT2B. [1]

See also

Related Research Articles

3,4-Methylenedioxyamphetamine Empathogen-entactogen, psychostimulant, and psychedelic drug of the amphetamine family

3,4-Methylenedioxyamphetamine is an empathogen-entactogen, psychostimulant, and psychedelic drug of the amphetamine family that is encountered mainly as a recreational drug. In terms of pharmacology, MDA acts most importantly as a serotonin–norepinephrine–dopamine releasing agent (SNDRA). In most countries, the drug is a controlled substance and its possession and sale are illegal.

Carteolol Chemical compound

Carteolol is a non-selective beta blocker used to treat glaucoma.

25I-NBOH Chemical compound

25I-NBOH is a derivative of the phenethylamine-derived hallucinogen 2C-I that was discovered in 2006 by a team at Purdue University.

25I-NBOMe Synthetic hallucinogen

25I-NBOMe is a synthetic hallucinogen that is used in biochemistry research for mapping the brain's usage of the type 2A serotonin receptor; it is also sometimes used for recreational purposes. A derivative of the substituted phenethylamine 2C-I family, it is the most well-known member of the 25-NB family. It was discovered in 2003 by chemist Ralf Heim at the Free University of Berlin, who published his findings in his PhD dissertation. The compound was subsequently investigated by a team at Purdue University led by David Nichols.

AL-34662 Chemical compound

AL-34662 is an indazole derivative drug that is being developed for the treatment of glaucoma. It acts as a selective 5-HT2A receptor agonist, the same target as that of psychedelic drugs like psilocin, but unlike these drugs, AL-34662 was designed specifically as a peripherally selective drug, which does not cross the blood–brain barrier. This means that AL-34662 can exploit a useful side effect of the hallucinogenic 5-HT2A agonists, namely reduction in intra-ocular pressure and hence relief from the symptoms of glaucoma, but without causing the hallucinogenic effects that make centrally active 5-HT2A agonists unsuitable for clinical use. In animal studies, AL-34662 has been shown to be potent and effective in the treatment of symptoms of glaucoma, with minimal side effects.

YM-348 Chemical compound

YM-348 is an indazole derivative drug which acts as a potent and selective 5-HT2C receptor agonist, with an EC50 of 1nM and 15x selectivity over 5-HT2A, although it only has moderate selectivity of 3x over the closely related 5-HT2B receptor. It has thermogenic and anorectic effects in animal studies, making it potentially useful for the treatment of obesity.

2CBCB-NBOMe

2CBCB-NBOMe (NBOMe-TCB-2) is a compound indirectly derived from the phenethylamine series of hallucinogens, which was discovered in 2007 at Purdue University as part of the ongoing research program of the team led by David Nichols focusing on the mapping of the specific amino acid residues responsible for ligand binding to the 5HT2A receptor. 2CBCB-NBOMe acts as a potent and selective agonist for the 5-HT2A and 5-HT2C receptors, with a Ki of 0.27 nM at the human 5-HT2A receptor, a similar potency to other agonists such as TCB-2, NBOMe-2C-I and Bromo-DragonFLY.

25I-NBMD

25I-NBMD is a derivative of the phenethylamine hallucinogen 2C-I, discovered in 2006 by a team at Purdue University led by David Nichols. It acts as a potent partial agonist for the 5HT2A receptor with a Ki of 0.049 nM at the human 5HT2A receptor. The corresponding 4-bromo analogue 25B-NBMD has been used for molecular dynamics studies on the shape of the 5-HT2A receptor.

AL-37350A Chemical compound

AL-37350A (4,5-DHP-AMT) is a tryptamine derivative which acts as a potent and selective agonist for the serotonin receptor 5-HT2A, with a Ki of 2.0 nM, and moderate selectivity over the related 5-HT2B and 5-HT2C receptors. It has been shown to have ocular hypotensive activity in animal models, suggesting it may be useful for the treatment of glaucoma.

DO<em>x</em> Class of chemical compounds

4-Substituted-2,5-dimethoxyamphetamines (DOx) is a chemical class of substituted amphetamine derivatives featuring methoxy groups at the 2- and 5- positions of the phenyl ring, and a substituent such as alkyl or halogen at the 4- position of the phenyl ring. Most compounds of this class are potent and long-lasting psychedelic drugs, and act as highly selective 5-HT2A, 5-HT2B, and 5-HT2C receptor partial agonists. A few bulkier derivatives such as DOAM have similarly high binding affinity for 5-HT2 receptors but instead act as antagonists, and so do not produce psychedelic effects though they retain amphetamine-like stimulant effects.

Tiospirone

Tiospirone (BMY-13,859), also sometimes called tiaspirone or tiosperone, is an atypical antipsychotic of the azapirone class. It was investigated as a treatment for schizophrenia in the late 1980s and was found to have an effectiveness equivalent to those of typical antipsychotics in clinical trials but without causing extrapyramidal side effects. However, development was halted and it was not marketed. Perospirone, another azapirone derivative with antipsychotic properties, was synthesized and assayed several years after tiospirone. It was found to be both more potent and more selective in comparison and was commercialized instead.

25I-NBF Chemical compound

25I-NBF is a derivative of the phenethylamine hallucinogen 2C-I, which acts as a highly potent partial agonist for the human 5-HT2A receptor. It has been studied in its 11C radiolabelled form as a potential ligand for mapping the distribution of 5-HT2A receptors in the brain, using positron emission tomography (PET).

Substituted tryptamine Class of indoles

Substituted tryptamines, or serotonin analogues, are organic compounds which may be thought of as being derived from tryptamine itself. The molecular structures of all tryptamines contain an indole ring, joined to an amino (NH2) group via an ethyl (−CH2–CH2−) sidechain. In substituted tryptamines, the indole ring, sidechain, and/or amino group are modified by substituting another group for one of the hydrogen (H) atoms.

25N-NBOMe Chemical compound

25N-NBOMe is a derivative of the hallucinogen 2C-N. The pharmacological properties of 25N-NBOMe have not been described in the scientific literature, but it is believed to act in a similar manner to related compounds such as 25I-NBOMe and 25C-NBOMe, which are potent agonists at the 5HT2A receptor. 25N-NBOMe has been sold as a street drug and has only been described in the literature in terms of identification by forensic analysis.

1-Methylpsilocin Chemical compound

1-Methylpsilocin is a tryptamine derivative which acts as a selective agonist for the 5-HT2C receptor (IC50 of 12 nM, vs 633 nM at 5-HT2A), and an inverse agonist at 5-HT2B (Ki of 38 nM). While 1-methylpsilocin does have higher affinity for 5-HT2C than 5-HT2A, it does produce a head-twitch response in mice that are dependent on 5-HT2A, so it is not entirely free of effects on 5-HT2A in vivo. In contrast to psilocin, 1-methylpsilocin did not activate 5-HT1A receptors in mice. 1-Methylpsilocin has been investigated for applications such as treatment of glaucoma, OCD, and cluster headaches, as these conditions are amenable to treatment with psychedelic drugs but are not generally treated with such agents due to the hallucinogenic side effects they produce, which are considered undesirable. 1-Methylpsilocin therefore represents a potential alternative treatment to psilocin that may be less likely to produce hallucinogenic effects.

25B-NBOH

25B-NBOH is a derivative of the phenethylamine derived hallucinogen 2C-B which has been sold as a designer drug. It acts as a potent serotonin receptor agonist with similar affinity to the better-known compound 25B-NBOMe at 5-HT2A and 5-HT2C receptors with pKis values of 8.3 and 9.4, respectively.

NBOMe-mescaline

NBOMe-mescaline or mescaline-NBOMe is a synthetic substituted phenethylamine. It is a partial agonist of serotonin receptors with a 5-HT2A pKi originally reported as 7.3, though more modern techniques assayed it as 140nM at 5-HT2A and 640nM at 5-HT2C, making it one of the least potent compounds among the n-benzyl phenethylamines.

25I-NB34MD Derivative of the phenethylamine hallucinogen 2C-I

25I-NB34MD (NB34MD-2C-I) is a derivative of the phenethylamine hallucinogen 2C-I, which acts as a potent partial agonist for the human 5-HT2A receptor, and presumably has similar properties to 2C-I. It has a binding affinity of 0.67nM at the human 5-HT2A receptor, making it several times weaker than its positional isomer 25I-NBMD and a similar potency to 25I-NBF.

25C-NBF Chemical compound

25C-NBF is a derivative of the phenethylamine hallucinogen 2C-C, which acts as a highly potent partial agonist for the human 5-HT2A receptor.

25-NB

The 25-NB (25x-NBx) series, sometimes alternatively referred to as the NBOMe compounds, is a family of serotonergic psychedelics. They are substituted phenethylamines and were derived from the 2C family. They act as selective agonists of the serotonin 5-HT2A receptor. The 25-NB family is unique relative to other classes of psychedelics in that they are, generally speaking, extremely potent and relatively selective for the 5-HT2A receptor.

References

  1. WO 2007149728,Mohapatra S, Hellberg MR, Feng Z,"Aryl and heteroaryl tetrahydrobenzazepine derivatives and their use for treating glaucoma", assigned to Alcon Manufacturing, Ltd.