Ethylphenidate

Last updated
Ethylphenidate
Ethylphenidate.svg
Ethylphenidate-3D-ball-model.png
Clinical data
Trade names EPH
Routes of
administration
Insufflation, vaporized, intravenous, intramuscular, rectal, oral, sublingual
ATC code
  • none
Legal status
Legal status
Pharmacokinetic data
Bioavailability Variable
Protein binding Unknown
Metabolism Hepatic transesterification of prodrugs methylphenidate and ethanol
Excretion Urine, sweat
Identifiers
  • (RS)-Ethyl 2-phenyl-2-piperidin-2-ylacetate
CAS Number
PubChem CID
ChemSpider
UNII
KEGG
CompTox Dashboard (EPA)
Chemical and physical data
Formula C15H21NO2
Molar mass 247.338 g·mol−1
3D model (JSmol)
  • CCOC(=O)C(C1CCCCN1)C2=CC=CC=C2
  • InChI=1S/C15H21NO2/c1-2-18-15(17)14(12-8-4-3-5-9-12)13-10-6-7-11-16-13/h3-5,8-9,13-14,16H,2,6-7,10-11H2,1H3 Yes check.svgY
  • Key:AIVSIRYZIBXTMM-UHFFFAOYSA-N Yes check.svgY
 X mark.svgNYes check.svgY  (what is this?)    (verify)

Ethylphenidate (EPH) is a psychostimulant and a close analog of methylphenidate.

Contents

Ethylphenidate acts as both a dopamine reuptake inhibitor and norepinephrine reuptake inhibitor, meaning it effectively boosts the levels of the norepinephrine and dopamine neurotransmitters in the brain, by binding to, and partially blocking the transporter proteins that normally remove those monoamines from the synaptic cleft.

However, considering the close similarities between ethylphenidate and methylphenidate and the fact that methylphenidate, like cocaine, actually does not primarily act as a "classical" reuptake inhibitor, but rather as an "inverse agonist at the DAT" (also called a "negative allosteric modulator at the DAT"), [3] it is at least very likely that ethylphenidate also primarily acts as an inverse DAT agonist instead of (or at least only secondarily) as a classical reuptake inhibitor (which could be called a "competitive antagonist at the DAT" using a similar terminology as "negative allosteric modulator at the DAT", which per definition means that its mechanism is non-competitive).

Pharmacology

Pharmacokinetics

Ethylphenidate metabolizes into methylphenidate and ritalinic acid. [4]

Tiny amounts of ethylphenidate can be formed in vivo when ethanol and methylphenidate are coingested, via hepatic transesterification. [5] Ethylphenidate formation appears to be more common when large quantities of methylphenidate and alcohol are consumed at the same time, such as in non-medical use or overdose scenarios. [6] However, the transesterfication process of methylphenidate to ethylphenidate, as tested in mice liver, was dominant in the inactive (−)-enantiomer but showed a prolonged and increased maximal plasma concentration of the active (+)-enantiomer of methylphenidate. [7] Additionally, only a small percent of the consumed methylphenidate is converted to ethylphenidate. [5]

This carboxylesterase-dependent transesterification process is also known to occur when cocaine and alcohol are consumed together, forming cocaethylene. [8]

Pharmacodynamics

All available data on ethylphenidate's pharmacodynamics are drawn from studies conducted on rodents.[ citation needed ] Ethylphenidate is more selective to the dopamine transporter (DAT) than methylphenidate, having approximately the same efficacy as the parent compound, [7] but has significantly less activity on the norepinephrine transporter (NET). [9] Its dopaminergic pharmacodynamic profile is nearly identical to methylphenidate, and is primarily responsible for its euphoric and reinforcing effects. [10]

The eudysmic ratio for ethylphenidate is superior to that of methylphenidate. [7] [ failed verification ]

The following is ethylphenidate's binding profile in the mouse, alongside methylphenidate's. Figures for both the racemic and the dextrorotary enantiomers are given: [9]

CompoundBinding DATBinding NETUptake DAUptake NE
d-methylphenidate1394082846
d-ethylphenidate276247924247
dl-methylphenidate10515602431
dl-ethylphenidate382482482408

Legality

See also

Related Research Articles

<span class="mw-page-title-main">Methylphenidate</span> Central nervous system stimulant

Methylphenidate, sold under the brand names Ritalin and Concerta among others, is a central nervous system (CNS) stimulant used medically to treat attention deficit hyperactivity disorder (ADHD) and, to a lesser extent, narcolepsy. It is a primary medication for ADHD ; it may be taken by mouth or applied to the skin, and different formulations have varying durations of effect, commonly ranging from 2–4 hours.

<span class="mw-page-title-main">Monoamine transporter</span> Proteins that function as integral plasma-membrane transporters

Monoamine transporters (MATs) are proteins that function as integral plasma-membrane transporters to regulate concentrations of extracellular monoamine neurotransmitters. The three major classes are serotonin transporters (SERTs), dopamine transporters (DATs), and norepinephrine transporters (NETs) and are responsible for the reuptake of their associated amine neurotransmitters. MATs are located just outside the synaptic cleft (peri-synaptically), transporting monoamine transmitter overflow from the synaptic cleft back to the cytoplasm of the pre-synaptic neuron. MAT regulation generally occurs through protein phosphorylation and post-translational modification. Due to their significance in neuronal signaling, MATs are commonly associated with drugs used to treat mental disorders as well as recreational drugs. Compounds targeting MATs range from medications such as the wide variety of tricyclic antidepressants, selective serotonin reuptake inhibitors such as fluoxetine (Prozac) to stimulant medications such as methylphenidate (Ritalin) and amphetamine in its many forms and derivatives methamphetamine (Desoxyn) and lisdexamfetamine (Vyvanse). Furthermore, drugs such as MDMA and natural alkaloids such as cocaine exert their effects in part by their interaction with MATs, by blocking the transporters from mopping up dopamine, serotonin, and other neurotransmitters from the synapse.

A dopamine reuptake inhibitor (DRI) is a class of drug which acts as a reuptake inhibitor of the monoamine neurotransmitter dopamine by blocking the action of the dopamine transporter (DAT). Reuptake inhibition is achieved when extracellular dopamine not absorbed by the postsynaptic neuron is blocked from re-entering the presynaptic neuron. This results in increased extracellular concentrations of dopamine and increase in dopaminergic neurotransmission.

<span class="mw-page-title-main">Norepinephrine reuptake inhibitor</span> Class of drug

A norepinephrine reuptake inhibitor or noradrenaline reuptake inhibitor or adrenergic reuptake inhibitor (ARI), is a type of drug that acts as a reuptake inhibitor for the neurotransmitters norepinephrine (noradrenaline) and epinephrine (adrenaline) by blocking the action of the norepinephrine transporter (NET). This in turn leads to increased extracellular concentrations of norepinephrine and epinephrine and therefore can increase adrenergic neurotransmission.

<span class="mw-page-title-main">Dexmethylphenidate</span> CNS Stimulant

Dexmethylphenidate, sold under the brand name Focalin among others, is a potent central nervous system (CNS) stimulant used to treat attention deficit hyperactivity disorder (ADHD) in those over the age of five years. It is taken by mouth. The immediate release formulation lasts up to five hours while the extended release formulation lasts up to twelve hours. It is the more active enantiomer of methylphenidate.

<span class="mw-page-title-main">Cocaethylene</span> Chemical compound

Cocaethylene (ethylbenzoylecgonine) is the ethyl ester of benzoylecgonine. It is structurally similar to cocaine, which is the methyl ester of benzoylecgonine. Cocaethylene is formed by the liver when cocaine and ethanol coexist in the blood. In 1885, cocaethylene was first synthesized, and in 1979, cocaethylene's side effects were discovered.

<span class="mw-page-title-main">Norepinephrine transporter</span> Protein-coding gene in the species Homo sapiens

The norepinephrine transporter (NET), also known as noradrenaline transporter (NAT), is a protein that in humans is encoded by the solute carrier family 6 member 2 (SLC6A2) gene.

<span class="mw-page-title-main">Reuptake inhibitor</span> Type of drug

Reuptake inhibitors (RIs) are a type of reuptake modulators. It is a drug that inhibits the plasmalemmal transporter-mediated reuptake of a neurotransmitter from the synapse into the pre-synaptic neuron. This leads to an increase in extracellular concentrations of the neurotransmitter and an increase in neurotransmission. Various drugs exert their psychological and physiological effects through reuptake inhibition, including many antidepressants and psychostimulants.

<span class="mw-page-title-main">Difluoropine</span> Chemical compound

Difluoropine (O-620) is a stimulant drug synthesised from tropinone, which acts as a potent and selective dopamine reuptake inhibitor. Difluoropine is unique among the tropane-derived dopamine reuptake inhibitors in that the active stereoisomer is the (S) enantiomer rather than the (R) enantiomer, the opposite way round compared to natural cocaine. It is structurally related to benztropine and has similar anticholinergic and antihistamine effects in addition to its dopamine reuptake inhibitory action.

<span class="mw-page-title-main">RTI-112</span> Chemical compound

RTI(-4229)-112 is a synthetic stimulant drug from the phenyltropane family. In contrast to RTI-113, which is DAT selective, RTI-112 is a nonselective triple reuptake inhibitor.

<span class="mw-page-title-main">Norepinephrine–dopamine reuptake inhibitor</span> Drug that inhibits the reuptake of norepinephrine and dopamine

A norepinephrine–dopamine reuptake inhibitor (NDRI) is a drug used for the treatment of clinical depression, attention deficit hyperactivity disorder (ADHD), narcolepsy, and the management of Parkinson's disease. The drug acts as a reuptake inhibitor for the neurotransmitters norepinephrine and dopamine by blocking the action of the norepinephrine transporter (NET) and the dopamine transporter (DAT), respectively. This in turn leads to increased extracellular concentrations of both norepinephrine and dopamine and, therefore, an increase in adrenergic and dopaminergic neurotransmission.

<span class="mw-page-title-main">3,4-Dichloromethylphenidate</span> Stimulant drug

3,4-Dichloromethylphenidate is a stimulant drug related to methylphenidate. Dichloromethylphenidate is a potent psychostimulant that acts as both a dopamine reuptake inhibitor and norepinephrine reuptake inhibitor, meaning it effectively boosts the levels of the norepinephrine and dopamine neurotransmitters in the brain, by binding to, and partially blocking the transporter proteins that normally remove those monoamines from the synaptic cleft.

<span class="mw-page-title-main">4-Methylmethylphenidate</span> Stimulant drug

threo-4-Methylmethylphenidate (4-MeTMP) is a stimulant drug related to methylphenidate. It is slightly less potent than methylphenidate and has relatively low efficacy at blocking dopamine reuptake despite its high binding affinity, which led to its investigation as a possible substitute drug for treatment of stimulant abuse. On the other hand, several other simple ring-substituted derivatives of threo-methylphenidate such as the 4-fluoro and 3-chloro compounds are more potent than methylphenidate both in efficacy as dopamine reuptake inhibitors and in animal drug discrimination assays.

<span class="mw-page-title-main">Methiopropamine</span> Structural analog of methamphetamine

Methiopropamine (MPA) is an organic compound structurally related to methamphetamine. Originally reported in 1942, the molecule consists of a thiophene group with an alkyl amine substituent at the 2-position. It appeared for public sale in the UK in December 2010 as a "research chemical" or "legal high", recently branded as Blow. It has limited popularity as a recreational stimulant.

<span class="mw-page-title-main">3,4-Dimethylmethcathinone</span> Designer stimulant drug

3,4-Dimethylmethcathinone (3,4-DMMC) is a stimulant drug first reported in 2010 as a designer drug analogue of mephedrone, apparently produced in response to the banning of mephedrone, following its widespread abuse in many countries in Europe and around the world. 3,4-DMMC has been seized as a designer drug in Australia. In vitro, 3,4-DMMC was shown to be a monoamine transporter substrate that potently inhibits norepinephrine and serotonin reuptake, and to a lesser extent dopamine reuptake.

<span class="mw-page-title-main">Serotonin–dopamine reuptake inhibitor</span> Class of drug

A serotonin–dopamine reuptake inhibitor (SDRI) is a type of drug which acts as a reuptake inhibitor of the monoamine neurotransmitters serotonin and dopamine by blocking the actions of the serotonin transporter (SERT) and dopamine transporter (DAT), respectively. This in turn leads to increased extracellular concentrations of serotonin and dopamine, and, therefore, an increase in serotonergic and dopaminergic neurotransmission.

A monoamine reuptake inhibitor (MRI) is a drug that acts as a reuptake inhibitor of one or more of the three major monoamine neurotransmitters serotonin, norepinephrine, and dopamine by blocking the action of one or more of the respective monoamine transporters (MATs), which include the serotonin transporter (SERT), norepinephrine transporter (NET), and dopamine transporter (DAT). This in turn results in an increase in the synaptic concentrations of one or more of these neurotransmitters and therefore an increase in monoaminergic neurotransmission.

<span class="mw-page-title-main">1-(3-Chlorophenyl)-4-(2-phenylethyl)piperazine</span> Chemical compound

1-(3-Chlorophenyl)-4-(2-phenylethyl)piperazine (3C-PEP) is a designer drug of the piperazine class of chemical substances. 3C-PEP is related to meta-cholorophenylpiperazine (mCPP) and phenethylamine that can be thought of as mCPP having a phenylethyl group attached to the nitrogen atom at its 4-position. It was first described in 1994 in a patent disclosing a series of piperazine compounds as sigma receptor ligands. Later, it was discovered to be a highly potent dopamine reuptake inhibitor.

<span class="mw-page-title-main">4-Fluoromethylphenidate</span> Chemical compound

4-Fluoromethylphenidate is a stimulant drug that acts as a higher potency dopamine reuptake inhibitor than the closely related methylphenidate.

1-Methyl-3-propyl-4-(<i>p</i>-chlorophenyl)piperidine Chemical compound

1-Methyl-3-propyl-4-(p-chlorophenyl)piperidine is a drug developed by a team led by Alan Kozikowski, which acts as a potent dopamine reuptake inhibitor, and was developed as a potential therapeutic agent for the treatment of cocaine addiction. As with related compounds such as nocaine, it is a structurally simplified derivative of related phenyltropane compounds. Its activity at the serotonin and noradrenaline transporters has not been published, though most related 4-phenylpiperidine derivatives are relatively selective for inhibiting dopamine reuptake over the other monoamine neurotransmitters. While several of its isomers are active, the (3S,4S)-enantiomer is by far the most potent. The rearranged structural isomer 2-[1-(4-chlorophenyl)butyl]piperidine is also a potent inhibitor of dopamine reuptake.

References

  1. Anvisa (2023-07-24). "RDC Nº 804 - Listas de Substâncias Entorpecentes, Psicotrópicas, Precursoras e Outras sob Controle Especial" [Collegiate Board Resolution No. 804 - Lists of Narcotic, Psychotropic, Precursor, and Other Substances under Special Control] (in Brazilian Portuguese). Diário Oficial da União (published 2023-07-25). Archived from the original on 2023-08-27. Retrieved 2023-08-27.
  2. "Substance Details Ethylphenidate" . Retrieved 2024-01-22.
  3. Heal DJ, Gosden J, Smith SL (December 2014). "Dopamine reuptake transporter (DAT) "inverse agonism"--a novel hypothesis to explain the enigmatic pharmacology of cocaine". Neuropharmacology. 87: 19–40. doi:10.1016/j.neuropharm.2014.06.012. PMID   24953830. S2CID   4660652. In vivo experiments in animals demonstrate that cocaine's monoaminergic pharmacology is profoundly different from that of other prescribed monoamine reuptake inhibitors, with the exception of methylphenidate. These findings led us to conclude that the highly unusual stimulant profile of cocaine and related compounds, eg methylphenidate, is not mediated by monoamine reuptake inhibition alone. We describe the experimental findings which suggest cocaine serves as a negative allosteric modulator to alter the function of the dopamine reuptake transporter (DAT) and reverse its direction of transport. This results in a firing-dependent, retro-transport of dopamine into the synaptic cleft. [...] Because the physiological role of DAT is to remove dopamine from the synapse and the action of cocaine is the opposite of this, we have postulated that cocaine's effect is analogous to an inverse agonist.
  4. Negreira N, Erratico C, van Nuijs AL, Covaci A (January 2016). "Identification of in vitro metabolites of ethylphenidate by liquid chromatography coupled to quadrupole time-of-flight mass spectrometry". Journal of Pharmaceutical and Biomedical Analysis. 117 (5): 474–84. doi:10.1016/j.jpba.2015.09.029. hdl: 10067/1301870151162165141 . PMID   26454340.
  5. 1 2 Markowitz JS, DeVane CL, Boulton DW, Nahas Z, Risch SC, Diamond F, Patrick KS (June 2000). "Ethylphenidate formation in human subjects after the administration of a single dose of methylphenidate and ethanol". Drug Metabolism and Disposition. 28 (6): 620–4. PMID   10820132.
  6. Markowitz JS, Logan BK, Diamond F, Patrick KS (August 1999). "Detection of the novel metabolite ethylphenidate after methylphenidate overdose with alcohol coingestion". Journal of Clinical Psychopharmacology. 19 (4): 362–6. doi:10.1097/00004714-199908000-00013. PMID   10440465.
  7. 1 2 3 Patrick KS, Williard RL, VanWert AL, Dowd JJ, Oatis JE, Middaugh LD (April 2005). "Synthesis and pharmacology of ethylphenidate enantiomers: the human transesterification metabolite of methylphenidate and ethanol". Journal of Medicinal Chemistry. 48 (8): 2876–81. doi:10.1021/jm0490989. PMID   15828826.
  8. Bourland JA, Martin DK, Mayersohn M (December 1997). "Carboxylesterase-mediated transesterification of meperidine (Demerol) and methylphenidate (Ritalin) in the presence of [2H6]ethanol: preliminary in vitro findings using a rat liver preparation". Journal of Pharmaceutical Sciences. 86 (12): 1494–6. doi:10.1021/js970072x. PMID   9423167.
  9. 1 2 Williard RL, Middaugh LD, Zhu HJ, Patrick KS (February 2007). "Methylphenidate and its ethanol transesterification metabolite ethylphenidate: brain disposition, monoamine transporters and motor activity". Behavioural Pharmacology. 18 (1): 39–51. doi:10.1097/FBP.0b013e3280143226. PMID   17218796. S2CID   20232871.
  10. Jatlow P, Elsworth JD, Bradberry CW, Winger G, Taylor JR, Russell R, Roth RH (1991). "Cocaethylene: a neuropharmacologically active metabolite associated with concurrent cocaine-ethanol ingestion" (PDF). Life Sciences. 48 (18): 1787–94. doi:10.1016/0024-3205(91)90217-Y. hdl: 2027.42/29671 . PMID   2020260.
  11. 1 2 "Schedules of Controlled Substances: Placement of Ethylphenidate in Schedule I" (PDF). Federal Register . 88 (183): 65,332. 22 September 2023. Retrieved 16 October 2023.
  12. "Opiumwet" [Opium Act]. Ministerie van Binnenlandse Zaken en Koninkrijksrelaties[Ministry of the Interior and Kingdom Relations] (in Dutch). Retrieved 30 January 2022.
  13. "'Legal highs' to be banned under temporary power". Gov.uk.
  14. "Re: TCDOs and ACMD position on methylphenidate-based NPS" (PDF). Gov.uk. 2016-02-29. Retrieved 2016-11-28.
  15. "Misuse of Drug (General Provisions) (Jersey) Order 2009". Jersey Legal Information Board . January 2014. Retrieved 2023-09-28.
  16. Parks C, McKeown D, Torrance HJ (December 2015). "A review of ethylphenidate in deaths in east and west Scotland". Forensic Science International. 257: 203–208. doi:10.1016/j.forsciint.2015.08.008. PMID   26375622.
  17. "Order Amending Schedule III to the Controlled Drugs and Substances Act (Methylphenidate)". Canada Gazette. Government of Canada, Public Works and Government Services Canada, Public Services and Procurement Canada, Integrated Services Branch, Canada. 2017-04-05.
  18. "BTMG - Einzelnorm". Archived from the original on 2013-10-16. Retrieved 2014-02-08.
  19. "Retsinformation". Retsinformation.dk. Retrieved 30 January 2022.
  20. "Ustawa z dnia 24 kwietnia 2015 r. o zmianie ustawy o przeciwdziałaniu narkomanii oraz niektórych innych ustaw". Isap.sejm.gov.pl.
  21. "Vartotojui - tik saugūs ir efektyvūs vaistai! - I SĄRAŠAS". Vvkt.lt.
  22. "关于印发《非药用类麻醉药品和精神药品列管办法》的通知" (in Chinese). China Food and Drug Administration. 27 September 2015. Archived from the original on 1 October 2015. Retrieved 1 October 2015.
  23. "FINLEX ® - Etusivu". www.finlex.fi.