Methamnetamine

Last updated
Methamnetamine
Methamnetamine.svg
Clinical data
Other namesMethylnaphetamine; MNA; MNT; MNAP; PAL-1046; MY-10; [1] N-Methylnaphthylaminopropane; N-Methylnaphthylisopropylamine
Legal status
Legal status
Identifiers
  • N-Methyl-1-(naphthalen-2-yl)propan-2-amine
CAS Number
PubChem CID
ChemSpider
UNII
CompTox Dashboard (EPA)
Chemical and physical data
Formula C14H17N
Molar mass 199.297 g·mol−1
3D model (JSmol)
  • CNC(C)Cc1ccc2ccccc2c1
  • InChI=1S/C14H17N/c1-11(15-2)9-12-7-8-13-5-3-4-6-14(13)10-12/h3-8,10-11,15H,9H2,1-2H3
  • Key:BWWWOLYZMKACSB-UHFFFAOYSA-N

Methamnetamine (also known as methylnaphetamine, MNA, MNT, MNAP, PAL-1046, and MY-10) is a triple monoamine releasing agent of the amphetamine and naphthylaminopropane families. It is the N-methyl analog of the non-neurotoxic experimental drug naphthylaminopropane and the naphthalene analog of methamphetamine. [2] [3] [4] It has been sold online as a designer drug. [5] [6]

Contents

Pharmacology

Pharmacodynamics

Methamnetamine acts as a releasing agent of serotonin, norepinephrine, and dopamine, with EC50 values of 13 nM, 34 nM, and 10 nM, respectively. [2]

Monoamine release of methamnetamine and related agents (EC50 Tooltip Half maximal effective concentration, nM)
Compound NE Tooltip Norepinephrine DA Tooltip Dopamine 5-HT Tooltip SerotoninRef
d-Amphetamine 6.6–10.25.8–24.8698–1,765 [7] [8] [9] [10] [11]
Naphthylaminopropane (NAP; PAL-287)11.112.63.4 [12] [9]
d-Methamphetamine 12.3–14.38.5–40.4736–1,292 [7] [13] [9] [11]
Methylnaphthylaminopropane (MNAP; PAL-1046)341013 [14] [15]
l-Methcathinone 13.114.81,772 [16] [10]
2-Naphthylmethcathinone (BMAPN; βk-MNAP)94% at 10 μM3427 [17] [18]
d-Ethylamphetamine 28.844.1333.0 [19] [20]
Ethylnaphthylaminopropane (ENAP; PAL-1045)13746 a12 a [14]
Phenmetrazine 29–50.470–1317,765–>10,000 [21] [9] [22] [23]
Naphthylmetrazine (PAL-704)203111RI (105) [23]
Notes: The smaller the value, the more strongly the drug releases the neurotransmitter. The assays were done in rat brain synaptosomes and human potencies may be different. See also Monoamine releasing agent § Activity profiles for a larger table with more compounds. Footnotes:a ENAP Tooltip Ethylnaphthylaminopropane is a partial releaser of serotonin (Emax Tooltip maximal efficacy = 66%) and dopamine (Emax = 78%). Refs: [24] [25]

Society and culture

Methamnetamine is illegal in Japan. [26]

See also

Related Research Articles

<span class="mw-page-title-main">Etilamfetamine</span> Chemical compound

Etilamfetamine, also known as N-ethylamphetamine and formerly sold under the brand names Apetinil and Adiparthrol, is a stimulant drug of the amphetamine family. It was invented in the early 20th century and was subsequently used as an anorectic or appetite suppressant in the 1950s, but was not as commonly used as other amphetamines such as amphetamine, methamphetamine, and benzphetamine, and was largely discontinued once newer drugs such as phenmetrazine were introduced.

<span class="mw-page-title-main">Propylamphetamine</span> Chemical compound

Propylamphetamine is a psychostimulant of the amphetamine family which was never marketed. It was first developed in the 1970s, mainly for research into the metabolism of, and as a comparison tool to, other amphetamines.

<span class="mw-page-title-main">Naphthylaminopropane</span> Chemical compound

Naphthylaminopropane, also known as naphthylisopropylamine (NIPA), is an experimental drug of the amphetamine and naphthylaminopropane families that was under investigation for the treatment of alcohol and stimulant addiction.

<span class="mw-page-title-main">Norfenfluramine</span> Never-marketed drug of the amphetamine family

Norfenfluramine, or 3-trifluoromethylamphetamine, is a never-marketed drug of the amphetamine family and a major active metabolite of the appetite suppressants fenfluramine and benfluorex. The compound is a racemic mixture of two enantiomers with differing activities, dexnorfenfluramine and levonorfenfluramine.

<span class="mw-page-title-main">Monoamine releasing agent</span> Class of compounds

A monoamine releasing agent (MRA), or simply monoamine releaser, is a drug that induces the release of one or more monoamine neurotransmitters from the presynaptic neuron into the synapse, leading to an increase in the extracellular concentrations of the neurotransmitters and hence enhanced signaling by those neurotransmitters. The monoamine neurotransmitters include serotonin, norepinephrine, and dopamine; MRAs can induce the release of one or more of these neurotransmitters.

<span class="mw-page-title-main">2-Aminoindane</span> Chemical compound

2-Aminoindane (2-AI) is an aminoindane and research chemical with applications in neurologic disorders and psychotherapy that has also been sold as a designer drug. It acts as a selective substrate for NET and DAT.

<span class="mw-page-title-main">Dopamine releasing agent</span> Type of drug

A dopamine releasing agent (DRA) is a type of drug which induces the release of dopamine in the body and/or brain.

<span class="mw-page-title-main">4-Methylamphetamine</span> Stimulant and anorectic drug of the amphetamine class

4-Methylamphetamine (4-MA), also known by the former proposed brand name Aptrol, is a stimulant and anorectic drug of the amphetamine family. It is structurally related to mephedrone (4-methylmethcathinone).

<span class="mw-page-title-main">4-Methylmethamphetamine</span> Stimulant and entactogen drug of the amphetamine class

4-Methylmethamphetamine (4-MMA), also known as mephedrine, is a putative stimulant and entactogen drug of the amphetamine family. It acts as a serotonin–norepinephrine–dopamine releasing agent (SNDRA). The drug is the β-deketo analogue of mephedrone and the N-methyl analogue of 4-methylamphetamine (4-MA).

<span class="mw-page-title-main">Substituted cathinone</span> Class of chemical compounds

Substituted cathinones, or simply cathinones, which include some stimulants and entactogens, are derivatives of cathinone. They feature a phenethylamine core with an alkyl group attached to the alpha carbon, and a ketone group attached to the beta carbon, along with additional substitutions. Cathinone occurs naturally in the plant khat whose leaves are chewed as a recreational drug.

<span class="mw-page-title-main">Pseudophenmetrazine</span> Chemical compound

Pseudophenmetrazine is a psychostimulant of the phenylmorpholine group. It is the N-demethylated and cis-configured analogue of phendimetrazine as well as the cis-configured stereoisomer of phenmetrazine. In addition, along with phenmetrazine, it is believed to be one of the active metabolites of phendimetrazine, which itself is inactive and behaves merely as a prodrug.

<span class="mw-page-title-main">MDMAR</span> Chemical compound

3',4'-Methylenedioxy-4-methylaminorex (MDMAR) is a recreational designer drug from the substituted aminorex family, with monoamine-releasing effects. It is a potent serotonin–norepinephrine–dopamine releasing agent (SNDRA).

<span class="mw-page-title-main">2-Naphthylmethcathinone</span> Substituted cathinone stimulant drug

2-Naphthylmethcathinone (BMAPN), also known as βk-methamnetamine, is a stimulant drug of the cathinone and naphthylaminopropane families. It inhibits dopamine reuptake and has rewarding and reinforcing properties in animal studies. It is banned under drug analogue legislation in a number of jurisdictions. The drug was at one point marketed under the name NRG-3, although only a minority of samples of substances sold under this name have been found to actually contain BMAPN, with most such samples containing mixtures of other cathinone derivatives.

<span class="mw-page-title-main">Butylamphetamine</span> Amphetamine derivative and stimulant

Butylamphetamine is a psychostimulant of the substituted amphetamine family which was never marketed.

<span class="mw-page-title-main">2-Phenylmorpholine</span> Pharmaceutical compound

2-Phenylmorpholine is the parent compound of the substituted phenylmorpholine class of compounds. Examples of 2-phenylmorpholine derivatives include phenmetrazine (3-methyl-2-phenylmorpholine), phendimetrazine ( -3,4-dimethyl-2-phenylmorpholine), and pseudophenmetrazine ( -3-methyl-2-phenylmorpholine), which are monoamine releasing agents (MRAs) and psychostimulants. 2-Phenylmorpholine itself is a potent norepinephrine–dopamine releasing agent (NDRA) and hence may act as a stimulant similarly.

<span class="mw-page-title-main">Ethylnaphthylaminopropane</span> Pharmaceutical compound

Ethylnaphthylaminopropane is a monoamine releasing agent (MRA) of the amphetamine and naphthylaminopropane families that is related to naphthylaminopropane and methamnetamine. It acts specifically as a serotonin–norepinephrine–dopamine releasing agent (SNDRA). However, ENAP is unusual in being a partial releaser of serotonin and dopamine and a full releaser of norepinephrine.

<span class="mw-page-title-main">Naphthylmetrazine</span> Pharmaceutical compound

Naphthylmetrazine, also known as 3-methyl-2-(2′-naphthyl)morpholine, is a monoamine releasing agent (MRA) and monoamine reuptake inhibitor (MRI) of the phenylmorpholine and naphthylaminopropane families related to phenmetrazine. It is a analogue of phenmetrazine in which the phenyl ring has been replaced with a naphthalene ring.

<span class="mw-page-title-main">Substituted naphthylethylamine</span>

The substituted naphthylethylamines are a class of chemical compounds based on naphthalene. Many naphthylethylamines are naphthylaminopropanes due to the presence of a methyl group at the alpha carbon of the alkyl chain. The naphthylethylamines are derivatives of the phenethylamines, while the naphthylaminopropanes are derivatives of the amphetamines.

<span class="mw-page-title-main">1-Naphthylaminopropane</span> Pharmaceutical compound

1-Naphthylaminopropane (1-NAP), also known as 1-naphthylisopropylamine or as α-naphthylaminopropane (α-NAP), is a drug of the amphetamine and naphthylaminopropane families. It is a positional isomer of 2-naphthylaminopropane.

<span class="mw-page-title-main">Naphthylmorpholine</span> Pharmaceutical compound

Naphthylmorpholine, also known as 2-(2′-naphthyl)morpholine, is a monoamine releasing agent of the arylmorpholine and naphthylethylamine families. It is the derivative of 2-phenylmorpholine with a 2-naphthalene ring instead of a phenyl ring. Naphthylmorpholine is a close analogue of naphthylmetrazine, but lacks naphthylmetrazine's methyl group at the 3 position of the morpholine ring.

References

  1. U.S. patent 6,057,371
  2. 1 2 Rothman RB, Partilla JS, Baumann MH, Lightfoot-Siordia C, Blough BE (April 2012). "Studies of the biogenic amine transporters. 14. Identification of low-efficacy "partial" substrates for the biogenic amine transporters". The Journal of Pharmacology and Experimental Therapeutics. 341 (1): 251–262. doi:10.1124/jpet.111.188946. PMC   3364510 . PMID   22271821.
  3. Youn DH, Kim JM, Hong YK, Park SI, Lee JM, Kim YH, et al. (August 2021). "Assessment of the abuse potential of methamnetamine in rodents: a behavioral pharmacology study". Psychopharmacology. 238 (8): 2155–2165. doi:10.1007/s00213-021-05840-9. PMID   33811503. S2CID   232773019.
  4. Hong YK, Kim YH, Lee JM, Yoo HH, Choi SO, Kang MS (July 2021). "Characterization of in vitro phase I metabolites of methamnetamine in human liver microsomes by liquid chromatography-quadrupole time-of-flight mass spectrometry". International Journal of Legal Medicine. 135 (4): 1471–1476. doi:10.1007/s00414-021-02594-z. PMID   33928430. S2CID   233451101.
  5. "Methamnetamine". WEDINOS.
  6. "Methamnetamine". New Synthetic Drugs Database. 9 November 2023.
  7. 1 2 Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI, Partilla JS (January 2001). "Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin". Synapse. 39 (1): 32–41. doi:10.1002/1098-2396(20010101)39:1<32::AID-SYN5>3.0.CO;2-3. PMID   11071707. S2CID   15573624.
  8. Baumann MH, Partilla JS, Lehner KR, Thorndike EB, Hoffman AF, Holy M, Rothman RB, Goldberg SR, Lupica CR, Sitte HH, Brandt SD, Tella SR, Cozzi NV, Schindler CW (March 2013). "Powerful cocaine-like actions of 3,4-methylenedioxypyrovalerone (MDPV), a principal constituent of psychoactive 'bath salts' products". Neuropsychopharmacology. 38 (4): 552–562. doi:10.1038/npp.2012.204. PMC   3572453 . PMID   23072836.
  9. 1 2 3 4 Blough B (July 2008). "Dopamine-releasing agents" (PDF). In Trudell ML, Izenwasser S (eds.). Dopamine Transporters: Chemistry, Biology and Pharmacology. Hoboken [NJ]: Wiley. pp. 305–320. ISBN   978-0-470-11790-3. OCLC   181862653. OL   18589888W.
  10. 1 2 Glennon RA, Dukat M (2017). "Structure-Activity Relationships of Synthetic Cathinones". Curr Top Behav Neurosci. Current Topics in Behavioral Neurosciences. 32: 19–47. doi:10.1007/7854_2016_41. ISBN   978-3-319-52442-9. PMC   5818155 . PMID   27830576.
  11. 1 2 Partilla JS, Dersch CM, Baumann MH, Carroll FI, Rothman RB (1999). "Profiling CNS Stimulants with a High-Throughput Assay for Biogenic Amine Transporter Substractes". Problems of Drug Dependence 1999: Proceedings of the 61st Annual Scientific Meeting, The College on Problems of Drug Dependence, Inc (PDF). NIDA Res Monogr. Vol. 180. pp. 1–476 (252). PMID   11680410. RESULTS. Methamphetamine and amphetamine potently released NE (IC50s = 14.3 and 7.0 nM) and DA (IC50s = 40.4 nM and 24.8 nM), and were much less potent releasers of 5-HT (IC50s = 740 nM and 1765 nM). Phentermine released all three biogenic amines with an order of potency NE (IC50 = 28.8 nM)> DA (IC50 = 262 nM)> 5-HT (IC50 = 2575 nM). Aminorex released NE (IC50 = 26.4 nM), DA (IC50 = 44.8 nM) and 5-HT (IC50 = 193 nM). Chlorphentermine was a very potent 5-HT releaser (IC50 = 18.2 nM), a weaker DA releaser (IC50 = 935 nM) and inactive in the NE release assay. Chlorphentermine was a moderate potency inhibitor of [3H]NE uptake (Ki = 451 nM). Diethylpropion, which is self-administered, was a weak DA uptake inhibitor (Ki = 15 µM) and NE uptake inhibitor (Ki = 18.1 µM) and essentially inactive in the other assays. Phendimetrazine, which is self-administered, was a weak DA uptake inhibitor (IC50 = 19 µM), a weak NE uptake inhibitor (8.3 µM) and essentially inactive in the other assays.
  12. Rothman RB, Blough BE, Woolverton WL, Anderson KG, Negus SS, Mello NK, Roth BL, Baumann MH (June 2005). "Development of a rationally designed, low abuse potential, biogenic amine releaser that suppresses cocaine self-administration". The Journal of Pharmacology and Experimental Therapeutics. 313 (3): 1361–1369. doi:10.1124/jpet.104.082503. PMID   15761112. S2CID   19802702.
  13. Baumann MH, Ayestas MA, Partilla JS, Sink JR, Shulgin AT, Daley PF, Brandt SD, Rothman RB, Ruoho AE, Cozzi NV (April 2012). "The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue". Neuropsychopharmacology. 37 (5): 1192–1203. doi:10.1038/npp.2011.304. PMC   3306880 . PMID   22169943.
  14. 1 2 Rothman RB, Partilla JS, Baumann MH, Lightfoot-Siordia C, Blough BE (April 2012). "Studies of the biogenic amine transporters. 14. Identification of low-efficacy "partial" substrates for the biogenic amine transporters". J Pharmacol Exp Ther. 341 (1): 251–262. doi:10.1124/jpet.111.188946. PMC   3364510 . PMID   22271821.
  15. Reith ME, Blough BE, Hong WC, Jones KT, Schmitt KC, Baumann MH, Partilla JS, Rothman RB, Katz JL (February 2015). "Behavioral, biological, and chemical perspectives on atypical agents targeting the dopamine transporter". Drug Alcohol Depend. 147: 1–19. doi:10.1016/j.drugalcdep.2014.12.005. PMC   4297708 . PMID   25548026.
  16. Rothman RB, Vu N, Partilla JS, Roth BL, Hufeisen SJ, Compton-Toth BA, Birkes J, Young R, Glennon RA (October 2003). "In vitro characterization of ephedrine-related stereoisomers at biogenic amine transporters and the receptorome reveals selective actions as norepinephrine transporter substrates". The Journal of Pharmacology and Experimental Therapeutics. 307 (1): 138–145. doi:10.1124/jpet.103.053975. PMID   12954796. S2CID   19015584.
  17. Blough BE, Decker AM, Landavazo A, Namjoshi OA, Partilla JS, Baumann MH, Rothman RB (March 2019). "The dopamine, serotonin and norepinephrine releasing activities of a series of methcathinone analogs in male rat brain synaptosomes". Psychopharmacology (Berl). 236 (3): 915–924. doi:10.1007/s00213-018-5063-9. PMC   6475490 . PMID   30341459.
  18. Yadav, Barkha J (16 July 2019). Understanding Structure–Activity Relationship of Synthetic Cathinones (Bath Salts) Utilizing Methylphenidate. VCU Scholars Compass (Thesis). doi:10.25772/MJQW-8C64 . Retrieved 24 November 2024.
  19. Fitzgerald LR, Gannon BM, Walther D, Landavazo A, Hiranita T, Blough BE, Baumann MH, Fantegrossi WE (March 2024). "Structure-activity relationships for locomotor stimulant effects and monoamine transporter interactions of substituted amphetamines and cathinones". Neuropharmacology. 245: 109827. doi:10.1016/j.neuropharm.2023.109827. PMC  10842458. PMID   38154512.
  20. Nicole, Lauren (2022). "In vivo Structure-Activity Relationships of Substituted Amphetamines and Substituted Cathinones". ProQuest. Retrieved 5 December 2024. FIGURE 2-6: Release: Effects of the specified test drug on monoamine release by DAT (red circles), NET (blue squares), and SERT (black traingles) in rat brain tissue. [...] EC50 values determined for the drug indicated within the panel. [...]
  21. Rothman RB, Katsnelson M, Vu N, Partilla JS, Dersch CM, Blough BE, Baumann MH (June 2002). "Interaction of the anorectic medication, phendimetrazine, and its metabolites with monoamine transporters in rat brain". European Journal of Pharmacology. 447 (1): 51–57. doi:10.1016/s0014-2999(02)01830-7. PMID   12106802.
  22. McLaughlin G, Baumann MH, Kavanagh PV, Morris N, Power JD, Dowling G, Twamley B, O'Brien J, Hessman G, Westphal F, Walther D, Brandt SD (September 2018). "Synthesis, analytical characterization, and monoamine transporter activity of the new psychoactive substance 4-methylphenmetrazine (4-MPM), with differentiation from its ortho- and meta- positional isomers". Drug Test Anal. 10 (9): 1404–1416. doi:10.1002/dta.2396. PMC   7316143 . PMID   29673128.
  23. 1 2 "Phenylmorpholines and analogues thereof". Google Patents. 20 May 2011. Retrieved 7 December 2024.
  24. Rothman RB, Baumann MH (October 2003). "Monoamine transporters and psychostimulant drugs". European Journal of Pharmacology. 479 (1–3): 23–40. doi:10.1016/j.ejphar.2003.08.054. PMID   14612135.
  25. Rothman RB, Baumann MH (August 2006). "Balance between dopamine and serotonin release modulates behavioral effects of amphetamine-type drugs". Annals of the New York Academy of Sciences. 1074 (1): 245–260. Bibcode:2006NYASA1074..245R. doi:10.1196/annals.1369.064. PMID   17105921. S2CID   19739692.
  26. "指定薬物名称・構造式一覧(平成27年9月16日現在)" [List of designated drug names and structural formulas (as of September 16, 2015)](PDF). 厚生労働省[Ministry of Health, Labour and Welfare] (in Japanese). 16 September 2015. Retrieved 8 October 2015.