Clinical data | |
---|---|
Other names | Z7757 |
Identifiers | |
| |
CAS Number |
|
PubChem CID | |
Chemical and physical data | |
Formula | C17H21N3O |
Molar mass | 283.375 g·mol−1 |
3D model (JSmol) | |
| |
|
Z3517967757, or simply Z7757, is a piperidine derivative which acts as an agonist at the 5-HT2 family of serotonin receptors, first reported in 2024. It can also be viewed as a ring-restrained phenethylamine. [1] It has strongest activity at the 5-HT2A receptor and lower affinity at the 5-HT2B and 5-HT2C receptors. However, it has been reported to have excellent selectivity for the 5-HT2A receptor, with no agonistic activity at the 5-HT2B and 5-HT2C receptors. [1] The drug was developed using in silico modelling to dock a large library of compounds against a 5-HT2A receptor model generated by the artificial intelligence program AlphaFold, and then synthesised and tested in the laboratory to confirm activity. It has two stereogenic centers and four possible isomers, but has only been tested as a racemic mixture. [2] [3] [4]
2C-B-FLY is a psychedelic phenethylamine and designer drug of the 2C family. It was first synthesized in 1996 by Aaron Monte, Professor of Chemistry at UW-La Crosse.
2,5-Dimethoxy-4-ethylamphetamine is a psychedelic drug of the phenethylamine and amphetamine chemical classes. It was first synthesized by Alexander Shulgin, and was described in his book PiHKAL.
The 5-HT2A receptor is a subtype of the 5-HT2 receptor that belongs to the serotonin receptor family and is a G protein-coupled receptor (GPCR). The 5-HT2A receptor is a cell surface receptor, but has several intracellular locations.
A serotonin receptor agonist is an agonist of one or more serotonin receptors. They activate serotonin receptors in a manner similar to that of serotonin, a neurotransmitter and hormone and the endogenous ligand of the serotonin receptors.
2C (2C-x) is a general name for the family of psychedelic phenethylamines containing methoxy groups on the 2 and 5 positions of a benzene ring. Most of these compounds also carry lipophilic substituents at the 4 position, usually resulting in more potent and more metabolically stable and longer acting compounds. Most of the currently known 2C compounds were first synthesized by Alexander Shulgin in the 1970s and 1980s and published in his book PiHKAL. Shulgin also coined the term 2C, being an acronym for the 2 carbon atoms between the benzene ring and the amino group.
4-Substituted-2,5-dimethoxyamphetamines (DOx) is a chemical class of substituted amphetamine derivatives featuring methoxy groups at the 2- and 5- positions of the phenyl ring, and a substituent such as alkyl or halogen at the 4- position of the phenyl ring. Most compounds of this class are potent and long-lasting psychedelic drugs, and act as highly selective 5-HT2A, 5-HT2B, and 5-HT2C receptor partial agonists. A few bulkier derivatives such as DOAM have similarly high binding affinity for 5-HT2 receptors but instead act as antagonists, and so do not produce psychedelic effects though they retain amphetamine-like stimulant effects.
2,5-Dimethoxy-4-ethylthio-α-ethylphenethylamine (4C-T-2) is a synthetic drug of the phenethylamine chemical class. It is the α-ethylated analogue of 2C-T-2.
Substituted tryptamines, or serotonin analogues, are organic compounds which may be thought of as being derived from tryptamine itself. The molecular structures of all tryptamines contain an indole ring, joined to an amino (NH2) group via an ethyl (−CH2–CH2−) sidechain. In substituted tryptamines, the indole ring, sidechain, and/or amino group are modified by substituting another group for one of the hydrogen (H) atoms.
5-MeO-NBpBrT is a N-substituted member of the methoxytryptamine family of compounds. Like other such compounds it acts as an antagonist for the 5-HT2A receptor, with a claimed 100x selectivity over the closely related 5-HT2C receptor. While N-benzyl substitution of psychedelic phenethylamines often results in potent 5-HT2A agonists, it had been thought that N-benzyl tryptamines show much lower efficacy and are either very weak partial agonists or antagonists at 5-HT2A, though more recent research has shown stronger agonist activity for 3-substituted benzyl derivatives. Extending the benzyl group to a substituted phenethyl can also recover agonist activity in certain cases.
5-HT2C receptor agonists are a class of drugs that activate 5-HT2C receptors. They have been investigated for the treatment of a number of conditions including obesity, psychiatric disorders, sexual dysfunction and urinary incontinence.
25CN-NBOH is a compound indirectly derived from the phenethylamine series of hallucinogens, which was discovered in 2014 at the University of Copenhagen. This compound is notable as one of the most selective agonist ligands for the 5-HT2A receptor yet discovered, with a pKi of 8.88 at the human 5-HT2A receptor and with 100x selectivity for 5-HT2A over 5-HT2C, and 46x selectivity for 5-HT2A over 5-HT2B. A tritiated version of 25CN-NBOH has also been accessed and used for more detailed investigations of the binding to 5-HT2 receptors and autoradiography.
DMBMPP, or 2-(2,5-dimethoxy-4-bromobenzyl)-6-(2-methoxyphenyl)piperidine, is a 2-benzylpiperidine analog of the hallucinogenic N-benzylphenethylamine 25B-NBOMe and was discovered in 2011 by Jose Juncosa in the group of David E. Nichols at Purdue University. DMBMPP differs from 25B-NBOMe by incorporating the amine within a piperidine ring, making for a more rigid molecular structure than that of the open-chain 25B-NBOMe. The presence of the piperidine ring introduces two stereocenters, thus, four stereoisomers of this compound can be made.
2C-T-16 is a lesser-known psychedelic drug. It was originally named by Alexander Shulgin as described in his book PiHKAL, however while Shulgin began synthesis of this compound he only got as far as the nitrostyrene intermediate, and did not complete the final synthetic step. Synthesis of 2C-T-16 was finally achieved by Daniel Trachsel some years later, and it was subsequently reported as showing similar psychedelic activity to related compounds, with a dose range of 10–25 mg and a duration of 4–6 hours, making it around the same potency as the better-known saturated analogue 2C-T-7, but with a significantly shorter duration of action. Binding studies in vitro showed 2C-T-16 to have a binding affinity of 44 nM at 5-HT2A and 15 nM at 5-HT2C. 2C-T-16 and related derivatives are potent partial agonists of the 5-HT1A, 5-HT2A, 5-HT2B and 5-HT2C receptors and induce a head-twitch response in mice.
The 25-NB (25x-NBx) series, sometimes alternatively referred to as the NBOMe compounds, is a family of serotonergic psychedelics. They are substituted phenethylamines and were derived from the 2C family. They act as selective agonists of the serotonin 5-HT2A receptor. The 25-NB family is unique relative to other classes of psychedelics in that they are, generally speaking, extremely potent and relatively selective for the 5-HT2A receptor. Use of NBOMe series drugs has caused many deaths and hospitalisations since the drugs popularisation in the 2010s. This is primarily due to their high potency, unpredictable pharmacokinetics, and sellers passing off the compounds in the series as LSD.
25O-NBcP (NBcPr-2C-O) is a phenethylamine derivative from the 25-NB class. It acts as a potent agonist at the 5-HT2A receptor with weaker activity at 5-HT2B and 5-HT2C, and unlike the parent compound 2C-O, 25O-NBcP produces a head-twitch response in animal studies which often correlates with potential for psychedelic effects in humans.
2C2-NBOMe (NBOMe-MMDPEA-2) is a phenethylamine derivative from the 25-NB class. It acts as a potent agonist at the 5-HT2A receptor with weaker activity at 5-HT2B and 5-HT2C, and produces a head-twitch response in animal studies which often correlates with potential for psychedelic effects in humans. It is related in structure to psychedelic amphetamine derivatives such as MMDA-2 and is the first phenethylamine derivative with a methylenedioxy substitution on the phenyl ring but no alkyl substitution on the alpha carbon, that has been shown to produce psychedelic-appropriate responding in animals.
LPH-5 is a psychedelic discovered by Emil Marcher-Rørsted, Jesper L. Kristensen and Anders A. Jensen at Danish biopharmaceutical company Lophora. It is a conformationally-restricted derivative of the phenethylamine 2C-TFM, also a hallucinogen, and acts as a potent agonist of the 5-HT2A receptor (EC50 = 3.2 nM, Emax = 78%). It shows 10- to 100-fold selectivity for the 5-HT2A receptor over the 5-HT2B and 5-HT2C receptors and, along with related compounds like 25CN-NBOH, is said to be one of the few truly selective 5-HT2A receptor agonists. LPH-5 is expected to avoid the cardiac risks of 5-HT2B receptor activation.
CYB210010 (2C-T-TFM) is a lesser-known psychedelic drug related to compounds such as 2C-T and 2C-T-21. Alexander Shulgin attempted to synthesise this compound in the 1990s, and mentions it in his book PiHKAL under the entry for 2C-T-21, but was unsuccessful in producing a key intermediate and never assigned it a 2C-T number. This compound was ultimately first synthesised by Geoffrey Varty and colleagues at Irish biopharmaceutical company Cybin in 2023. It has a Ki of 0.35 nM at 5-HT2A, and an EC50 of 4.1 nM at 5-HT2A and 7.3 nM at 5-HT2C, compared to 88 nM at 5-HT2B. It is a potent, selective, long acting and orally active agonist for the 5-HT2A and 5-HT2C receptors and produces psychedelic-like responding in several different animal species. It is not known to have been tested in humans.
Lysergine, also known as 9,10-didehydro-6,8β-dimethylergoline, is an ergot alkaloid and serotonin receptor agonist of the ergoline family. It is a minor constituent of ergot.
Another compound to come out of a large-scale docking screen is the recently reported Z7757 (Figure 5B) (Lyu et al., 2024). This compound was discovered from a 1.6 billion molecule docking screen against the AlphaFold model of the 5-HT2A receptor. Similar to the recent report of LPH-5, Z7757 is a ring-restrained phenethylamine. However, it has a pyrimidine ring substituent coming off the tertiary nitrogen. Remarkably, Z7757 shows excellent selectivity for 5-HT2A with no activity being detected for 5-HT2B or 5-HT2C in calcium mobilization assays, but further optimization to increase potency and in vivo testing is needed.